EP0010679A1 - Heat exchanger for high-temperature gases - Google Patents

Heat exchanger for high-temperature gases Download PDF

Info

Publication number
EP0010679A1
EP0010679A1 EP79103980A EP79103980A EP0010679A1 EP 0010679 A1 EP0010679 A1 EP 0010679A1 EP 79103980 A EP79103980 A EP 79103980A EP 79103980 A EP79103980 A EP 79103980A EP 0010679 A1 EP0010679 A1 EP 0010679A1
Authority
EP
European Patent Office
Prior art keywords
tubes
heat exchanger
gas
collector
sheet metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79103980A
Other languages
German (de)
French (fr)
Other versions
EP0010679B1 (en
Inventor
Wolfgang Dipl.-Ing. Maus
Helmut Ing. Grad. Swars
Wolfgang Dipl.-Ing. Niemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ght Gesellschaft fur Hochtemperaturreaktor-Technik Mbh
Original Assignee
Ght Gesellschaft fur Hochtemperaturreaktor-Technik Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ght Gesellschaft fur Hochtemperaturreaktor-Technik Mbh filed Critical Ght Gesellschaft fur Hochtemperaturreaktor-Technik Mbh
Priority to AT79103980T priority Critical patent/ATE4747T1/en
Publication of EP0010679A1 publication Critical patent/EP0010679A1/en
Application granted granted Critical
Publication of EP0010679B1 publication Critical patent/EP0010679B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications

Definitions

  • the present invention relates to a heat exchanger for gases of high temperature, in particular for the transfer of heat from a high-temperature reactor from a primary gas circuit to a secondary gas circuit.
  • the secondary gas is to be conducted in counterflow to the primary gas in numerous parallel U-pipes.
  • Heat exchangers whose heat-transferring surfaces consist of U-tubes, have considerable advantages, particularly as steam generators, compared to heat exchangers with straight tubes, because the U-tubes are firmly clamped at both ends, but with their U-bends against the housing or against them Can extend the suspension freely.
  • the U tube heat exchangers Compared to the reversible tube heat exchangers proposed for gases of high temperature, the U tube heat exchangers have several significant advantages.
  • U-pipes are easier to test and repair after assembly and also after a long period of operation, because you can quickly and reliably test the long, straight legs of these U-pipes from the inside with long probes, which is very important for spiral-tube heat exchangers because of their complicated shape is difficult.
  • a gas heat exchanger operated in countercurrent between the primary and the secondary medium has only a small temperature difference, which is also approximately constant over the length of the pipes, so that there are no significant temperature differences in the pipes themselves, in their suspension or in the duct walls surrounding the pipes can occur that cause impermissible voltages.
  • a U-tube heat exchanger for gases of, for example, 950 C has considerable problems because the supply and discharge lines and the corresponding collectors for the cold or hot gas have to be separated spatially and constructively, on the one hand, to reduce the stresses between components of different types To avoid temperature and on the other hand undesirable heat loss. Since the supply and discharge lines and the corresponding collectors for the cold or hot gas have considerable dimensions and, accordingly, very different expansions can be expected in different operating conditions, in particular in the longitudinal direction, at least one collector must be elastically fastened. The U-tubes themselves cannot accommodate these expansions because at the high temperatures provided here, the stresses that are still permissible for the materials that can be used are low.
  • the object of the present invention is a heat exchanger according to the preamble of the first claim.
  • This heat exchanger should be suitable for maximum temperatures of around 950 ° C and for temperature differences of around 650 ° C between the gas inlet and the gas outlet and should therefore largely avoid stresses due to different temperatures.
  • this heat exchanger should be fully testable and, insofar as it is used for nuclear reactor plants, can be tested remotely from the secondary gas side without having to open the primary gas circuit.
  • the heat exchanger proposed in the first claim avoids stresses because the U-tubes themselves and the cold gas collector attached to them can expand freely with respect to the hot gas collector and with respect to the housing. Since the cold gas collector is not endangered by high temperatures either on the primary or on the secondary side of a gas heat exchanger operated in counterflow, this cold gas collector can be connected to the housing with conventional flexible elements such as corrugated pipes. The components of the cold gas collector can also be protected from the high temperatures of the hot gas collector by spatial separation and appropriate insulation. The flexible elements are not burdened by the weight of the U-tubes.
  • the partition wall proposed in the second claim has a local temperature in a countercurrently operated heat exchanger, which is only slightly different from the temperature of the adjacent heat exchanger Rohres differs. Since this partition is thin-walled and insulated on one side and a gas stream flows on the other side at high speed, this partition has about the same temperature as the neighboring heat exchanger tube even when the gas temperature changes due to operation, and expands accordingly to the same extent like this.tube out. Therefore, very different expansions cannot occur between the pipes and the partition wall, and this partition wall can be used not only for the gas routing but also as a supporting component between the hot gas collector and the cold gas collector.
