EP0752569A2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
EP0752569A2
EP0752569A2 EP96109642A EP96109642A EP0752569A2 EP 0752569 A2 EP0752569 A2 EP 0752569A2 EP 96109642 A EP96109642 A EP 96109642A EP 96109642 A EP96109642 A EP 96109642A EP 0752569 A2 EP0752569 A2 EP 0752569A2
Authority
EP
European Patent Office
Prior art keywords
heat
heat exchanger
tubes
medium
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96109642A
Other languages
German (de)
French (fr)
Other versions
EP0752569A3 (en
Inventor
Markus Dipl.-Ing. Hirth
Wilhelm Dipl.-Ing. Bruckmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balcke Duerr AG
Original Assignee
Balcke Duerr AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balcke Duerr AG filed Critical Balcke Duerr AG
Publication of EP0752569A2 publication Critical patent/EP0752569A2/en
Publication of EP0752569A3 publication Critical patent/EP0752569A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0236Header boxes; End plates floating elements
    • F28F9/0239Header boxes; End plates floating elements floating header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/051Heat exchange having expansion and contraction relieving or absorbing means
    • Y10S165/052Heat exchange having expansion and contraction relieving or absorbing means for cylindrical heat exchanger
    • Y10S165/053Flexible or movable header or header element
    • Y10S165/054Movable header, e.g. floating header
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/051Heat exchange having expansion and contraction relieving or absorbing means
    • Y10S165/052Heat exchange having expansion and contraction relieving or absorbing means for cylindrical heat exchanger
    • Y10S165/053Flexible or movable header or header element
    • Y10S165/054Movable header, e.g. floating header
    • Y10S165/055Movable header, e.g. floating header including guiding means for movable header
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/40Shell enclosed conduit assembly
    • Y10S165/427Manifold for tube-side fluid, i.e. parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/40Shell enclosed conduit assembly
    • Y10S165/44Coiled conduit assemblies

Definitions

  • the invention relates to a heat exchanger, in particular for systems operated with large load and / or temperature changes, for example as cooling air coolers for gas turbines, with pipes for separating the heat-emitting medium, in particular air, and the heat-absorbing medium, in particular water, the heat exchange taking place in countercurrent , which are arranged as flow channels for the heat-absorbing medium pipes running in a meandering shape between an inlet manifold and an outlet manifold and the heat-emitting medium flows around these meandering pipes.
  • the cooling of gas turbine blades usually takes place by means of an air flow, which is often branched off from the compressed combustion air for the gas turbine combustion chamber as a partial air flow.
  • the heat supplied during the compression of this partial air flow must be extracted from the air flow in a cooling air cooler before being fed to the gas turbine blades. Due to frequent starting and stopping as well as the high pressure and temperature differences, this heat exchanger is exposed to extreme alternating loads, which can lead to premature failure of the heat exchanger.
  • a cooling air cooler of the type described in the opening paragraph is known from EP-OS 0 203 445.
  • the inlet and outlet manifolds are rigidly connected to the clean gas inlet and clean gas outlet lines, so that alternating load voltages can only be insufficiently compensated.
  • Another cooling air cooler for gas turbines is known from DE-OS 41 42 375.5.
  • massive tube plates serve to separate the air-filled chambers from a space filled with the heat-absorbing medium.
  • the air to be cooled is passed through pipes which connect the two solid pipe plates arranged at the upper and lower ends of the heat exchanger and are rigidly fixed in them.
  • one of the solid tube plates is formed by one-sided clamping in such a way that it can compensate for pressure and temperature stresses to a certain extent.
  • the outer jacket of the heat exchanger is equipped with bellows expansion joints to dampen length changes.
  • the object of the invention is to further develop a heat exchanger of the type mentioned at the outset in such a way that it reliably and reliably compensates for the frequent and rapid load changes and the associated pressure and temperature fluctuations and, moreover, is inexpensive to manufacture.
  • the invention proposes that the collecting tubes penetrate an outer jacket of the heat exchanger on both sides, the collecting tubes being connected pressure-tight to the outer jacket on the inlet and outlet sides and being guided at the opposite end into a receiving space connected to the outer jacket in a pressure-tight manner.
  • This elastic mounting of the header pipes enables additional compensation of the load alternating voltages that occur, since the header pipes are not fixed at least on one side in the outer jacket of the Heat exchanger are clamped. Instead, the manifolds can expand into the receiving space. Such an expansion in the transverse direction of the heat exchanger does not cause any additional stresses in these tubes due to the elastic arrangement of the heat exchanger tubes.
  • Due to the passage of the header pipes through the outer jacket of the heat exchanger it is possible that in the event of pipe leaks, plugging or blinding of individual heat exchanger pipes from the outside is possible in a simple manner.
  • the flow channels for the heat-absorbing medium as meandering heat exchanger tubes arranged between two header tubes, compensation of the pressure and temperature fluctuations that occur can be achieved in a particularly simple and effective manner, since the meandering coil bundle acts as a whole as a large spring.
  • the back and forth heat exchanger tubes can absorb the occurring load changes without the risk of impermissibly high voltage conditions.
  • the meandering tubes are surrounded by an inner housing which is open at the end and connected on the inlet side to the inlet connector for the heat-emitting medium and which forms a flow channel for the heat-emitting medium.
  • an inner housing which is open at the end and connected on the inlet side to the inlet connector for the heat-emitting medium and which forms a flow channel for the heat-emitting medium.
  • a circumferential space is formed between the outer jacket of the heat exchanger and the inner housing enclosing the pipes and the outlet connection for the heat emitting Medium is arranged near the outlet manifold. The formation of the space between the outer jacket and the housing prevents direct heat conduction to the outer jacket of the heat exchanger.
  • This insulation of the outer jacket against the high inlet temperatures of the Medium to be cooled can be strengthened in that the outlet connection is arranged near the outlet manifold and thus also close to the inlet connection for the heat-emitting medium, so that the medium cooled by the flow along the heat exchanger tubes before leaving the heat exchanger covers the entire space between the housing and must flow through the outer jacket, which in turn contributes to the insulation of the outer jacket.
  • the surfaces in contact with the heat-emitting medium are made of austenitic steels.
  • the heat exchanger can be operated with water as the heat-absorbing medium as a preheater, evaporator, superheater, preheater with evaporator, evaporator with superheater or preheater with evaporator and superheater. Because of the various possibilities with which the heat exchanger according to the invention can be operated, it can be used in a variety of ways, depending on the respective pressure and temperature conditions, without having to change over.
  • FIG. 1 and 2 schematically show a heat exchanger 1, consisting of a welded outer jacket 2 with an inlet connector 3 and an outlet connector 4 for the heat-emitting medium and an inlet header 5 and an outlet header pipe 6 for the heat-absorbing medium, the inlet header pipe 5 and the outlet header pipe 6 being connected to one another via meandering pipes 7.
  • these tubes 7 are surrounded in the axial direction by a housing 8 which is open at both ends and connected to the inlet connector 3 on the inlet side.
  • the arrows shown in FIG. 2 illustrate the flow pattern of the heat-emitting and heat-absorbing medium in the heat exchanger 1.
  • the heat-emitting medium flows through the inlet connection 3 into the heat exchanger 1 and is through the housing 8, which forms a flow channel for the heat-emitting medium, guided from top to bottom along the tubes 7, which are filled with a heat-absorbing medium and flow from bottom to top.
  • the now cooled medium is deflected in the illustrated embodiment through a bottom 9 of the heat exchanger 1 and flows into an intermediate space 10 formed between the outer jacket 2 of the heat exchanger 1 and the housing 8 before the medium passes over the heat exchanger 1 leaves the outlet port 4 again.
  • the outlet port 4 is arranged in the illustrated embodiment near the outlet manifold 6, so that the cooled medium flows as far as possible along the entire axial extent of the outer shell 2 and thus insulates it from the heat of the uncooled inflowing heat-emitting medium.
  • the heat-absorbing medium in particular water, flows through the inlet manifold 5 into the heat exchanger 1 and flows from the bottom upwards through the meandering tubes 7 before it flows out of the heat exchanger 1 again after entering the outlet manifold 6.
  • the heat-emitting and the heat-absorbing medium are led to the particularly effective heat exchange in cross-countercurrent.
  • both the inlet and outlet manifolds 5, 6 and the thin-walled tubes 7 connecting the manifolds 5, 6 are elastically suspended and the manifolds 5, 6 are thin-walled compared to the tube plates known from the prior art.
  • the elastic suspension of the inlet manifold 5 and the outlet manifold 6 is that the manifolds penetrate the outer jacket 2 of the heat exchanger 1 on both sides, the manifolds 5, 6 being pressure-tightly connected to the outer jacket 2 on the inlet and outlet sides and at the opposite end are guided in a pressure-tight connection with the outer casing 2.
  • This elastic integration of the collecting tubes 5, 6 into the outer jacket 2 of the heat exchanger 1 enables the collecting tubes 5, 6 to compensate for the stresses that occur during the load changes that occur.
  • the pipes 7 are arranged in a meandering manner between the inlet manifold 5 and the outlet manifold 6, so that the entire bundle of tubes 7 is designed to be resilient overall and can thus effectively compensate for the stresses that occur.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Power Steering Mechanism (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

