EP0756922B1 - Verfahren zum Formen von Keramikwerkstoffen - Google Patents

Verfahren zum Formen von Keramikwerkstoffen Download PDF

Info

Publication number
EP0756922B1
EP0756922B1 EP19950111854 EP95111854A EP0756922B1 EP 0756922 B1 EP0756922 B1 EP 0756922B1 EP 19950111854 EP19950111854 EP 19950111854 EP 95111854 A EP95111854 A EP 95111854A EP 0756922 B1 EP0756922 B1 EP 0756922B1
Authority
EP
European Patent Office
Prior art keywords
slurry
molding
mold
punch
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19950111854
Other languages
English (en)
French (fr)
Other versions
EP0756922A1 (de
Inventor
Tomoyuki c/o Itami Works of Sumitomo Awazu
Yasushi c/o Itami Works of Sumitomo Tsuzuki
Akira C/O Itami Works Of Sumitomo Yamakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to DE1995626733 priority Critical patent/DE69526733T2/de
Priority to EP19950111854 priority patent/EP0756922B1/de
Publication of EP0756922A1 publication Critical patent/EP0756922A1/de
Application granted granted Critical
Publication of EP0756922B1 publication Critical patent/EP0756922B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/265Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor pressure being applied on the slip in the filled mould or on the moulded article in the mould, e.g. pneumatically, by compressing slip in a closed mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/26Producing shaped prefabricated articles from the material by slip-casting, i.e. by casting a suspension or dispersion of the material in a liquid-absorbent or porous mould, the liquid being allowed to soak into or pass through the walls of the mould; Moulds therefor ; specially for manufacturing articles starting from a ceramic slip; Moulds therefor
    • B28B1/261Moulds therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/40Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
    • B28B7/46Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for humidifying or dehumidifying

