EP0753595A2 - Rohre für die Herstellung von Stabilisatoren und Herstellung von Stabilisatoren aus solchen Rohren - Google Patents

Rohre für die Herstellung von Stabilisatoren und Herstellung von Stabilisatoren aus solchen Rohren Download PDF

Info

Publication number
EP0753595A2
EP0753595A2 EP96109631A EP96109631A EP0753595A2 EP 0753595 A2 EP0753595 A2 EP 0753595A2 EP 96109631 A EP96109631 A EP 96109631A EP 96109631 A EP96109631 A EP 96109631A EP 0753595 A2 EP0753595 A2 EP 0753595A2
Authority
EP
European Patent Office
Prior art keywords
stabilizers
pipes
stabilisers
tubes
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96109631A
Other languages
English (en)
French (fr)
Other versions
EP0753595A3 (de
EP0753595B1 (de
Inventor
Norbert Dipl.-Ing Bergs
Stefan Dipl.-Ing Dr.Klatzer
Dieter Dipl.-Ing Dr.Töpker
Gerhard Dipl.-Ing Beer
Gert Dr. Rer.Nat.Habil. Vaubel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Benteler Deustchland GmbH
Original Assignee
Benteler Deustchland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7766123&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0753595(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Benteler Deustchland GmbH filed Critical Benteler Deustchland GmbH
Publication of EP0753595A2 publication Critical patent/EP0753595A2/de
Publication of EP0753595A3 publication Critical patent/EP0753595A3/de
Application granted granted Critical
Publication of EP0753595B1 publication Critical patent/EP0753595B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the invention relates to the use of a steel alloy for pipes for the manufacture of stabilizers for motor vehicles, a stabilizer made of such a steel alloy and a method for the manufacture of stabilizers.
  • Stabilizers are components that are used in automotive engineering to reduce the curvature of the body and to influence the self-steering behavior, e.g. to reduce oversteer. They stiffen the suspension when one-sided loading occurs, for example when driving over unilateral obstacles.
  • Stabilizers are usually designed as torsion bars, which are mounted transversely to the direction of travel in the main vehicle part and act on the wheel suspensions via U-shaped legs. For stabilization you do that Use the material's resistance to twisting.
  • the ends of the stabilizer are rigidly connected to one side of the axle and act as a lever arm. If the vehicle body is tilted to the side when cornering due to the centrifugal force, the inside wheel bends more than the outside wheel. As a result, the stabilizer is twisted and counteracts the side tilt due to its spring force.
  • Stabilizers of the usual type have so far been predominantly made from solid bars. They are available in straight and curved versions.
  • WO 93/18189 describes the manufacture of vibrating bars or torsion stabilizers from high-strength steels.
  • steels with an oriented course of the microstructure are used. The forming takes place either warm below the recrystallization temperature or cold below a temperature of 149 ° C.
  • the steels described there have a yield strength R e of at least 620 N / mm 2 and a tensile strength R m of at least 827 N / mm 2 . They have a carbon content of 0.3% to 1%, manganese from 2.0% to 2.5% and up to 0.35% vanadium.
  • the bars used to manufacture the stabilizers are hot rolled or cold drawn.
  • the surface quality of the outer and inner surface of the pipes used is of the utmost importance in order to achieve high fatigue strength.
  • Longitudinally welded tubes made from rolled steel strip have the best surface quality. This avoids the errors that occur with seamlessly drawn pipes, such as wrinkles, etc.
  • the steels used so far for tubes for the production of stabilizers have a high carbon content and in some cases their toughness is too low.
  • the low toughness of the steels has a negative effect on the fatigue strength, particularly in the case of seamless pipes, mainly due to the reduced surface quality.
  • complex tempering processes with high tempering temperatures of approx. 600 ° C are necessary. Due to the high tempering temperatures, however, it is necessary that the stabilizers be clamped in special devices during the tempering process to avoid warping. However, this effort leads to an increase in manufacturing costs.
  • the invention is therefore based on the object of specifying a steel alloy for pipes, the mechanical properties of which meet the high requirements for the production of stabilizers. Furthermore, the invention aims at the economical production of high quality stabilizers from such tubes.
  • the alloy engineering part of the object is achieved by using the alloy specified in claim 1.
  • the invention adopts the knowledge that for the manufacture of stabilizers from pipes, with the high demands on the mechanical properties, a pipe material is required which, depending on the tempering temperature, tensile strengths R m of 1100 to 1600 N / mm 2 , 0.2 % Yield strengths R p0.2 from 900 to 1300 N / mm 2 and an elongation at break A 5 of 6 to 15%.
  • the most important advantage of the steel alloy according to the invention is therefore seen in the fact that the proposed alloy, compared with the use of the known alloys from which tubes for stabilizers are produced, achieves the specified values of tensile strength, yield strength and elongation at break, and that, in addition, when they are used only one alloy can cover a wide range of required mechanical characteristics. For this purpose, the alloy components are optimally coordinated.
  • the carbon content ensures sufficient strength and hardenability.
  • the silicon content determines the tensile strength and the yield strength, whereby the toughness properties are only slightly influenced.
  • the manganese also increases the strength of the steel alloy, whereby the elongation at break is only slightly reduced. In addition, the manganese has a favorable effect on weldability. Combined with the carbon content, it improves wear resistance.
  • the titanium content is mainly used for Stabilization against intergranular corrosion used.
  • the boron improves through-hardening and increases core strength.
  • the addition of aluminum supports fine grain formation.
  • the alloy according to the invention therefore has good ductility and weldability. This is associated with the advantage that, in addition to the use of seamless tubes, it is also possible to use longitudinally welded tubes which are more suitable for the intended use.
  • the steel alloy according to the invention has better toughness properties than known steels and makes it easier to temper. For example, lower tempering temperatures can be used.
  • the steel alloy according to the invention is inexpensive. Pipes made of such a steel alloy can also be used in existing systems for the production of stabilizers from solid material without any problems. Compensation systems are already in place here.
  • Stabilizers according to claim 3 have a reduced weight compared to known stabilizers made of solid material. These stabilizers reliably withstand the heavy loads when used in motor vehicles.
  • Stabilizers are then produced from the pipes treated in this way using the usual process steps. This is followed by water hardening of the stabilizers.
  • the water is preferably hardened in the tool itself, so that there is no need to additionally take up the stabilizers for the purpose of hardening.
  • starting in air can take place at a temperature between 200 ° C and 400 ° C, as provided for in claim 5.
  • the martensite structure that occurs during hardening is sometimes very brittle. Therefore, the stabilizers are usually left on after hardening.
  • a temperature of approximately 250 ° C. has proven to be particularly advantageous.
  • the ends of the stabilizers are compressed (claim 6). This is followed by a quenching process. This is preferably done with water at temperatures above 800 ° C. Quench hardening above a temperature of 920 ° C. has proven to be particularly advantageous.
  • untreated pipes can also be used, as provided for in claim 7.
  • the bending takes place at a temperature above the upper transition temperature, the A C3 point in the iron-carbon diagram. After the bending process, quench hardening is again carried out in the tool. A message is then not necessary.
  • heating the stabilizers after curing to a temperature below the transition temperature is advantageous.
  • the tempering temperature should therefore not exceed 350 ° C.
  • Another solution of the procedural part of the task includes claim 9. Thereafter, the tubes made from the alloy according to the invention are tempered, before the forming process to stabilizers. Remuneration after bending can be omitted. This approach is particularly pragmatic and economical.
  • the tempering of the tubes comprises the double step of hardening and tempering. This gives the tube great strength and a high yield strength as well as great toughness before the bending process.
  • Hardening consists of heating to the hardening temperature, holding and quenching. After that, the engine is warmed up again and finally quenched or slowly cooled.
  • a stress relief annealing can be carried out after bending the tubes to stabilizers, as provided for in claim 10. As a result, structural changes or residual stresses can be reduced.
  • This annealing process is preferably limited to the area of the arcs of a stabilizer.
  • the annealing temperature is chosen so that the tempering strength of the stabilizer is not reduced.
  • a production line for the production of stabilizers from welded pipes and a production line for the production of stabilizers from seamless pipes according to the method according to the invention is represented in a technical generalized manner in the attached FIGS. 1 and 2.
  • FIG. 1 it should be pointed out that, depending on the diameter of welded pipes, it is not absolutely necessary to reduce the stretch.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Vehicle Body Suspensions (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Springs (AREA)