The heat exchanger arrangement comprises collection tubes (5,6) which penetrate both sides of an outer cover (2) of the heat exchanger (1). The collection tubes are connected to the outer cover in a pressure tight manner on the inlet and outlet sides. The tubes are each led into a receiving space (11) formed pressure tight with the outer cover. The meandering tube (7) is enclosed by an inner housing (8).

Description

Die Erfindung betrifft einen Wärmetauscher, insbesondere für mit großen Last- und/oder Temperaturwechseln betriebene Anlagen, beispielsweise als Kühlluftkühler für Gasturbinen, mit Rohren zur Trennung des wärmeabgebenden Mediums, insbesondere Luft, und des wärmeaufnehmenden Mediums, insbesondere Wasser, wobei der Wärmeaustausch im Gegenstrom erfolgt, die als Strömungskanäle für das wärmeaufnehmende Medium dienenden Rohre mäanderförmig verlaufend zwischen einem Einlaß-Sammelrohr und einem Auslaß-Sammelrohr angeordnet sind und das wärmeabgebende Medium diese mäanderförmig verlaufenden Rohre umströmt.The invention relates to a heat exchanger, in particular for systems operated with large load and / or temperature changes, for example as cooling air coolers for gas turbines, with pipes for separating the heat-emitting medium, in particular air, and the heat-absorbing medium, in particular water, the heat exchange taking place in countercurrent , which are arranged as flow channels for the heat-absorbing medium pipes running in a meandering shape between an inlet manifold and an outlet manifold and the heat-emitting medium flows around these meandering pipes.

Die Kühlung von Gasturbinenschaufeln erfolgt üblicherweise mittels eines Luftstroms, welcher häufig von der komprimierten Verbrennungsluft für die Gasturbinenbrennkammer als Teilluftstrom abgezweigt wird. Die bei der Kompression auch diesem Teilluftstrom zugeführte Wärme muß dem Luftstrom vor dem Zuleiten zu den Gasturbinenschaufeln in einem Kühlluftkühler wieder entzogen werden. Durch häufiges Anfahren und Abfahren sowie aufgrund der hohen Druck- und Temperaturunterschiede wird dieser Wärmetauscher extremen Wechselbelastungen ausgesetzt, welche zum vorzeitigen Versagen des Wärmetauschers führen können. Ein Kühlluftkühler der eingangs beschriebenen Art ist aus der EP-OS 0 203 445 bekannt. Bei diesem gattungsbildenden Wärmetauscher sind die Einlaß- und Auslaß-Sammelrohre starr mit den Reingas-Eintritts- bzw. Reingas-Austrittsleitungen verbunden, so daß Lastwechselspannungen nur unzureichend kompensiert werden können.The cooling of gas turbine blades usually takes place by means of an air flow, which is often branched off from the compressed combustion air for the gas turbine combustion chamber as a partial air flow. The heat supplied during the compression of this partial air flow must be extracted from the air flow in a cooling air cooler before being fed to the gas turbine blades. Due to frequent starting and stopping as well as the high pressure and temperature differences, this heat exchanger is exposed to extreme alternating loads, which can lead to premature failure of the heat exchanger. A cooling air cooler of the type described in the opening paragraph is known from EP-OS 0 203 445. In this generic heat exchanger, the inlet and outlet manifolds are rigidly connected to the clean gas inlet and clean gas outlet lines, so that alternating load voltages can only be insufficiently compensated.