Definitions

  • the molding pressure is, at most only 10 kg/cm 2 when a gypsum mold is used and about 50 kg/cm 2 when a plastics mold is used. If the molding pressure exceeding this upper limit is applied to the porous mold, such high pressure may bring about the breakage of the molds.
  • a filter cloth 9 and a filter paper 10 are, as shown in FIG. 3, set at the frontal face of a metallic mold 3, which has holes of 1 - 3 mm inside diameter for dehydration. And only liquid (water) is discharged from the holes of the mold through the filter (see prior art document EP-A-0 587 160).
  • the present invention was made to overcome the above and other problems encountered in the prior art.
  • Another object of the present invention is to provide molds used for carrying out the above-mentioned molding process.
  • the present invention provides a process for molding a ceramic slurry, in which a mold made wholly or partially of a porous metal or a porous ceramic is used, and by carrying out the pressurazition after solidification of the slurry.
  • FIG. 1 is a vertical cross-sectional view showing a casting method employing a casting mold according to an embodiment of the present invention.
  • FIG. 8 is a view illustrating pressurizing steps of the present invention.
  • the basic concept of the present invention consists in that, in pressure slipcast molding of ceramics, a casting mold made of metal or ceramic of a higher strength is employed to enable application of a higher pressure.
  • porous metals and ceramics it is possible to polish the surface of porous metals and ceramics, to decrease their surface roughness, and to make it a mirror plane in some cases.
  • molded ceramic articles can be easily taken out of the mold and also be prevented from breaking.
  • the surface appearance of the molded ceramic articles become excellent.
  • ceramics for porous materials ceramics have a high chemical resistability against acid, alkali and so on. Ceramics are neither corroded nor rusted and have sufficient durability. And they are excellent in strength and toughness, compared with other materials; therefore,they do not become fatigued and have sufficient durability mechanically,too.
  • diameters of pores in the porous materials which are components of a mold the wholly or partially, should be more than 0.1 ⁇ m so that dehydration and molding can be carried out in industrially practical time. If diameters of the pores are less than 0.1 ⁇ m, in case of using water for liquid of the slurry, the surface tension becomes higher, keeps the liquid from flowing into pores of porous materials, and makes it difficult to discharge the liquid in the slurry through pores of porous materials.
  • powders in the pressurized slurry tend to undergo cohesion to form agglomerates (hereinafter referred to as "secondary particles").
  • the maximum diameter of the pores is twenty times as high as the diameter of the secondary particles of powders in the slurry and it can prevent the powders from flowing.
  • the average diameter of pores in the filter paper and/or filter cloth should be more than 0.1 ⁇ m and less than twenty times as large as the diameter of the secondary particles in the slurry.
  • the average diameter of pores needs to be more than 0.1 ⁇ m. If the average diameter is larger than twenty times as large as the average diameter of the secondary powder in the slurry, it causes efflux of powder, namely a permeation of the slurry through the filter for the same reason as discussed above.
  • the slurry is pressurized by moving a punch to effect mechanical compression and discharge a liquid.
  • a filter cloth is attached to a portion freed from the liquid for preparing a molded article.
  • the liquid in the slurry is passed via the molded article so as to be discharged out of the system. If the pressurization during molding is insufficient, liquid removal from the slurry in the vicinity of the punch is insufficient so that a non-solid portion is left. If the pressurization is excessive, the punch is pushed wastefully and the molded article is mechanically compressed so that the packing density of the powders in the molded article is locally increased in the vicinity of the punch with progress in the mechanical compression of the molded product.
  • FIG. 7 and 8 illustrates a pressurizing step of the present invention.
  • FIG. 7 schematically shows the relation between pressurizing time and punch displacement.
  • FIG. 8 schematically shows the molding state of a slurry at each stage of the pressurizing time.
  • a point at which the packing density of ceramic particles in the slurry becomes uniform in the pressurizing direction, in other words, a point at which the concentration gradient in the pressurizing direction of ceramic particles in the slurry becomes null, is defined as the state in which all the slurry charged into the cavity has solidified.