Abstract

Die Erfindung betrifft die Verwendung einer Stahllegierung für Rohre zur Herstellung von Stabilisatoren für Kraftfahrzeuge, einen Stabilisator aus einer solchen Stahllegierung sowie Verfahren zur Herstellung von Stabilisatoren. Ausgehend von den Anforderungen an die mechanischen Eigenschaften, wonach die Zugfestigkeiten Rm 1100 N/mm<2> bis 1600 N/mm<2>, die 0,2%-Dehngrenzen RP0,2 900 N/mm<2> bis 1300 N/mm<2> und die Bruchdehnung A5 zwischen 6 % und 15 % sein sollen sowie der Notwendigkeit einer wirtschaftlichen Herstellung von Stabilisatoren wird die Verwendung einer Stahllegierung für Rohre zur Herstellung der Stabilisatoren vorgeschlagen, die in Gewichtsprozent ausgedrückt aus Kohlenstoff (C) 0,18 % bis 0,30 %, Silizium (Si) 0,10 % bis 0,50 %, Mangan (Mn) 1,10 % bis 1,80 %, Phosphor (P) max. 0,025 %, Schwefel (S) max. 0,025 %, Titan (Ti) 0,020 % bis 0,050 %, Bor (B) 0,0005 % bis 0,005 %, Aluminium 0,010 % bis 0,050 %, Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen besteht. Der vorgeschlagene Rohrwerkstoff wird den Anforderungen an die mechanischen Eigenschaften gerecht. Darüber hinaus zeichnet er sich durch eine gute Verformbarkeit, eine einfachere Vergütbarkeit und sein Zähigkeitsverhalten aus. Da der Werkstoff schweißbar ist, kann er neben der Verwendung für nahtlose Rohre auch zur Herstellung von längsnahtgeschweißten Rohren eingesetzt werden, die für den vorgesehenen Verwendungszweck als Ausgangsprodukt für Stabilisatoren besser geeignet sind.