Ein weiterer Kühlluftkühler für Gasturbinen ist aus der DE-OS 41 42 375.5 bekannt. Bei diesem bekannten Wärmetauscher dienen massive Rohrplatten zum Abteilen der luftgefüllten Kammern von einem mit dem wärmeaufnehmenden Medium gefüllten Raum. Die abzukühlende Luft wird durch Rohre geleitet, die die beiden, am oberen und unteren Ende des Wärmetauschers angeordneten massiven Rohrplatten miteinander verbinden und starr in diesen fixiert sind. Zur Kompensation der auftretenden Druck- und Temperaturspannungen ist bei diesem bekannten Wärmetauscher eine der massiven Rohrplatten durch einseitiges Einspannen so ausgebildet, daß sie Druck- und Temperaturspannungen in einem gewissen Maße kompensieren kann. Darüber hinaus ist der äußere Mantel des Wärmetauschers mit Balgkompensatoren zur Dämpfung auftretender Längenänderungen ausgestattet. Zwar erlaubt dieser bekannte Wärmetauscher eine gewisse Kompensation der bei den häufigen und schnellen Lastwechseln auftretenden Druck- und Temperaturschwankungen, jedoch verhindert die starre Einspannung der Wärmetauscherrohre zwischen den beiden massiven Rohrplatten eine effektive Dämpfung dieser Belastungen. Darüber hinaus ist die Verwendung der massiven Rohrplatten aufgrund deren hohen Gewichts und deren Unflexibilität gegenüber Temperaturspannungen nachteilig.Another cooling air cooler for gas turbines is known from DE-OS 41 42 375.5. In this known heat exchanger, massive tube plates serve to separate the air-filled chambers from a space filled with the heat-absorbing medium. The air to be cooled is passed through pipes which connect the two solid pipe plates arranged at the upper and lower ends of the heat exchanger and are rigidly fixed in them. To compensate for the pressure and temperature stresses that occur in this known heat exchanger, one of the solid tube plates is formed by one-sided clamping in such a way that it can compensate for pressure and temperature stresses to a certain extent. In addition, the outer jacket of the heat exchanger is equipped with bellows expansion joints to dampen length changes. Although this known heat exchanger allows a certain compensation for the pressure and temperature fluctuations that occur during frequent and rapid load changes, the rigid clamping of the heat exchanger tubes between the two solid tube plates prevents effective damping of these loads. In addition, the use of the solid tube plates is disadvantageous due to their high weight and their inflexibility to temperature stresses.

Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, einen Wärmetauscher der Eingangs genannten Art derart weiterzubilden, daß er die auftretenden häufigen und schnellen Lastwechsel und damit verbundenen Druck- und Temperaturschwankungen sicher und zuverlässig kompensiert und darüber hinaus kostengünstig zu fertigen ist.Proceeding from this, the object of the invention is to further develop a heat exchanger of the type mentioned at the outset in such a way that it reliably and reliably compensates for the frequent and rapid load changes and the associated pressure and temperature fluctuations and, moreover, is inexpensive to manufacture.

Als technische Lösung dieser Aufgabe wird erfindungsgemäß vorgeschlagen, daß die Sammelrohre beidseitig einen Außenmantel des Wärmetauschers durchdringen, wobei die Sammelrohre einlaß- und auslaßseitig druckdicht mit dem Außenmantel verbunden sind und am gegenüberliegenden Ende in einen druckdicht mit dem Außenmantel verbundenen Aufnahmeraum geführt sind.As a technical solution to this problem, the invention proposes that the collecting tubes penetrate an outer jacket of the heat exchanger on both sides, the collecting tubes being connected pressure-tight to the outer jacket on the inlet and outlet sides and being guided at the opposite end into a receiving space connected to the outer jacket in a pressure-tight manner.

Durch diese elastische Lagerung der Sammelrohre wird eine zusätzliche Kompensierung der auftretenden Lastwechselspannungen ermöglicht, da die Sammelrohre zumindest einseitig nicht fest in dem Außenmantel des Wärmetauschers eingespannt sind. Statt dessen können sich die Sammelrohre in den Aufnahmeraum hinein ausdehnen. Eine solche Dehnung in Querrichtung des Wärmetauschers bewirkt aufgrund der elastischen Anordnung der Wärmetauscherrohre keine zusätzlichen Spannungen in diesen Rohren. Darüber hinaus besteht aufgrund des Durchführens der Sammelrohre durch den Außenmantel des Wärmetauschers die Möglichkeit, daß im Falle von Rohrundichtigkeiten ein Abstopfen bzw. Blindsetzen einzelner Wärmetauscherrohre von außen auf einfache Weise möglich ist. Durch das Ausbilden der Strömungskanäle für das wärmeaufnehmende Medium als mäanderförmig zwischen zwei Sammelrohren angeordnete Wärmetauscherrohre kann auf eine besonders einfache und effektive Art und Weise eine Kompensation der auftretenden Druck- und Temperaturschwankungen erreicht werden, da das mäanderförmig gewundene Rohrbündel insgesamt wie eine große Feder wirkt. Die hin- und herlaufenden Wärmetauscherrohre können so die auftretenden Lastwechsel ohne die Gefahr unzulässig hoher Spannungszustände aufnehmen.This elastic mounting of the header pipes enables additional compensation of the load alternating voltages that occur, since the header pipes are not fixed at least on one side in the outer jacket of the Heat exchanger are clamped. Instead, the manifolds can expand into the receiving space. Such an expansion in the transverse direction of the heat exchanger does not cause any additional stresses in these tubes due to the elastic arrangement of the heat exchanger tubes. In addition, due to the passage of the header pipes through the outer jacket of the heat exchanger, it is possible that in the event of pipe leaks, plugging or blinding of individual heat exchanger pipes from the outside is possible in a simple manner. By designing the flow channels for the heat-absorbing medium as meandering heat exchanger tubes arranged between two header tubes, compensation of the pressure and temperature fluctuations that occur can be achieved in a particularly simple and effective manner, since the meandering coil bundle acts as a whole as a large spring. The back and forth heat exchanger tubes can absorb the occurring load changes without the risk of impermissibly high voltage conditions.