  • the pressurizing time which elapses until solidification is defined at T. The above will be understood by comparing the unsolidified stage shown at the third from left to the stage of the solidified slurry shown at the forth from left.
  • the time control can be achieved by terminating the pressurization within 50% of the pressing time determined from the time at which the slurry in the mold is dehydrated and all slurry turned into a molded article. In other words, pressing of the slurry is completed at a time between T and 1.50T, wherein T is the pressing time necessary to remove sufficient excess liquid from the slurry in the mold to produce a molded mass. If the timing of the end of pressurization exceeds 50%, density fluctuations can occur and the sintered product is deteriorated in dimensional stability. In the worst case, cracks are produced.
  • the molded product is abnormally compressed, so that it becomes intimately affixed to the punch or a solvent removing portion, resulting in lowered mold release properties and crack exfoliation.
  • the molded article tends to be expanded (springback) when being taken out of the mold, a strong friction operates between the mold and the molded article, thus resulting in the mold injuring the molded article or producing cracks.
  • the total pressurizing time is up to 1.50 times T, that is in a range of from T to 1.5T for the aspect ratio of the molded article of 1 or less, and is up to 1.12 times T, that is in a range of from T to 1.12T for the aspect ratio exceeding 1. If the aspect ratio is within this range, the lowering of molded release properties or damages to the molded article due to friction with the mold may be suppressed by the above-mentioned reason. In addition, the sintered article may be improved in dimensional accuracy or strength.
  • the pressing condition may be implemented by the amount of the punch displacement. That is, the pressurization is terminated within a length the punch is moved distance equal to 17% (0.17 L) of the molding length ( L ) as shown in Fig.8 and as measured from a punch position at which excess liquid is removed from the slurry in the mold and the entire slurry has solidified. In other words, the punch could go beyond a point at which sufficient excess liquid is removed from the slurry in the mold and the entire slurry has solidified. In other words, the punch displacement from a point at which excess liquid is removed from the slurry in the mold to produce a molded article is 17% or less of the total molding length L. If the punch is moved for pressurization in excess of 17% of the molding length L the molded article can undergo density fluctuations and, in extreme cases, cracks occur.
  • the pore size of the porous member in contact with the slurry needs to be not more than 20 times the mean particle size of the secondary particles of the powders present in the slurry and not less than 0.1 ⁇ m by reason of the time of liquid removal and mold release properties.
  • the surface roughness of the porous member in contact with the slurry needs to be not more than 0.4 ⁇ m in Rz by reason of the mold release properties.
  • the surface roughness of the porous member in contact with the slurry needs to be not more than 0.4 ⁇ m in Rz by reason of the mold release properties of the molded article.
  • the pore diameter of the filter paper or filter cloth in contact with the slurry needs to be not less than 0.1 ⁇ m and not more than 20 times the mean particle size of the secondary particles of the powders present in the slurry by reason of mold release properties and the time for solvent removal.
  • the punch is moved within a die or mandrel and the slurry is mechanically compressed as the punch is slid against the inner wall of the die.
  • slurry effluence occurs by reason of the clearance of the sliding portions, such that the slurry falls into shortage and solidification is not completed.
  • a sealant is provided at the sliding portion. O-rings formed of rubber, resin or metal, for example, may be employed as the sealant.
  • the die and the punch are formed of the material which is superior in abrasion resistance and is not susceptible to fatigue due to repeated sliding of the punch relative to the die. That is, with the present molding system, it is advantageous to use a die and a punch exhibiting high mechanical strength capable of withstanding high pressure and high abrasion resistance.
  • a metal material such as cemented carbide or high-speed steel is preferred.
  • the volume fraction of powders should in general be 60 vol% or less, depending upon the state and types of the starting powders and the solvent.