Description

  • Die Erfindung betrifft die Verwendung einer Stahllegierung für Rohre zur Herstellung von Stabilisatoren für Kraftfahrzeuge, einen Stabilisator aus einer solchen Stahllegierung sowie Verfahren zur Herstellung von Stabilisatoren.
  • Stabilisatoren sind Bauteile, die in der Kraftfahrzeugtechnik zur Verringerung der Kurvenneigung der Karosserie und zur Beeinflussung des Eigenlenkverhaltens, z.B. zur Verminderung des Übersteuerns, eingesetzt werden. Sie versteifen bei einseitiger Belastung die Federung, beispielsweise beim Überfahren einseitiger Hindernisse.
  • Stabilisatoren sind meist als Drehstäbe ausgeführt, die im Fahrzeughauptteil quer zur Fahrtrichtung gelagert sind und über U-förmig angebrachte Schenkel an den Radaufhängungen angreifen. Zur Stabilisation macht man sich die Widerstandskraft des Materials gegen Verdrehung zunutze. Die Enden des Stabilisators sind jeweils starr mit einer Seite der Achse verbunden und wirken als Hebelarm. Wird der Fahrzeugaufbau bei Kurvenfahrt infolge der Fliehkraft zur Seite geneigt, so federt das kurveninnere Rad stärker ein als das äußere. Der Stabilisator wird dadurch verdrillt und wirkt durch seine Federkraft der Seitenneigung entgegen.
  • Stabilisatoren der üblichen Art werden bisher überwiegend aus Vollstäben gefertigt. Es gibt sie in geraden und gebogenen Ausführungen. So beschreibt beispielsweise die WO 93/18189 die Herstellung von Schwingstäben bzw. Drehstabilisatoren aus hochfesten Stählen. Hierbei erfolgt der Einsatz von Stählen mit einem orientierten Verlauf der Gefügestruktur. Die Umformung erfolgt entweder warm unterhalb der Rekristallisierungstemperatur oder kalt unterhalb einer Temperatur von 149 °C. Die dort beschriebenen Stähle besitzen eine Streckgrenze Re von mindestens 620 N/mm2 und eine Zugfestigkeit Rm von mindestens 827 N/mm2. Sie weisen einen Gehalt an Kohlenstoff von 0,3 % bis 1 %, Mangan von 2,0 % bis 2,5 % und bis zu 0,35 % Vanadium auf. Die zur Herstellung der Stabilisatoren eingesetzten Stäbe werden warmgewalzt oder kaltgezogen.
  • Aus Gründen der Gewichtsersparnis geht die Tendenz dazu, Stabilisatoren aus Rohren herzustellen. Hierbei macht man sich das bei einem Rohr günstigere Verhältnis von Widerstandsmoment gegen Torsion zur Rohrmasse im Vergleich zu einem Vollstab zunutze. Bei dem für die Torsion optimalen Verhältnis von Wanddicke zum Durchmesser der Rohre müssen die zur Anwendung gelangenden Werkstoffe bei Beibehaltung der in den Fahrzeugen konstruktiv vorgegebenen bzw. verwendbaren Außendurchmesser eine um einen Faktor von ca. 1,4 höhere Streckgrenze und Zugfestigkeit besitzen.
  • Weiterhin ist zur Erzielung einer hohen Dauer-Wechselfestigkeit die Oberflächengüte der Außen- und Innenoberfläche der verwendeten Rohre von größter Wichtigkeit. Die beste Oberflächengüte weisen längsnahtgeschweißte Rohre aus gewalztem Stahlband auf. Hierbei werden die bei nahtlos gezogenen Rohren vorkommenden Fehler, wie Fältelungen usw. vermieden.
  • Die bislang zum Einsatz gelangenden Stähle für Rohre zur Herstellung von Stabilisatoren weisen einen hohen Kohlenstoffgehalt auf und haben zum Teil eine zu niedrige Zähigkeit. Die niedrige Zähigkeit der Stähle wirkt sich insbesondere bei nahtlosen Rohren vorwiegend aufgrund der verminderten Oberflächengüte negativ auf die Dauer-Wechselfestigkeit aus. Zur Erzielung höherer Zähigkeit bei der geforderten Festigkeit sind aufwendige Vergütungsverfahren mit hohen Anlaßtemperaturen von ca. 600 °C notwendig. Durch die hohen Anlaßtemperaturen ist es aber erforderlich, daß die Stabilisatoren während des Anlaßvorgangs zur Vermeidung von Verzug in besonderen Vorrichtungen eingespannt werden. Dieser Aufwand führt jedoch zu einer Erhöhung der Herstellungskosten.