Gemäß einer bevorzugten Ausführungsform der Erfindung sind die mäanderförmig verlaufenden Rohre von einem endseitig offenen und einlaßseitig mit dem Einlaßstutzen für das wärmeabgebende Medium verbundenen inneren Gehäuse umgeben, das einen Strömungskanal für das wärmeabgebende Medium bildet. Durch dieses innere Gehäuse wird der eintretende abzukühlende Strom zwangsweise entlang der mäanderförmig verlaufenden Wärmetauscherrohre geführt, so daß dieser abzukühlende Strom nicht an der Seite an den Wärmetauscherrohren vorbei direkt zum Auslaßstutzen strömen kann.According to a preferred embodiment of the invention, the meandering tubes are surrounded by an inner housing which is open at the end and connected on the inlet side to the inlet connector for the heat-emitting medium and which forms a flow channel for the heat-emitting medium. Through this inner housing, the incoming stream to be cooled is forcibly guided along the meandering heat exchanger tubes, so that this stream to be cooled cannot flow past the side of the heat exchanger tubes directly to the outlet connection.

Um zu ermöglichen, daß der Außenmantel des Wärmetauschers nicht in direktem Kontakt mit dem bis zu 500°C heißen abzukühlenden Medium kommt, ist zwischen dem Außenmantel des Wärmetauschers und dem inneren, die Rohre umschließenden Gehäuse ein umlaufender Zwischenraum ausgebildet ist und der Auslaßstutzen für das wärmeabgebende Medium nahe dem Auslaß-Sammelrohr angeordnet ist. Durch die Ausbildung des Zwischenraumes zwischen Außenmantel und Gehäuse wird eine direkte Wärmeleitung zum Außenmantel des Wärmetauschers hin verhindert. Diese Isolierung des Außenmantels gegenüber den hohen Eintrittstemperaturen des abzukühlenden Mediums kann dadurch verstärkt werden, daß der Auslaßstutzen nahe dem Auslaß-Sammelrohr und somit auch nahe dem Einlaßstutzen für das wärmeabgebende Medium angeordnet ist, so daß das durch die Strömung entlang der Wärmetauscherrohre abgekühlte Medium vor dem Austritt aus dem Wärmetauscher den gesamten Zwischenraum zwischen Gehäuse und Außenmantel durchströmen muß, was wiederum zur Isolierung des Außenmantels beiträgt.In order to ensure that the outer jacket of the heat exchanger does not come into direct contact with the medium to be cooled down to 500 ° C, a circumferential space is formed between the outer jacket of the heat exchanger and the inner housing enclosing the pipes and the outlet connection for the heat emitting Medium is arranged near the outlet manifold. The formation of the space between the outer jacket and the housing prevents direct heat conduction to the outer jacket of the heat exchanger. This insulation of the outer jacket against the high inlet temperatures of the Medium to be cooled can be strengthened in that the outlet connection is arranged near the outlet manifold and thus also close to the inlet connection for the heat-emitting medium, so that the medium cooled by the flow along the heat exchanger tubes before leaving the heat exchanger covers the entire space between the housing and must flow through the outer jacket, which in turn contributes to the insulation of the outer jacket.

Um eine gute Temperaturbeständigkeit zu gewährleisten und darüber hinaus sicherzustellen, daß das abzukühlende Medium keine Verunreinigungen erfährt, bestehen die mit dem wärmeabgebenden Medium in Kontakt stehenden Flächen aus austenitischen Stählen.In order to ensure good temperature resistance and also to ensure that the medium to be cooled is not contaminated, the surfaces in contact with the heat-emitting medium are made of austenitic steels.

Ein wesentlicher Aspekt der Erfindung ist es ferner, daß der Wärmetauscher mit Wasser als wärmeaufnehmendem Medium als Vorwärmer, Verdampfer, Überhitzer, Vorwärmer mit Verdampfer, Verdampfer mit Überhitzer oder Vorwärmer mit Verdampfer und Überhitzer betreibbar ist. Aufgrund dieser vielfältigen Möglichkeiten, mit denen der erfindungsgemäße Wärmetauscher betrieben werden kann, ist dieser in Abhängigkeit von den jeweiligen Druck- und Temperaturverhältnissen ohne Umrüsten vielseitig einsetzbar.It is also an essential aspect of the invention that the heat exchanger can be operated with water as the heat-absorbing medium as a preheater, evaporator, superheater, preheater with evaporator, evaporator with superheater or preheater with evaporator and superheater. Because of the various possibilities with which the heat exchanger according to the invention can be operated, it can be used in a variety of ways, depending on the respective pressure and temperature conditions, without having to change over.