  • the powder type, particle size, particle size distribution or solvent type There is no particular limitation to the powder type, particle size, particle size distribution or solvent type.
  • a mixture of powders was made by adding Y 2 O 3 , Al 2 O 3 as assistant agents to Si 3 N 4 powders, having an average diameter of 0.7 ⁇ m, then mixing it in ethylalcohol. Water and binder were added to the mixture. Making use of a nylon ball mill, they were made into a slurry. The powder content of the slurry was set to be 40 vol.%.
  • SUS 316 is a stainless steel according to Japanese Industrial Standard G 4303. No. Porous materials Molding pressure Density of molded articles Molding time (kgf/cm 2 ) (%) (sec.) 1 SUS 316 5 49.8 1000 2 SUS 316 20 50.7 250 3 SUS 316 100 61.6 45 4 SUS 316 1000 63.4 12 5 gypsum 5 48.9 850 6 gypsum 20 gypsum fractured - 7 resin 5 49.7 800 8 resin 20 50.8 200 9 resin 100 resin fractured -
  • a plate of SUS with a through-hole having a filter paper and/or a filter cloth ahead of it, was used.
  • the slurry was made by mixing together Al 2 O 3 powders having average diameter of 1 ⁇ m, distilled water using a ball mill and admixing with a binder.
  • the powder content of the slurry was set to be 53 vol.%.
  • Disks having a diameter of 40 mm and a thickness of 5 mm, were molded out of the slurry.
  • the slurry was made by mixing together Al 2 O 3 , powder having an average diameter of 1 ⁇ m, distilled water and some binder.
  • the powder content of the slurry was to be 53 vol.%.
  • the process for molding was the same as Example 1, as shown in FIG. 1.
  • the mean secondary particle sizes of the slurries were 1.3, 1.8 and 2.4 ⁇ m.
  • the optimum pressurization and timing of the three slurries were controlled so as to be within 4% of the molding length (100 mm) as from the position at which all the slurry in the mold is dehydrated and turned into molded article.
  • Y 2 O 3 and Al 2 O 3 as assistant agents were added to Si 3 N 4 powder having an average diameter of 0.5 ⁇ m. Then they were mixed in distilled water by making use of a ball mill. Some binder was added to the mixture and they were mixed further to make the slurry. The powder content of the slurry was 42 vol.%. The average diameter was indicated to be 0.53 ⁇ m by measurement of the size distribution.
  • Disks having a diameter of 40 mm and a thickness of 5 mm, were molded out of the slurry through the process for molding as shown in FIG. 2.
  • the porous material was Al 2 O 3 . And other conditions were changed variously; diameters and surface roughness of the porous materials and diameters of pores in the filter. Molding without the filter and molding as illustrated in FIG. 3 were also performed for comparison. And molding pressure applied in this case was 300 kgf/cm 2 . Table 10 and 11 show how some conditions affect the molded ceramic articles and its status of molded articles and mold releasing. They also show that a satisfactory molded ceramic articles could be produced in accordance with the present invention. No.
  • the mean secondary particle size of the slurry was 0.53 ⁇ m (with the particle size of the main component of 0.5 ⁇ m which is raised to 0.53 ⁇ m under the effect of the additives). Using this slurry, a cylinder having a diameter of 10 mm and a length of 50 mm was produced. In this case aspect ratio is 5 (50 mm/10 mm).
  • the dehydrator included (i) a porous member formed of SUS (method 1), (ii) a porous member of SUS having a filter such as filter paper or filter cloth on the front surface (method 2), or (iii) an SUS plate having through-holes and a filter such as a filter paper or a filter cloth on its front side (method 3).
  • the pressurizing conditions during molding were controlled by the molding time or punch displacement.
  • the molding conditions were determined as later described. If the pressurization is insufficient, slurry dehydration in the vicinity of the punch becomes insufficient and a non-solid portion is left. Conversely, if excess pressurization is made, the punch is moved excessively to mechanically compact the molded product, thus locally increasing the powder packing density in the molded product in the vicinity of the punch. The result is poor dimensional accuracy and deformation of the sintered product. If the molded article exhibits significant density fluctuations in the molded article, the article undergoes cracks or destruction. From this it follows that the pressurization end timing must be within a certain range as from the time point when a present amount of the moisture in the slurry in the mold is dehydrated and the slurry in its entirety has been molded.
  • the slurry was used in a quantity which gave a molding length of 50 mm.
  • the optimum pressurization end timing was set in accordance with one of the following two methods:

Claims (16)

  1. Naß-Preßgieß-Verfahren, in dem eine keramische Schlämme in einen Hohlraum einer Form eingefüllt und mit einem Stempel uniaxial gepreßt wird, um einen Flüssigkeitsüberschuß aus der Schlämme zu entfernen und eine Formgebung zu bewirken, wobei die Form aus hochfestem, porösem Metall- oder Keramikmaterial besteht, gekennzeichnet durch
    Durchführen des Pressens der Schlämme innerhalb einer Zeit zwischen T und 1,5 T, wobei die Zeit T eine Preßzeit ist, in der ein Flüssigkeitsüberschuß aus der Schlämme in der Form bis zu einem Punkt entfernt wird, an dem die Packungsdichte von Keramikteilchen in der Schlämme in Druckerzeugungsrichtung gleichmäßig wird und der Konzentrationsgradient in Druckerzeugungsrichtung der Keramikteilchen in der Schlämme Null wird, so daß die gesamte in den Hohlraum eingefüllte Schlämme fest geworden ist, um einen in der Form hergestellten Gegenstand zu erzeugen.
  2. Naß-Preßgieß-Verfahren, in dem eine Keramikschlämme in einen Hohlraum einer Form eingefüllt und mit einem Stempel uniaxial gepreßt wird, um einen Flüssigkeitsüberschuß aus der Schlämme zu entfernen und eine Formgebung zu bewirken, wobei die Form aus hochfestem, porösem Metall- oder Keramikmaterial besteht, gekennzeichnet durch
    Durchführen des Pressens der Schlämme innerhalb einer Stempelverschiebung von 17 % einer Länge L ausgehend von einer Stempelposition entsprechend der Länge L, wobei die Länge L eine Stempelverschiebung ist, bei der ein Flüssigkeitsüberschuß aus der Schlämme in der Form bis zu einem Punkt entfernt wird, an dem die Packungsdichte von Keramikteilchen in der Schlämme in Druckerzeugungsrichtung gleichmäßig wird und der Konzentrationsgradient in Druckerzeugungsrichtung der Keramikteilchen in der Schlämme Null wird, so daß die gesamte in den Hohlraum eingefüllte Schlämme fest geworden ist, um einen in der Form hergestellten Gegenstand zu erzeugen.
  3. Naß-Preßgieß-Verfahren nach Anspruch 1, in dem der Preßvorgang in einer Zeit zwischen der Zeit T und 1,12 T durchgeführt wird, um einen geformten Gegenstand mit einem Achsenverhältnis (Größenverhältnis Formlänge:Querschnitt) von mehr als 1 zu erzeugen.
  4. Naß-Preßgieß-Verfahren nach Anspruch 2, in dem der Preßvorgang innerhalb einer Stempelverschiebung von 4 % der Länge L ausgehend von der Stempelposition entsprechend der Länge L durchgeführt wird, um einen geformten Gegenstand mit einem Achsenverhältnis (Größenverhältnis Formlänge:Querschnitt) von mehr als 1 zu erzeugen.
  5. Verfahren nach Anspruch 1, 2, 3 oder 4, wobei an einem Lösungsmittelentfernungsbereich ein poröses Teil aus Keramik oder Metall verwendet wird.
  6. Verfahren nach Anspruch 5, wobei ein mittlerer Porendurchmesser des mit der Schlämme in Kontakt befindlichen porösen Metall- oder Keramikteils nicht mehr als das Zwanzigfache einer mittleren Teilchengröße der Sekundärteilchen eines in der Schlämme vorhandenen Pulvers beträgt.
  7. Verfahren nach Anspruch 5 oder 6, wobei eine mit der Schlämme in Kontakt befindliche Oberfläche des porösen Keramik- oder Metallteils eine Oberflächenrauheit von nicht mehr als 0,4 µm in Rz aufweist.
  8. Verfahren nach Anspruch 1, 2, 3 oder 4, wobei an einem Flüssigkeitsentfernungsbereich ein poröses Keramik- oder Metallteil verwendet wird, das an seiner Vorderfläche ein Filterpapier und/oder ein Filtertuch aufweist.
  9. Verfahren nach Anspruch 1, 2, 3 oder 4, wobei an einem Flüssigkeitsentfernungsbereich eine Metallplatte verwendet wird, die Durchgangsöffnungen mit einem Durchmesser von 0,8 mm oder weniger und ein Filterpapier und/oder ein Filtertuch an ihrer Vorderfläche aufweist.
  10. Verfahren nach Anspruch 8 oder 9, wobei das Filterpapier und/oder Filtertuch einen mittleren Porendurchmesser von nicht weniger als 0,1 µm und nicht mehr als das Zwanzigfache der mittleren Teilchengröße der Sekundärteilchen eines in der Schlämme vorhandenen Pulvers aufweist.
  11. Verfahren nach Anspruch 9, wobei die Durchgangsöffnungen in einem Abstand von 10 mm oder weniger vorgesehen sind.
  12. Verfahren nach Anspruch 1, 2, 3 oder 4, wobei an einem Schiebeabschnitt des Hohlraum-Stempels ein Dichtelement vorgesehen ist.
  13. Verfahren nach Anspruch 1, 2, 3 oder 4, wobei zum Formen des Hohlraums und des Stempels ein abriebbeständiges Metall verwendet wird.
  14. Verfahren nach Anspruch 1, 2, 3 oder 4, wobei eine Viskosität der Schlämme weniger als 5000 cP beträgt.
  15. Verfahren nach Anspruch 1, 2, 3 oder 4, wobei ein Volumenanteil von Pulvern in der Schlämme weniger als 60 Vol.-% beträgt.
  16. Gießform zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 15, wobei ein poröses Teil (6, 7) aus Keramik oder Metall an einem Lösungsmittel-/Flüssigkeitsentfernungsbereich verwendet wird.
EP19950111854 1995-07-27 1995-07-27 Verfahren zum Formen von Keramikwerkstoffen Expired - Lifetime EP0756922B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE1995626733 DE69526733T2 (de) 1995-07-27 1995-07-27 Verfahren zum Formen von Keramikwerkstoffen
EP19950111854 EP0756922B1 (de) 1995-07-27 1995-07-27 Verfahren zum Formen von Keramikwerkstoffen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19950111854 EP0756922B1 (de) 1995-07-27 1995-07-27 Verfahren zum Formen von Keramikwerkstoffen