  • the space proposed in the third claim separated from the primary gas circuit is of essential importance in heat exchangers for nuclear power plants, since the primary gas circuit inevitably contains radioactive contaminants. If you fill this space with the pure primary medium and ensure that the pressure in the room is always the same as that in the primary gas circuit, by means of a suitable control or pressure compensation, then this room is not endangered by the high pressure of the primary gas circuit. If, in addition, a slight overpressure is maintained in this room compared to the primary gas circuit, then it is even guaranteed that no radioactive contaminants can penetrate into this room even with small leaks.
  • the arrangement proposed in claim 4 is particularly useful for heat exchangers that are to be accommodated in a cylindrical housing.
  • the hot gas collector which is particularly stressed by high temperatures, has a straight, cylindrical tube with a geometrically simple shape with clear, precisely calculable loads. The insulation can also be easily and reliably attached to such a geometrically simple component.
  • the cold gas collector which is much less stressed by the lower gas temperature, surrounds the hot gas collector in a ring-shaped and concentric manner and is connected to it or the housing by flexible elements.
  • These flexible elements can either be two corrugated tubes arranged concentrically one inside the other, which form an annular space, or several corrugated tubes of smaller diameter distributed over the circumference. Both embodiments can form the separate space described in claim 3, the supply lines from the outside to the cold gas collector being arranged inside or outside of this space.
  • the holder of the U-tubes proposed in claim 5 transmits the weight of the U-tubes and their forces to the central hot gas collector, so that the U-tubes laid from this clamping to the hot gas collector with an arc only have to absorb the low forces that can result from a different expansion of the hot gas collector and holder.
  • the conical shape of the central hot gas collector proposed in claim 6 allows the vertical U-pipes arranged at different distances from the center of the collector to be connected to the central hot gas collector with the same bend, so that the stresses in all pipe bends are the same.
  • the insulating wall proposed in claim 7 between the central hot gas collector and the primary gas inlet separates this collector from the hot primary gas circuit. Therefore, this collector can only have the temperature of the secondary gas, which is about 50 ° below that of the primary gas. At the high temperatures provided here, 50 are less important for the strength of the collector.
  • the sheet metal jackets proposed in claim 8 / claim are intended on the one hand to prevent the hot primary gas from flowing past the U-tubes without heat exchange and on the other hand to reduce the heat exchange between two hot gas streams of different temperatures. Therefore, a non-insulated sheet metal jacket is initially provided in the immediate vicinity of the U-tube bundle, which constantly has the same temperature as the tube bundle itself and therefore expands with it in the same sense. Another insulated sheet metal jacket is attached to the housing and can therefore expand completely independently of the tube bundle. The gap between these two sheet metal jackets is only closed at its cold end by a flexible element, such as a corrugated tube, which is quite permissible there, so that no subsets of the primary gas can flow through this gap without heat exchange with the U-tubes.
  • a flexible element such as a corrugated tube
  • the corrugated cross section of the sheet metal jacket solves two different problems; on the one hand, the sheet metal jackets become flexible in the circumferential direction, so that they can expand together with the tube bundle; on the other hand, by these waves, if their division corresponds to the neighboring pipe division, it is avoided that channels develop between the U-pipes and the sheet metal jackets, in which the gas finds a lower flow resistance, accordingly flows faster there and is cooled less, so that in the end Different gas temperatures can be expected across the cross-section.
  • the support proposed in claim 10 is intended to carry the cold gas collector and the components attached to it during inspections and repairs so that the upper part of the hot gas collector can be removed and its lower part can be checked.
  • this support can serve as a safeguard against the heat exchanger falling and as a limitation of the vibrations during earthquakes.
  • the completely closed, cylindrical heat exchanger housing 1 is delimited at its upper end by a support plate 2, to which an upper central hot gas pipe is attached, which in turn carries a lower central hot gas collector 4. Both parts are protected on the inside by the insulation 5.