Weitere Einzelheiten und Vorteile ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnungen, in denen ein Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Wärmetauschers schematisch dargestellt ist. In den Zeichnungen zeigt:

Fig. 1
einen Längsschnitt durch einen Wärmetauscher;
Fig. 2
einen Längsschnitt durch einen Wärmetauscher gemäß Fig. 1, jedoch um 90° um die Längsachse gedreht und
Fig. 3
eine Draufsicht auf einen Wärmetauscher gemäß Fig. 1 und 2.
Further details and advantages emerge from the following description of the associated drawings, in which an exemplary embodiment of a heat exchanger designed according to the invention is shown schematically. In the drawings:
Fig. 1
a longitudinal section through a heat exchanger;
Fig. 2
a longitudinal section through a heat exchanger according to FIG. 1, but rotated by 90 ° about the longitudinal axis and
Fig. 3
a plan view of a heat exchanger according to FIGS. 1 and 2.

Fig. 1 und 2 zeigen schematisch einen Wärmetauscher 1, bestehend aus einem geschweißten Außenmantel 2 mit einem Einlaßstutzen 3 sowie einem Auslaßstutzen 4 für das wärmeabgebende Medium sowie einem Einlaß-Sammelrohr 5 und einem Auslaß-Sammelrohr 6 für das wärmeaufnehmende Medium, wobei das Einlaß-Sammelrohr 5 und das Auslaß-Sammelrohr 6 über mäanderförmig verlaufende Rohre 7 miteinander verbunden sind.1 and 2 schematically show a heat exchanger 1, consisting of a welded outer jacket 2 with an inlet connector 3 and an outlet connector 4 for the heat-emitting medium and an inlet header 5 and an outlet header pipe 6 for the heat-absorbing medium, the inlet header pipe 5 and the outlet header pipe 6 being connected to one another via meandering pipes 7.

Um zu gewährleisten, daß das durch den Einlaßstutzen 3 einströmende abzukühlende Medium entlang den Wärmetauscherrohren 7 strömt, sind diese Rohre 7 in axialer Richtung von einem Gehäuse 8 umgeben, welches an beiden Enden offen und einlaßseitig mit dem Einlaßstutzen 3 verbunden ist. Die in Fig. 2 dargestellten Pfeile verdeutlichen den Strömungsverlauf des wärmeabgebenden und des wärmeaufnehmenden Mediums in dem Wärmetauscher 1. Das wärmeabgebende Medium strömt durch den Einlaßstutzen 3 in den Wärmetauscher 1 ein und wird durch das Gehäuse 8, welches einen Strömungskanal für das wärmeabgebende Medium bildet, von oben nach unten entlang den Rohren 7 geführt, die mit einem wärmeaufnehmenden Medium gefüllt von unten nach oben durchströmt werden. Nach dem Austritt aus dem Gehäuse 8 wird das nunmehr abgekühlte Medium bei dem dargestellten Ausführungsbeispiel durch einen Boden 9 des Wärmetauschers 1 umgelenkt und strömt in einen zwischen dem Außenmantel 2 des Wärmetauschers 1 und dem Gehäuse 8 ausgebildeten Zwischenraum 10, bevor das Medium den Wärmetauscher 1 über den Auslaßstutzen 4 wieder verläßt. Der Auslaßstutzen 4 ist bei dem dargestellten Ausführungsbeispiel nahe dem Auslaß-Sammelrohr 6 angeordnet, damit das abgekühlte Medium möglichst entlang der gesamten axialen Erstreckung des Außenmantels 2 entlangströmt und diesen somit gegen die Hitze des ungekühlten einströmenden wärmeabgebenden Mediums isoliert.In order to ensure that the medium to be cooled flowing in through the inlet connector 3 flows along the heat exchanger tubes 7, these tubes 7 are surrounded in the axial direction by a housing 8 which is open at both ends and connected to the inlet connector 3 on the inlet side. The arrows shown in FIG. 2 illustrate the flow pattern of the heat-emitting and heat-absorbing medium in the heat exchanger 1. The heat-emitting medium flows through the inlet connection 3 into the heat exchanger 1 and is through the housing 8, which forms a flow channel for the heat-emitting medium, guided from top to bottom along the tubes 7, which are filled with a heat-absorbing medium and flow from bottom to top. After emerging from the housing 8, the now cooled medium is deflected in the illustrated embodiment through a bottom 9 of the heat exchanger 1 and flows into an intermediate space 10 formed between the outer jacket 2 of the heat exchanger 1 and the housing 8 before the medium passes over the heat exchanger 1 leaves the outlet port 4 again. The outlet port 4 is arranged in the illustrated embodiment near the outlet manifold 6, so that the cooled medium flows as far as possible along the entire axial extent of the outer shell 2 and thus insulates it from the heat of the uncooled inflowing heat-emitting medium.

Das wärmeaufnehmende Medium, insbesondere Wasser, strömt durch das Einlaß-Sammelrohr 5 in den Wärmetauscher 1 ein und durchfließt von unten nach oben die mäanderförmig verlaufenden Rohre 7, bevor es nach dem Eintritt in das Auslaß-Sammelrohr 6 wieder aus dem Wärmetauscher 1 hinausströmt. Durch diese dargestellte Schaltungsweise werden das wärmeabgebende und das Wärmeaufnehmende Medium zum besonders effektiven Wärmeaustausch im Kreuz-Gegenstrom geführt.The heat-absorbing medium, in particular water, flows through the inlet manifold 5 into the heat exchanger 1 and flows from the bottom upwards through the meandering tubes 7 before it flows out of the heat exchanger 1 again after entering the outlet manifold 6. By means of this circuitry shown, the heat-emitting and the heat-absorbing medium are led to the particularly effective heat exchange in cross-countercurrent.