  • Desweiteren sind die meisten der bislang eingesetzten Stähle schlecht schweißbar. Damit ist der Einsatz von längsnahtgeschweißten Rohren schlecht bzw. überhaupt nicht möglich, obwohl dies wegen der besseren Oberflächengüte wünschenswert wäre.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Stahllegierung für Rohre anzugeben, die in ihren mechanischen Eigenschaften den hohen Anforderungen für die Herstellung von Stabilisatoren gerecht wird. Weiterhin zielt die Erfindung auf eine wirtschaftliche Herstellung von qualitativ hochwertigen Stabilisatoren aus solchen Rohren ab.
  • Der legierungstechnische Teil der Aufgabe wird durch die Verwendung der im Anspruch 1 angegebenen Legierung gelöst.
  • Eine vorteilhafte Ausgestaltung der zur Verwendung gelangenden Legierung lehrt Anspruch 2.
  • Die Erfindung macht sich hierbei die Erkenntnis zu eigen, daß für die Herstellung von Stabilisatoren aus Rohren bei den hohen Anforderungen an die mechanischen Eigenschaften ein Rohrwerkstoff erforderlich ist, der je nach Anlaßtemperatur Zugfestigkeiten Rm von 1100 bis 1600 N/mm2, 0,2%-Dehngrenzen Rp0,2 von 900 bis 1300 N/mm2 und eine Bruchdehnung A5 von 6 bis 15 % aufweist. Der wesentlichste Vorteil der erfindungsgemäßen Stahllegierung wird daher darin gesehen, daß die vorgeschlagene Legierung gegenüber der Verwendung der bekannten Legierungen, aus denen Rohre für Stabilisatoren hergestellt werden, die angegebenen Werte der Zugfestigkeit, Streckgrenze und Bruchdehnung erreicht, und daß durch sie zusätzlich noch bei Einsatz von nur einer Legierung eine hohe Bandbreite von geforderten mechanischen Kenndaten abgedeckt werden kann. Die Legierungskomponenten sind hierfür optimal aufeinander abgestimmt.
  • Obwohl es sich um einen weichen, kohlenstoffarmen Stahl handelt, gewährleistet der Kohlenstoffanteil eine ausreichende Festigkeit und Härtbarkeit. Der Siliziumanteil bestimmt die Zugfestigkeit und die Streckgrenze, wobei die Zähigkeitseigenschaften nur geringfügig beeinflußt werden. Das Mangan erhöht ebenfalls die Festigkeit der Stahllegierung, wobei die Bruchdehnung nur geringfügig verringert wird. Darüberhinaus wirkt sich das Mangan günstig auf die Schweißbarkeit aus. In Verbindung mit dem Kohlenstoffanteil bewirkt es eine Verbesserung des Verschleißwiderstands. Der Titananteil wird vorwiegend zur Stabilisierung gegenüber interkristalliner Korrosion eingesetzt. Das Bor verbessert die Durchhärtung und erhöht die Kernfestigkeit. Schließlich wird durch die Zugabe von Aluminium die Feinkornbildung unterstützt.
  • Bei der erfindungsgemäßen Legierung ist daher eine gute Verformbarkeit und Schweißbarkeit gegeben. Hiermit verbindet sich der Vorteil, daß neben dem Einsatz von nahtlosen Rohren auch der Einsatz von für den vorgesehenen Verwendungszweck besser geeigneten längsnahtgeschweißten Rohren möglich wird.
  • Weiterhin hervorzuheben ist, daß die erfindungsgemäße Stahllegierung im Vergleich zu den bekannten Stählen bessere Eigenschaften hinsichtlich der Zähigkeit aufweist und eine einfachere Vergütbarkeit möglich macht. So kann beispielsweise mit niedrigeren Anlaßtemperaturen gearbeitet werden.
  • Die erfindungsgemäße Stahllegierung ist kostengünstig. Rohre aus einer solchen Stahllegierung können auch in bereits vorhandenen Anlagen zur Herstellung von Stabilisatoren aus Vollmaterial problemlos zum Einsatz gelangen. Vergütungsanlagen sind hier bereits vorhanden.
  • Für neu einzurichtende Fertigungslinien ergibt sich sogar eine Reduzierung des Aufwands, da das nach dem Härten vorgenommene Anlassen bei niedrigeren Temperaturen als bisher üblich erfolgen kann. Aus diesem Grund sind Einspannvorrichtungen, die einen Verzug beim Anlaßvorgang verhindern sollen, nicht erforderlich.
  • Stabilisatoren gemäß Anspruch 3 weisen ein gegenüber bekannten Stabilisatoren aus Vollmaterial reduziertes Gewicht auf. Den starken Belastungen beim Einsatz in Kraftfahrzeugen halten diese Stabilisatoren zuverlässig stand.
  • Eine Lösung des verfahrensmäßigen Teils der Aufgabe wird in den Merkmalen des Anspruchs 4 gesehen. Hierbei können sowohl nahtlos gezogene als auch längsnahtgeschweißte Rohre zum Einsatz gelangen.