  • the central hot gas collector 4 In the lower conical part of the central hot gas collector 4, the hot ends of the U-tubes 6, which are clamped at 7 and carried by the central hot gas collector 4 with a special holder 8, open out.
  • this collector 4 carries a double-walled and also U-shaped partition 9 in longitudinal section, which is filled with insulation 10.
  • the U-tubes 6 form an annular tube bundle, which is delimited both internally and externally initially by a concentric, non-insulated sheet metal jacket 11 of U-shaped longitudinal section and then by two concentric, insulated sheet metal jackets 12 and 13. A gap is provided between these sheet metal shells, which is flexibly sealed at the cold end by a corrugated tube 14.
  • the U-tubes 6 and the double-walled partition 9 carry at their cold end an annular tube plate 15, on the top of which an annular cold gas collector 16 is also releasably attached. In this collector 16 several, distributed over the circumference helically wound cold gas pipes 17 open, which lead the cold secondary gas from the outside to the U-tubes 6.
  • the tube plate 15 forms, together with the upper end of the housing 1, with the support plate 2 and with at least two concentric corrugated tubes 18 and 19, a space 20 which is separate from the primary gas circuit underneath and which also encloses the tubes 17 in FIG.
  • This Room 20 is filled with the pure medium of the primary gas circuit during operation of the system and is kept at the pressure of the primary gas circuit by means of a control system (not shown in more detail) or by means of pressure compensation. In this way, this space 20 is not burdened by pressure differences and can be opened at reduced pressure in the primary gas circuit from the outside and used for inspection and repair of the collector and the U-pipes, without having to open the primary gas circuit itself.
  • Below the hot gas collector 4 there is an insulating wall 21 which is fastened to the holder 8 and separates the hot gas collector 4 from the primary gas circuit.
  • FIG. 2 shows with the same designations as in FIG. 1 how the U-tubes 6 are arranged in cross-section with their cold leg 6b and the warm leg 6a.
  • the primary gas temperature should not have any significant differences in cross-section with regard to the lowest possible thermal stresses. Therefore, the flow resistance and thus also the free cross-sections outside the U-tubes must remain the same in cross-section from outside to inside. It has therefore proven to be expedient to arrange the individual U-tubes with a constant pitch in involute-curved vertical surfaces. These curved surfaces, each consisting of thirteen U-tubes 6 in FIG. 2, can be preassembled in the workshop and then assembled as a whole surface in the concentric sheet metal jacket 11.
  • the insulated sheet metal wall 13 which serves as a guide for the incoming hot primary gas, is surrounded at a distance by the inner sheet metal jacket 11a, which, together with the inner partition wall 9a, delimits the hot legs 6a of the U-tubes 6, while the outer partition 9b, together with the outer sheet metal jacket 11b, delimits the cold legs 6b of the U-tubes 6.
  • the insulated sheet metal jacket 12 is arranged at a distance, which in turn, together with the housing 1 (not shown in FIG. 2), represents an annular channel for the cooled primary gas flowing downward.
  • the partitions 9 and sheet metal jackets 11 are shown in FIG. 2 with a corrugated cross section.
  • FIGS. 3 and 4 show how the hot ends of the U-tubes 6 are fastened between the holder 8 and the partition 9.
  • Two cylindrical sleeves 30 are fastened one above the other on the U-tubes 6, for example by high-temperature soldering.
  • Corresponding sheet metal strips 31 are inserted between these two sleeves 30 during assembly, which are bent in an involute manner and angled at both ends, so that they fit into a corresponding rotation of the holder 8 or on the partition 9.
  • FIG. 5 shows, as an alternative to FIG. 1, the upper part of the heat exchanger housing 1, which is likewise delimited at its upper end by a support plate 2 to which an upper central hot gas pipe 3 is fastened, which in turn carries a lower central hot gas collector 4.
  • a hollow annular cold gas collector 32 is provided here, which, like in FIG. 1, can be supplied with cold gas from the outside with a plurality of cold gas pipes 33 distributed over the circumference.
  • the cold gas collector 32 itself is closed during normal operation with one or more lids 34 which are arranged within a space 20 which is separate from the primary gas circuit and which has the same function as the corresponding space 20 in FIG.
  • Part 37 is the support proposed in claim 10 for the cold gas collector 32 or the tube plate 15 from FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