Da insbesondere beim Einsatz eines solchen Wärmetauschers 1 als Kühlluftkühler für Gasturbinen der Wärmetauscher 1 einer großen Zahl von Last- und/oder Temperaturwechseln unterliegt, ist es notwendig, daß der Wärmetauscher 1 sowie alle darin angeordneten Einbauten diese häufigen und schnellen Lastwechsel gut kompensieren können. Zu diesem Zweck sind sowohl die Einlaß- und Auslaß-Sammelrohre 5, 6 als auch die die Sammelrohre 5, 6 verbindenden dünnwandigen Rohre 7 elastisch aufgehängt und die Sammelrohre 5, 6 im Vergleich zu den aus dem Stand der Technik bekannten Rohrplatten dünnwandig ausgebildet.Since, in particular when using such a heat exchanger 1 as a cooling air cooler for gas turbines, the heat exchanger 1 has a large number of Is subject to load and / or temperature changes, it is necessary that the heat exchanger 1 and all the internals arranged therein can compensate for these frequent and rapid load changes well. For this purpose, both the inlet and outlet manifolds 5, 6 and the thin-walled tubes 7 connecting the manifolds 5, 6 are elastically suspended and the manifolds 5, 6 are thin-walled compared to the tube plates known from the prior art.

Die elastische Aufhängung des Einlaß-Sammelrohrs 5 und des Auslaß-Sammelrohrs 6 besteht darin, daß die Sammelrohre beidseitig den Außenmantel 2 des Wärmetauschers 1 durchdringen, wobei die Sammelrohre 5, 6 einlaß- und auslaßseitig druckdicht mit dem Außenmantel 2 verbunden sind und am gegenüberliegenden Ende in einem druckdicht mit dem Außenmantel 2 verbundenen Aufnahmeraum 11 geführt sind. Durch diese elastische Einbindung der Sammelrohre 5, 6 in den Außenmantel 2 des Wärmetauschers 1 wird es den Sammelrohren 5, 6 ermöglicht, daß diese die bei den auftretenden Lastwechseln entstehenden Spannungen kompensieren können. Damit an den die Sammelrohre 5, 6 verbindenden Rohren 7 aufgrund der Lastwechsel sowie der elastischen Lagerung der Sammelrohre 5, 6 keine unzulässigen Spannungen auftreten können, sind die Rohre 7 zwischen dem Einlaß-Sammelrohr 5 und dem Auslaß-Sammelrohr 6 mäanderförmig angeordnet, so daß das gesamte Bündel der Rohre 7 insgesamt federelastisch ausgebildet ist und somit die auftretenden Spannungen effektiv kompensieren kann.The elastic suspension of the inlet manifold 5 and the outlet manifold 6 is that the manifolds penetrate the outer jacket 2 of the heat exchanger 1 on both sides, the manifolds 5, 6 being pressure-tightly connected to the outer jacket 2 on the inlet and outlet sides and at the opposite end are guided in a pressure-tight connection with the outer casing 2. This elastic integration of the collecting tubes 5, 6 into the outer jacket 2 of the heat exchanger 1 enables the collecting tubes 5, 6 to compensate for the stresses that occur during the load changes that occur. So that no inadmissible tensions can occur on the pipes 7, 6 connecting the pipes due to the load changes and the elastic mounting of the pipes 5, 6, the pipes 7 are arranged in a meandering manner between the inlet manifold 5 and the outlet manifold 6, so that the entire bundle of tubes 7 is designed to be resilient overall and can thus effectively compensate for the stresses that occur.

BezugszeichenlisteReference list

11
WärmetauscherHeat exchanger
22nd
AußenmantelOuter jacket
33rd
EinlaßstutzenInlet connector
44th
AuslaßstutzenExhaust port
55
Einlaß-SammelrohrInlet manifold
66
Auslaß-SammelrohrOutlet manifold
77
Rohrpipe
88th
Gehäusecasing
99
Bodenground
1010th
ZwischenraumSpace
1111
AufnahmeraumRecording room

Claims (5)

Wärmetauscher, insbesondere für mit großen Last- und/oder Temperaturwechseln betriebene Anlagen, beispielsweise als Kühlluftkühler für Gasturbinen, mit Rohren (7) zur Trennung des wärmeabgebenden Mediums, insbesondere Luft, und des wärmeaufnehmenden Mediums, insbesondere Wasser, wobei der Wärmeaustausch im Gegenstrom erfolgt, die als Strömungskanäle für das wärmeaufnehmende Medium dienenden Rohre (7) mäanderförmig verlaufend zwischen einem Einlaß-Sammelrohr (5) und einem Auslaß-Sammelrohr (6) angeordnet sind und das wärmeabgebende Medium diese mäanderförmig verlaufenden Rohre (7) umströmt,
dadurch gekennzeichnet,
daß die Sammelrohre (5, 6) beidseitig einen Außenmantel (2) des Wärmetauschers (1) durchdringen, wobei die Sammelrohre (5, 6) einlaß- und auslaßseitig druckdicht mit dem Außenmantel (2) verbunden sind und am gegenüberliegenden Ende in einen druckdicht mit dem Außenmantel (2) verbundenen Aufnahmeraum (11) geführt sind.
Heat exchanger, in particular for systems operated with large load and / or temperature changes, for example as cooling air coolers for gas turbines, with tubes (7) for separating the heat-emitting medium, in particular air, and the heat-absorbing medium, in particular water, the heat exchange taking place in countercurrent, the pipes (7) serving as flow channels for the heat-absorbing medium are arranged in a meandering shape between an inlet header pipe (5) and an outlet header pipe (6) and the heat-emitting medium flows around these meandering pipes (7),
characterized,
that the collecting tubes (5, 6) penetrate an outer jacket (2) of the heat exchanger (1) on both sides, the collecting tubes (5, 6) on the inlet and outlet sides being pressure-tightly connected to the outer jacket (2) and at the opposite end in a pressure-tight manner the outer casing (2) connected receiving space (11) are guided.
Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die mäanderförmig verlaufenden Rohre (7) von einem endseitig offenen und einlaßseitig mit einem Einlaßstutzen (3) für das wärmeabgebende Medium verbundenen inneren Gehäuse (8) umgeben sind, das einen Strömungskanal für das wärmeabgebende Medium bildet.Heat exchanger according to Claim 1, characterized in that the meandering tubes (7) are surrounded by an inner housing (8) which is open at the end and is connected on the inlet side to an inlet nozzle (3) for the heat-emitting medium and forms a flow channel for the heat-emitting medium. Wärmetauscher nach Anspruch 2, dadurch gekennzeichnet, daß zwischen dem Außenmantel (2) des Wärmetauschers (1) und dem inneren, die Rohre (7) umschließenden Gehäuse (8) ein umlaufender Zwischenraum (10) ausgebildet ist und ein Auslaßstutzen (4) für das wärmeabgebende Medium nahe dem Auslaß-Sammelrohr (6) angeordnet ist.Heat exchanger according to claim 2, characterized in that a circumferential space (10) is formed between the outer jacket (2) of the heat exchanger (1) and the inner housing (8) surrounding the tubes (7) and an outlet connection (4) for the heat-emitting medium is arranged near the outlet manifold (6). Wärmetauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die mit dem wärmeabgebenden Medium in Kontakt stehenden Flächen aus austenitischen Stählen bestehen.Heat exchanger according to one of claims 1 to 3, characterized in that the surfaces in contact with the heat-emitting medium consist of austenitic steels. Wärmetauscher nach einem der Ansprüche 1 bis 4, mit Wasser als wärmeaufnehmendem Medium, dadurch gekennzeichnet, daß der Wärmetauscher als Vorwärmer, Verdampfer, Überhitzer, Vorwärmer mit Verdampfer, Verdampfer mit Überhitzer oder Vorwärmer mit Verdampfer und Überhitzer betreibbar ist.Heat exchanger according to one of Claims 1 to 4, with water as the heat-absorbing medium, characterized in that the heat exchanger can be operated as a preheater, evaporator, superheater, preheater with evaporator, evaporator with superheater or preheater with evaporator and superheater.
EP96109642A 1995-07-01 1996-06-15 Heat exchanger Withdrawn EP0752569A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29510720U DE29510720U1 (en) 1995-07-01 1995-07-01 Heat exchanger
DE29510720U 1995-07-01