  • Diese werden zunächst normal geglüht. Dies erfolgt bei einer Temperatur wenig oberhalb des AC3-Punktes mit anschließendem Abkühlen in ruhender Atmosphäre. Die Glühbehandlung wird angewandt, um eine grobkörnige Struktur zu beseitigen. Vorteilhaft ist dies insbesondere bei längsnahtgeschweißten Rohren, da hier eine grobkörnige Struktur auftreten kann.
  • Aus den so behandelten Rohren werden anschließend Stabilisatoren umformtechnisch mit den üblichen Verfahrensgängen hergestellt. Hieran schließt sich eine Wasserhärtung der Stabilisatoren an. Die Wasserhärtung erfolgt vorzugsweise im Werkzeug selber, so daß ein zusätzliches Aufnehmen der Stabilisatoren zum Zwecke der Härtung entfällt.
  • Fallweise kann ein Anlassen unter Luft bei einer Temperatur zwischen 200 °C und 400 °C erfolgen, wie dies Anspruch 5 vorsieht. Das beim Härten entstehende Martensitgefüge ist teilweise sehr spröde. Daher werden die Stabilisatoren in der Regel nach dem Härten angelassen. Als besonders vorteilhaft hat sich eine Temperatur von ca. 250 °C erwiesen. Durch Diffusion der Kohlenstoffatome wird so die Verspannung des Martensits gemildert. Die Sprödigkeit wird verringert, ohne daß die Härte sich wesentlich ändert.
  • Ein Einspannen der Stabilisatoren beim Anlassen zur Vermeidung von Verzug ist in diesem Anlaßtemperaturbereich nicht erforderlich.
  • Erforderlichenfalls werden die Enden der Stabilisatoren angestaucht (Anspruch 6). Hieran schließt sich ein Abschreckvorgang an. Dies geschieht vorzugsweise mit Wasser von Temperaturen oberhalb 800 °C. Als besonders vorteilhaft hat sich ein Abschreckhärten oberhalb einer Temperatur von 920 °C herausgestellt.
  • Im Falle von gebogenen Stabilisatoren können auch unvergütete Rohre zum Einsatz kommen, wie dies Anspruch 7 vorsieht. Das Biegen erfolgt bei einer Temperatur oberhalb der oberen Umwandlungstemperatur, dem AC3-Punkt im Eisen-Kohlenstoff-Diagramm. Nach dem Biegevorgang wird wiederum eine Abschreckhärtung im Werkzeug vorgenommen. Ein Nachrichten ist dann nicht erforderlich.
  • Nach den Merkmalen des Anspruchs 8 ist eine Erwärmung der Stabilisatoren nach dem Härten auf eine Temperatur unterhalb der Umwandlungstemperatur vorteilhaft. Die Anlaßtemperatur soll daher 350 °C nicht überschreiten.
  • Eine weitere Lösung des verfahrensmäßigen Teils der Aufgabe beinhaltet Anspruch 9. Danach werden die aus der erfindungsgemäßen Legierung hergestellten Rohre vergütet, und zwar vor dem Umformvorgang zu Stabilisatoren. Eine Vergütung nach dem Biegen kann entfallen. Diese Vorgehensweise ist besonders pragmatisch und ökonomisch.
  • Die Vergütung der Rohre umfaßt den Doppelschritt des Härtens und Anlassens. Dem Rohr wird hierdurch vor dem Biegevorgang eine große Festigkeit und eine hohe Streckgrenze sowie große Zähigkeit verliehen.
  • Das Härten besteht aus dem Erwärmen auf Härtetemperatur, dem Halten und Abschrecken. Danach wird zum Anlassen nochmals erwärmt und abschließend abgeschreckt oder langsam abgekühlt.
  • Falls erforderlich, kann nach dem Biegen der Rohre zu Stabilisatoren ein Spannungsarmglühen vorgenommen werden, wie dies Anspruch 10 vorsieht. Hierdurch können Gefügeumwandlungen oder Eigenspannungen abgebaut werden. Vorzugsweise beschränkt sich dieser Glühvorgang auf den Bereich der Bögen eines Stabilisators. Die Glühtemperatur ist dabei so gewählt, daß die Vergütungsfestigkeit des Stabilisators nicht herabgesetzt wird.
  • Eine Fertigungslinie für die Herstellung von Stabilisatoren aus geschweißten Rohren sowie eine Fertigungslinie für die Herstellung von Stabilisatoren aus nahtlosen Rohren gemäß dem erfindungsgemäßen Verfahren ist technisch generalisiert in den beiliegenden Figuren 1 und 2 dargestellt. Bezüglich der Figur 1 ist darauf hinzuweisen, daß bei geschweißten Rohren in Abhängigkeit von deren Durchmesser ein Streckreduzieren nicht zwingend erforderlich ist.