Publications (2)

Publication Number Publication Date
EP0756922A1 EP0756922A1 (de) 1997-02-05
EP0756922B1 true EP0756922B1 (de) 2002-05-15

Family

ID=8219474

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19950111854 Expired - Lifetime EP0756922B1 (de) 1995-07-27 1995-07-27 Verfahren zum Formen von Keramikwerkstoffen

Country Status (2)

Country Link
EP (1) EP0756922B1 (de)
DE (1) DE69526733T2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005011019A1 (de) * 2005-03-10 2006-09-14 Daimlerchrysler Ag Herstellung und Verwendung eines zerstörbaren Formkerns für den metallischen Guss
RU2443551C2 (ru) * 2007-09-17 2012-02-27 Скг Билдинг Матириелз Ко., Лтд Способ и устройство формирования рисунка на керамической плитке или плите с заданной толщиной

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007011554A (es) * 2006-09-22 2008-10-28 Scg Building Materials Co Ltd Aparato y metodo para formar un patron en azulejo o losa de ceramica con un grosor prescrito.
CN109624025A (zh) * 2018-12-28 2019-04-16 广西晶联光电材料有限责任公司 一种氧化物靶材的注浆成型模具和方法
CN109881666B (zh) * 2019-04-15 2023-11-24 河北省水利水电勘测设计研究院 一种岩心钻探多功能旋喷注浆器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2964822A (en) * 1954-12-27 1960-12-20 Shenango China Inc Process for the manufacture of ceramic objects
NL6509854A (de) * 1964-07-29 1966-01-31
JPS6070701A (ja) 1983-09-26 1985-04-22 日東電工株式会社 チツプ抵抗体
JPS61297103A (ja) 1985-06-26 1986-12-27 キヤタラ−工業株式会社 泥漿鋳込み成形方法
JPS633906A (ja) 1986-06-24 1988-01-08 株式会社神戸製鋼所 泥しよう粉末材料の脱水成形方法
JPS6362703A (ja) 1986-09-04 1988-03-19 大阪府 セラミツクスの成形方法
US5156856A (en) * 1986-12-04 1992-10-20 Ngk Insulators, Ltd. Mold for forming molded body
EP0587160A1 (de) * 1992-09-10 1994-03-16 Sumitomo Electric Industries, Ltd. Verfahren und Form zur Herstellung von keramischen Gegenständen
JPH06262612A (ja) * 1993-03-12 1994-09-20 Sumitomo Electric Ind Ltd セラミックスの成形法および成形型

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005011019A1 (de) * 2005-03-10 2006-09-14 Daimlerchrysler Ag Herstellung und Verwendung eines zerstörbaren Formkerns für den metallischen Guss
DE102005011019B4 (de) * 2005-03-10 2007-01-04 Daimlerchrysler Ag Herstellung und Verwendung eines zerstörbaren Formkerns für den metallischen Guss
RU2443551C2 (ru) * 2007-09-17 2012-02-27 Скг Билдинг Матириелз Ко., Лтд Способ и устройство формирования рисунка на керамической плитке или плите с заданной толщиной

Also Published As

Publication number Publication date
DE69526733T2 (de) 2002-11-14
EP0756922A1 (de) 1997-02-05
DE69526733D1 (de) 2002-06-20

Similar Documents

Publication Publication Date Title
US6502623B1 (en) Process of making a metal matrix composite (MMC) component
JP2722182B2 (ja) 三様式の細孔構成を有する多孔性SiCのベアリング材料及びその製造方法
JPH026040A (ja) ガス透過性ストッパロッド
Bauer et al. Micropatterning of ceramics by slip pressing
KR100422743B1 (ko) 분체의주입성형방법및주입성형에사용되는주입성형형및주입성형형에사용되는연속기공다공체의제조방법
EP0756922B1 (de) Verfahren zum Formen von Keramikwerkstoffen
US6458298B1 (en) Process for molding ceramics
US5028363A (en) Method of casting powder materials
JPH09253792A (ja) 鋳造用紙中子およびその製造方法
JP3158974B2 (ja) セラミックスの成形法
EP0587160A1 (de) Verfahren und Form zur Herstellung von keramischen Gegenständen
JPH06262612A (ja) セラミックスの成形法および成形型
DE102007053498A1 (de) Verfahren zur Herstellung von Reibscheiben aus faserverstärkten keramischen Werkstoffen
Crawford et al. Microhardness and density distributions in polymeric powder compacts
JPH0691620A (ja) セラミックスの成形法および成形型
JP3224645B2 (ja) セラミックスの成形方法
JPS6022913A (ja) 濾材及びその製造方法
JP2788182B2 (ja) セラミックス原料
EP1362671B1 (de) Verfahren zur Herstellung frei gesinterter ringförmiger Schleifbeläge für Schleifscheiben
KR930007315B1 (ko) 섬유강화금속재료의 제조방법 및 그 섬유강화금속재료
JPS5957949A (ja) セラミツクス焼結体製造用生成形体の製造方法
JP3175455B2 (ja) セラミックスの成形方法
JPH02308822A (ja) 複合材用ウイスカープリフオーム体の製法
JPH0417603A (ja) スリップキャスティング製法
JPH11291213A (ja) 不定形耐火ブロックの形成方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: YAMAKAWA, AKIRA, C/O ITAMI WORKS OF SUMITOMO

Inventor name: TSUZUKI, YASUSHI, C/O ITAMI WORKS OF SUMITOMO

Inventor name: AWAZU, TOMOYUKI, C/O ITAMI WORKS OF SUMITOMO

17Q First examination report despatched

Effective date: 20000908

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69526733

Country of ref document: DE

Date of ref document: 20020620

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050703

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050706

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050708

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050721

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050727

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20060306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060727

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070727