Publications (2)

Publication Number Publication Date
EP0752569A2 true EP0752569A2 (en) 1997-01-08
EP0752569A3 EP0752569A3 (en) 1997-11-26

Family

ID=8010042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96109642A Withdrawn EP0752569A3 (en) 1995-07-01 1996-06-15 Heat exchanger

Country Status (8)

Country Link
US (1) US5871045A (en)
EP (1) EP0752569A3 (en)
JP (1) JPH09152283A (en)
KR (1) KR970007275A (en)
CN (1) CN1149124A (en)
DE (1) DE29510720U1 (en)
RU (1) RU2117892C1 (en)
TW (1) TW330981B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546725A1 (en) * 1995-12-14 1997-06-19 Asea Brown Boveri Cooler for hot flowing gas
JP4130512B2 (en) * 1998-04-24 2008-08-06 ベール ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー Heat exchanger
DE10041413B4 (en) 1999-08-25 2011-05-05 Alstom (Switzerland) Ltd. Method for operating a power plant
DE10211635A1 (en) * 2002-03-15 2003-09-25 Behr Gmbh & Co Heat exchanger, e.g. for exhaust gas, has one part of first part of tube fitted radially outside one part of second part of tube
JP4151001B2 (en) * 2002-07-25 2008-09-17 株式会社ティラド Heat exchanger
DE102004045638A1 (en) * 2004-09-21 2006-04-06 Bayerische Motoren Werke Ag Heat exchanger for hydrogen-powered fuel supply systems
PT2161525T (en) 2008-09-08 2016-07-26 Balcke-Dürr GmbH Modular heat exchanger
EP2322854B1 (en) * 2009-11-17 2013-09-04 Balcke-Dürr GmbH Heat exchanger for creating steam for solar power plants
US9273865B2 (en) * 2010-03-31 2016-03-01 Alstom Technology Ltd Once-through vertical evaporators for wide range of operating temperatures
CN109140833A (en) 2011-11-08 2019-01-04 泰而勒商用食品服务公司 Heat exchanger and its manufacturing method
EP2818821B1 (en) * 2013-06-27 2016-02-03 Linde Aktiengesellschaft Coiled heat exchanger with core tube feed
EP2975353A1 (en) * 2014-07-16 2016-01-20 Casale SA Shell and tube heat exchangers
CN107606641A (en) * 2017-10-27 2018-01-19 四川省洪雅青衣江元明粉有限公司 A kind of preheater in the technology based on MVR
AU2019239983B2 (en) 2018-03-20 2024-10-10 Lummus Technology Llc Heat exchanger closure assemblies and methods of using and installing the same
BR112020023830A2 (en) * 2018-05-31 2021-04-13 Dow Global Technologies Llc DEVOLATILIZER, REACTOR SYSTEM, AND SOLUTION POLYMERIZATION PROCESS
CN108744194A (en) * 2018-06-12 2018-11-06 佛山科学技术学院 A kind of medical ventilator system
EP3640575B1 (en) * 2018-10-15 2022-12-07 Wieland Provides S.r.l. Vertical heat exchanger
US11754349B2 (en) * 2019-03-08 2023-09-12 Hamilton Sundstrand Corporation Heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0203445A1 (en) 1985-05-24 1986-12-03 Siemens Aktiengesellschaft Raw gas-clean gas heat exchanger
DE4142375A1 (en) 1991-12-20 1993-07-08 Siemens Ag COOLING AIR COOLER FOR GAS TURBINES