Claims (10)

  1. Verwendung einer Stahllegierung für Rohre zur Herstellung von Stabilisatoren für Kraftfahrzeuge, insbesondere für Drehstabilisatoren, die in Gewichtsprozenten ausgedrückt aus
    Kohlenstoff (C) 0,18 % bis 0,30 %
    Silizium (Si) 0,10 % bis 0,50 %
    Mangan (Mn) 1,10 % bis 1,80 %
    Phosphor (P) max. 0,025 %
    Schwefel (S) max. 0,025 %
    Titan (Ti) 0,020 % bis 0,050 %
    Bor (B) 0,0005 % bis 0,005 %
    Aluminium 0,010 % bis 0,050 %
    Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen
    besteht.
  2. Verwendung einer Stahllegierung nach Anspruch 1, die in Gewichtsprozenten ausgedrückt aus
    Kohlenstoff (C) 0,21 % bis 0,26 %
    Silizium (Si) 0,15 % bis 0,35 %
    Mangan (Mn) 1,20 % bis 1,40 %
    Phosphor (P) max. 0,025 %
    Schwefel (S) max. 0,025 %
    Titan (Ti) 0,020 % bis 0,040 %
    Bor (B) 0,0020 % bis 0,0040 %
    Aluminium 0,020 % bis 0,035 %
    Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen
    besteht.
  3. Stabilisator aus einer Stahllegierung nach einem der Ansprüche 1 oder 2.
  4. Verfahren zur Herstellung von Stabilisatoren aus gezogenen oder geschweißten Rohren gemäß einem der Ansprüche 1 oder 2, mit folgenden Maßnahmen:
    a) Normalglühen der Rohre;
    b) Herstellung der Stabilisatoren;
    c) Wasserhärtung der Stabilisatoren, wobei diese insbesondere im Werkzeug erfolgt.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß ein Anlassen unter Luft bei einer Temperatur zwischen 200 °C und 400 °C erfolgt.
  6. Verfahren nach einem der Ansprüche 4 oder 5, wobei die Enden der Stabilisatoren angestaucht und mit Wasser von Temperaturen oberhalb 800 °C, insbesondere 920 °C, abgeschreckt werden.
  7. Verfahren zur Herstellung von gebogenen Stabilisatoren aus unvergüteten Rohren gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Biegen oberhalb des AC3-Punktes erfolgt und nach der Biegeoperation eine Abschreckung im Werkzeug vorgenommen wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß ein Anlassen mit einer Temperatur bis zu 350 °C erfolgt.
  9. Verfahren zur Herstellung von gebogenen Stabilisatoren aus Rohren gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß zunächst eine Vergütung der Rohre vorgenommen wird und diese anschließend zu Stabilisatoren gebogen werden.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß nach dem Biegen ein Spannungsarmglühen vorzugsweise der Biegebereiche erfolgt.
EP96109631A 1995-07-06 1996-06-25 Rohre für die Herstellung von Stabilisatoren und Herstellung von Stabilisatoren aus solchen Rohren Expired - Lifetime EP0753595B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19524574 1995-07-06
DE19524574 1995-07-06

Publications (3)

Publication Number Publication Date
EP0753595A2 true EP0753595A2 (de) 1997-01-15
EP0753595A3 EP0753595A3 (de) 1998-08-26
EP0753595B1 EP0753595B1 (de) 2001-08-08

Family

ID=7766123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96109631A Expired - Lifetime EP0753595B1 (de) 1995-07-06 1996-06-25 Rohre für die Herstellung von Stabilisatoren und Herstellung von Stabilisatoren aus solchen Rohren

Country Status (4)

Country Link
EP (1) EP0753595B1 (de)
CZ (1) CZ287707B6 (de)
DE (1) DE59607441D1 (de)
ES (1) ES2159662T3 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004708A1 (en) * 2001-07-03 2003-01-16 Metalsa Roanoke Inc. Method for strengthening a steel channel member
EP1125774A3 (de) * 2000-02-17 2003-11-19 Benteler Ag Fahrwerkskomponente für ein Kraftfahrzeug
WO2004087367A2 (de) * 2003-04-04 2004-10-14 Thyssenkrupp Automotive Ag Verfahren zum herstellen von schraubenfedern oder stabilisatoren
WO2007113690A3 (en) * 2006-03-14 2008-02-28 Tenaris Connections Ag Method of producing high- strength metal tubular bar for vehicle stabilizer possessing improved cold formability
WO2008138642A1 (en) * 2007-05-16 2008-11-20 Benteler Stahl/Rohr Gmbh Use of a steel alloy for well pipes for perforation of borehole casings, and well pipe
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8202376B2 (en) 2005-11-15 2012-06-19 Benteler Automobiltechnik Gmbh High-strength motor-vehicle frame part with targeted crash
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
WO2012097855A1 (de) * 2011-01-21 2012-07-26 Audi Ag Aktiver steller für ein kraftfahrzeugfahrwerk
US8328958B2 (en) 2007-07-06 2012-12-11 Tenaris Connections Limited Steels for sour service environments
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
EP2765014A1 (de) * 2013-02-08 2014-08-13 Benteler Automobiltechnik GmbH Verfahren zur Herstellung eines Kraftfahrzeugstabilisators
US8821653B2 (en) 2011-02-07 2014-09-02 Dalmine S.P.A. Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11833561B2 (en) 2017-01-17 2023-12-05 Forum Us, Inc. Method of manufacturing a coiled tubing string
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006875A1 (de) 2007-02-07 2008-08-14 Benteler Stahl/Rohr Gmbh Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen und Rohrbauteil
IT1403689B1 (it) 2011-02-07 2013-10-31 Dalmine Spa Tubi in acciaio ad alta resistenza con eccellente durezza a bassa temperatura e resistenza alla corrosione sotto tensioni da solfuri.
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781054A (en) * 1986-12-19 1988-11-01 Rockwell International Suspension Systems Company Apparatus for bending and forming heated tubular workpieces
US4854150A (en) * 1986-12-19 1989-08-08 Rockwell International Suspension Systems Company Method of bending and forming heated tubular workpieces
WO1993018189A1 (en) * 1992-03-09 1993-09-16 Consolidated Metal Products, Inc. High strength steel sway bars and method of making
DE4321241A1 (de) * 1993-06-25 1995-01-05 Hesonwerk Dr Iske Gmbh Verwendung von Stahlrohren oder Stahlstäben zur Herstellung von Fahrwerksstabilisatoren für Kraftfahrzeuge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781054A (en) * 1986-12-19 1988-11-01 Rockwell International Suspension Systems Company Apparatus for bending and forming heated tubular workpieces
US4854150A (en) * 1986-12-19 1989-08-08 Rockwell International Suspension Systems Company Method of bending and forming heated tubular workpieces
WO1993018189A1 (en) * 1992-03-09 1993-09-16 Consolidated Metal Products, Inc. High strength steel sway bars and method of making
DE4321241A1 (de) * 1993-06-25 1995-01-05 Hesonwerk Dr Iske Gmbh Verwendung von Stahlrohren oder Stahlstäben zur Herstellung von Fahrwerksstabilisatoren für Kraftfahrzeuge

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1125774A3 (de) * 2000-02-17 2003-11-19 Benteler Ag Fahrwerkskomponente für ein Kraftfahrzeug
WO2003004708A1 (en) * 2001-07-03 2003-01-16 Metalsa Roanoke Inc. Method for strengthening a steel channel member
WO2004087367A2 (de) * 2003-04-04 2004-10-14 Thyssenkrupp Automotive Ag Verfahren zum herstellen von schraubenfedern oder stabilisatoren
WO2004087367A3 (de) * 2003-04-04 2005-04-28 Thyssen Krupp Automotive Ag Verfahren zum herstellen von schraubenfedern oder stabilisatoren
CN100385020C (zh) * 2003-04-04 2008-04-30 泰森克鲁普汽车股份公司 用于加工螺旋弹簧或稳定器的方法
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8202376B2 (en) 2005-11-15 2012-06-19 Benteler Automobiltechnik Gmbh High-strength motor-vehicle frame part with targeted crash
WO2007113690A3 (en) * 2006-03-14 2008-02-28 Tenaris Connections Ag Method of producing high- strength metal tubular bar for vehicle stabilizer possessing improved cold formability
US7744708B2 (en) 2006-03-14 2010-06-29 Tenaris Connections Limited Methods of producing high-strength metal tubular bars possessing improved cold formability
US8007601B2 (en) 2006-03-14 2011-08-30 Tenaris Connections Limited Methods of producing high-strength metal tubular bars possessing improved cold formability
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
WO2008138642A1 (en) * 2007-05-16 2008-11-20 Benteler Stahl/Rohr Gmbh Use of a steel alloy for well pipes for perforation of borehole casings, and well pipe
US8328958B2 (en) 2007-07-06 2012-12-11 Tenaris Connections Limited Steels for sour service environments
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
WO2012097855A1 (de) * 2011-01-21 2012-07-26 Audi Ag Aktiver steller für ein kraftfahrzeugfahrwerk
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US8821653B2 (en) 2011-02-07 2014-09-02 Dalmine S.P.A. Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US8636856B2 (en) 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
EP2765014A1 (de) * 2013-02-08 2014-08-13 Benteler Automobiltechnik GmbH Verfahren zur Herstellung eines Kraftfahrzeugstabilisators
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11833561B2 (en) 2017-01-17 2023-12-05 Forum Us, Inc. Method of manufacturing a coiled tubing string