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1926494A (en) * 1933-05-11 1933-09-12 Morterud Knut Kristoffer Heating device
US2199216A (en) * 1937-12-22 1940-04-30 Conti Piero Ginori Vaporizer
US2566976A (en) * 1949-11-09 1951-09-04 Clarence R Bernstrom Water heater
US2967515A (en) * 1956-12-21 1961-01-10 Shell Oil Co Waste-heat boiler
US2988335A (en) * 1958-03-06 1961-06-13 Gen Motors Corp Heat exchangers
US3101930A (en) * 1958-09-10 1963-08-27 Huet Andre Tubular heat exchanger
NL284041A (en) * 1962-09-12
FR1351602A (en) * 1962-12-29 1964-02-07 Babcock & Wilcox France Improvements to recovery heat exchangers
AT251716B (en) * 1964-03-25 1967-01-25 Waagner Biro Ag Heat exchangers with more than two collecting chambers
AT266887B (en) * 1964-04-06 1968-12-10 Waagner Biro Ag Heat exchanger
GB1109395A (en) * 1965-08-25 1968-04-10 Babcock & Wilcox Ltd Improvements in or relating to heat exchangers
US3404731A (en) * 1966-07-12 1968-10-08 Paul A. Cushman Combined exhaust silencer and heat exchanger
NO125206B (en) * 1969-07-04 1972-07-31 Norsk Hydro Elektrisk
US3749166A (en) * 1972-05-26 1973-07-31 Schlumberger Technology Corp Well packer apparatus
US3991823A (en) * 1975-05-29 1976-11-16 Curtiss-Wright Corporation Multi-pass heat exchanger having finned conduits of polygonal configuration in cross-section
CH594809A5 (en) * 1975-10-10 1978-01-31 Bbc Brown Boveri & Cie
DE2839564C2 (en) * 1978-09-12 1982-10-21 Hoechst Ag, 6000 Frankfurt Device with supply and removal of heat and for mixing liquid media
DE3012961A1 (en) * 1980-04-02 1981-10-08 Friedrich 7900 Ulm Bilger Compact indirect heat exchanger - passes one medium through pipe coil and other one through enclosing housing
US4528733A (en) * 1983-07-25 1985-07-16 United Aircraft Products, Inc. Method of making tubular heat exchangers
DE3508382A1 (en) * 1985-03-08 1986-09-11 Akzo Gmbh, 5600 Wuppertal DEVICE FOR THE TRANSFER OF HEAT AND / OR FABRIC WITH THE AID OF CAVE THREADS
DE3832001C1 (en) * 1988-09-21 1990-04-12 Erno Raumfahrttechnik Gmbh, 2800 Bremen, De
DE3921485A1 (en) * 1989-06-30 1991-01-10 Erno Raumfahrttechnik Gmbh EVAPORATION HEAT EXCHANGER
DE58909259D1 (en) * 1989-10-30 1995-06-29 Siemens Ag Continuous steam generator.
US5067330A (en) * 1990-02-09 1991-11-26 Columbia Gas System Service Corporation Heat transfer apparatus for heat pumps
FR2658278A1 (en) * 1990-02-14 1991-08-16 Stein Industrie REMOVABLE HEAT EXCHANGER HAVING HAIRPIN TUBES ARRANGED IN PARALLEL PLANS.
CH683019A5 (en) * 1990-06-12 1993-12-31 Asea Brown Boveri Gas turbine arrangement.
US5379832A (en) * 1992-02-18 1995-01-10 Aqua Systems, Inc. Shell and coil heat exchanger
DE4213023A1 (en) * 1992-04-21 1993-10-28 Asea Brown Boveri Process for operating a gas turbine group
JP2679930B2 (en) * 1993-02-10 1997-11-19 昇 丸山 Hot water supply device
DE4304989A1 (en) * 1993-02-18 1994-08-25 Abb Management Ag Process for cooling a gas turbine plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0203445A1 (en) 1985-05-24 1986-12-03 Siemens Aktiengesellschaft Raw gas-clean gas heat exchanger
DE4142375A1 (en) 1991-12-20 1993-07-08 Siemens Ag COOLING AIR COOLER FOR GAS TURBINES

Also Published As

Publication number Publication date
RU2117892C1 (en) 1998-08-20
KR970007275A (en) 1997-02-21
US5871045A (en) 1999-02-16
EP0752569A3 (en) 1997-11-26
TW330981B (en) 1998-05-01
CN1149124A (en) 1997-05-07
DE29510720U1 (en) 1995-09-07
JPH09152283A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
EP0752569A2 (en) Heat exchanger
DE102006003317B4 (en) Tube bundle heat exchanger
EP1504231B1 (en) Exhaust heat exchanger in particular for motor vehicles
DE102005037156A1 (en) heat exchangers
DE2120544A1 (en) Heat exchanger
EP0171583A2 (en) Tubular reaction system for a tubular cracking furnace
DE3146089A1 (en) Heat exchanger for gases of widely differing temperatures
DE3803948C2 (en)
DE3714671C2 (en)
DE4416932C2 (en) Heat exchanger
EP0010679A1 (en) Heat exchanger for high-temperature gases
WO1993013378A1 (en) Cooling-air cooling unit for gas turbines
DE3136860C2 (en) Cooling heat exchanger
DE3049409A1 (en) DEVICE FOR STEAM GENERATION IN AMMONIA SYNTHESIS SYSTEMS
DE19606201B4 (en) Device for holding the tubes of a tube bundle
DE102007017227A1 (en) Heat exchanger for exchange of heat between two mediums has connector fastened on flange of connector which incorporates compensator and on hood so that tube space is sealed in relation to environment and jacket space
DE3529457A1 (en) HEAT EXCHANGER GAS TURBINE
DE102011103635A1 (en) Heat exchanger
EP0070371A1 (en) Heat exchanger
DE19511264C2 (en) Heat exchanger
DE2640728A1 (en) HEAT TRANSFER, PREFERRED FOR GAS MEDIA
DE102015003465B4 (en) Heat exchanger and use of a heat exchanger
DE4136003A1 (en) Pre-heating heat-exchanger for combustion engines - passes medium under pressure through tubes with increased internal and external surfaces and having fins on inner and outer surfaces
DE4028598A1 (en) Tubular heat exchanger - has expansion joint in each straight tube between plates
DD223232A1 (en) MULTI-FLUID TUBE BELT WASHER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19980424

17Q First examination report despatched

Effective date: 20000426

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 20001014