Also Published As

Publication number Publication date
ES2159662T3 (es) 2001-10-16
EP0753595A3 (de) 1998-08-26
EP0753595B1 (de) 2001-08-08
CZ287707B6 (en) 2001-01-17
CZ9602015A3 (cs) 1999-06-16
DE59607441D1 (de) 2001-09-13

Similar Documents

Publication Publication Date Title
EP0753595B1 (de) Rohre für die Herstellung von Stabilisatoren und Herstellung von Stabilisatoren aus solchen Rohren
DE60016369T2 (de) Kalt bearbeitbarer stahldraht oder stahlstab und verfahren
DE602004010699T2 (de) Kaltgewalztes Stahlblech mit einer Zugfestigkeit von 780 MPa oder mehr, einer hervorragenden lokalen Formbarkeit und einer unterdrückten Schweißhärteerhöhung
US5374322A (en) Method of manufacturing high strength steel member with a low yield ratio
DE60224262T2 (de) Elektrogeschweisstes stahlrohr für hohlstabilisator
DE60133816T2 (de) Stahlrohr zur verstärkung von automobilen und herstellungsverfahren dafür
EP1780293B2 (de) Verfahren zum Herstellen von Vormaterial aus Stahl durch Warmverformen
DE112021006024T5 (de) Eine druckbehälter stahlplatte mit einer dicke von mehr als 200 bis 250 mm und mit beständigkeit gegen wasserstoffinduzierte rissbildung sowie herstellungsverfahren dafür
EP1905857B1 (de) Hochfester Stahl und Verwendungen eines solchen Stahls
DE60300561T3 (de) Verfahren zur Herstellung eines warmgewalzten Stahlbandes
DE102015111866A1 (de) Umformbarer Leichtbaustahl mit verbesserten mechanischen Eigenschaften und Verfahren zur Herstellung von Halbzeug aus diesem Stahl
DE102017131247A1 (de) Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften
EP2414552B1 (de) Kugelzapfen aus bainitischen stählen für pkw und leichte lkw
DE3733481C2 (de)
DE112008001181B4 (de) Verwendung einer Stahllegierung für Achsrohre sowie Achsrohr
DE3881002T2 (de) Durch wärmrbehandlung härtbares warmgewalztes stahlfeinblech mit ausgezeichneter kaltverformbarkeit und verfahren zu seiner herstellung.
EP0753597A2 (de) Rohre für die Herstellung von Stabilisatoren und Herstellung von Stabilisatoren aus solchen Rohren
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
DE102008060161B4 (de) Verfahren zur Herstellung einer Fahrwerkskomponente mit erhöhter Dauerfestigkeit und Fahrwerkskomponente
DE102016117502A1 (de) Verfahren zur Herstellung eines Warm- oder Kaltbandes und/oder eines flexibel gewalzten Stahlflachprodukts aus einem hochfesten manganhaltigen Stahl und Stahlflachprodukt hiernach
DE3507124C2 (de)
DE112017006053T5 (de) Hochfestes und hochzähes rohr für eine perforier-pistole und herstellungsverfahren dafür
DE102018122901A1 (de) Verfahren zur Herstellung ultrahochfester Stahlbleche und Stahlblech hierfür
EP1961832B1 (de) Verwendung einer Stahllegierung als Werkstoff zur Herstellung von dynamisch belasteten Rohrbauteilen und Rohrbauteil
EP3347613B1 (de) Rohrfeder für kraftfahrzeuge und ein verfahren zum herstellen einer rohrfeder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19980723

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20001211

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010808

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

REF Corresponds to:

Ref document number: 59607441

Country of ref document: DE

Date of ref document: 20010913

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2159662

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

ET Fr: translation filed
PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: IMATRA STEEL OY AB BILLNAES

Effective date: 20020508

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20040120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100706

Year of fee payment: 15

Ref country code: ES

Payment date: 20100625

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100621

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100618

Year of fee payment: 15

Ref country code: DE

Payment date: 20100520

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607441

Country of ref document: DE

Representative=s name: BOCKERMANN, KSOLL, GRIEPENSTROH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59607441

Country of ref document: DE

Representative=s name: BOCKERMANN KSOLL GRIEPENSTROH OSTERHOFF, DE

Effective date: 20111011

Ref country code: DE

Ref legal event code: R081

Ref document number: 59607441

Country of ref document: DE

Owner name: BENTELER DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: BENTELER AG, 33104 PADERBORN, DE

Effective date: 20111011

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110625

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59607441

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110625

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110626