A U-tube heat exchanger for the heat transfer from a primary gas circuit to a secondary gas circuit in a high temperature reactor. At the high temperatures of approximately 950 DEG C., the additionally permissible stresses on the used materials are low. The cold gas collector is therefore flexibly attached at the housing. The arrangement permits complete and also remote-controlled testing from the secondary gas-side of all parts of the primary gas circuit which are stressed by pressure. The flexible elements are neither stressed by the weight of the heat exchanger nor endangered by high temperatures.

Description

Die vorliegende Erfindung betrifft einen Wärmetauscher für Gase von hoher Temperatur, insbesondere für die Ubertragung der Wärme eines Hochtemperaturreaktors von einem Primärgaskreislauf auf einen Sekundärgaskreislauf. Das Sekundärgas soll im Gegenstrom zum Primärgas in zahlreichen, parallel geschalteten U-Rohren geführt werden.The present invention relates to a heat exchanger for gases of high temperature, in particular for the transfer of heat from a high-temperature reactor from a primary gas circuit to a secondary gas circuit. The secondary gas is to be conducted in counterflow to the primary gas in numerous parallel U-pipes.

Wärmetauscher, deren wärmeübertragende Flächen aus U-Rohren bestehen, haben insbesondere als Dampferzeuger erhebliche Vorteile gegenüber Wärmetauschern mit geraden Rohren, weil die U-Rohre zwar an ihren beiden Enden fest eingespannt sind, sich aber mit ihren U-Bogen gegenüber dem Gehäuse oder gegenüber ihrer Aufhängung frei ausdehnen können. Gegenüber den für Gase von hoher Temperatur vorgeschlagenen Wendetrohrwärmetauschern haben die U-Rohrwärmetauscher einige wesentliche Vorteile. Einerseits sind sie einfacher herzustellen und auch leichter zu montieren und sind daher im ganzen preisgünstiger; andererseits sind U-Rohre nach der Montage und auch nach längerer Betriebszeit leichter zu prüfen und auch zu reparieren, weil man die langen, geraden Schenkel dieser U-Rohre schnell und zuverlässig von innen mit langen Sonden prüfen kann, was bei Wendelrohrwärmetauschern wegen der komplizierten Form sehr schwierig ist. Außerdem hat ein im Gegenstrom betriebener Gas-Wärmetauscher zwischen dem Primär- und dem Sekundärmedium nur eine geringe und auch über die Länge der Rohre annähernd konstante Temperaturdifferenz, so daß weder in den Rohren selbst noch in ihrer Aufhängung oder in den die Rohre umgebenden Kanalwandungen wesentliche Temperaturdifferenzen auftreten können, die unzulässige Spannungen verursachen. Ungeachtet dieser Vorteile hat aber ein U-RohrWärmetauscher für Gase von beispielsweise 950 C erhebliche Probleme, weil man die Zu- bzw. Ableitungen und die entsprechenden Sammler für das kalte bzw. heiße Gas räumlich und konstruktiv voneinander trennen muß, um einerseits Spannungen zwischen Bauteilen unterschiedlicher Temperatur und andererseits unerwünschte Wärmeverluste zu vermeiden. Da die Zu- bzw. Ableitungen und die entsprechenden Sammler für das kalte bzw. heiße Gas erhebliche Abmessungen haben und dementsprechend bei verschiedenen Betriebszuständen insbesondere in Längsrichtung sehr unterschiedliche Ausdehnungen zu erwarten sind, muß wenigstens ein Sammler elastisch befestigt sein. Die U-Rohre selbst können diese Ausdehnungen nicht aufnehmen, weil bei den hier vorgesehenen hohen Temperaturen die noch zulässigen Spannungen für die verwendbaren Werkstoffe gering sind.Heat exchangers, whose heat-transferring surfaces consist of U-tubes, have considerable advantages, particularly as steam generators, compared to heat exchangers with straight tubes, because the U-tubes are firmly clamped at both ends, but with their U-bends against the housing or against them Can extend the suspension freely. Compared to the reversible tube heat exchangers proposed for gases of high temperature, the U tube heat exchangers have several significant advantages. On the one hand, they are easier to manufacture and easier to assemble and are therefore cheaper overall; on the other hand U-pipes are easier to test and repair after assembly and also after a long period of operation, because you can quickly and reliably test the long, straight legs of these U-pipes from the inside with long probes, which is very important for spiral-tube heat exchangers because of their complicated shape is difficult. In addition, a gas heat exchanger operated in countercurrent between the primary and the secondary medium has only a small temperature difference, which is also approximately constant over the length of the pipes, so that there are no significant temperature differences in the pipes themselves, in their suspension or in the duct walls surrounding the pipes can occur that cause impermissible voltages. Regardless of these advantages, however, a U-tube heat exchanger for gases of, for example, 950 C has considerable problems because the supply and discharge lines and the corresponding collectors for the cold or hot gas have to be separated spatially and constructively, on the one hand, to reduce the stresses between components of different types To avoid temperature and on the other hand undesirable heat loss. Since the supply and discharge lines and the corresponding collectors for the cold or hot gas have considerable dimensions and, accordingly, very different expansions can be expected in different operating conditions, in particular in the longitudinal direction, at least one collector must be elastically fastened. The U-tubes themselves cannot accommodate these expansions because at the high temperatures provided here, the stresses that are still permissible for the materials that can be used are low.

Aufgabe der vorliegenden Erfindung ist ein Wärmetauscher nach dem Oberbegriff des ersten Anspruchs. Dieser Wärmetauscher soll für maximale Temperaturen von etwa 950° C sowie für Temperaturdifferenzen von etwa 650° C zwischen Gaseintritt und Gasaustritt geeignet sein und soll daher Spannungen aufgrund unterschiedlicher Temperaturen weitgehend vermeiden. Außerdem soll dieser Wärmetauscher vollständig prüfbar sein und, soweit er für Kernreaktoranlagen eingesetzt wird, fernbedient von der Sekundärgasseite aus geprüft werden können, ohne daß der Primärgaskreislauf geöffnet werden muß.The object of the present invention is a heat exchanger according to the preamble of the first claim. This heat exchanger should be suitable for maximum temperatures of around 950 ° C and for temperature differences of around 650 ° C between the gas inlet and the gas outlet and should therefore largely avoid stresses due to different temperatures. In addition, this heat exchanger should be fully testable and, insofar as it is used for nuclear reactor plants, can be tested remotely from the secondary gas side without having to open the primary gas circuit.

Der im ersten Anspruch vorgeschlagene Wärmetauscher vermeidet Spannungen, weil sich die U-Rohre selbst und der an ihnen befestigte Kaltgassammler gegenüber dem Heißgassammler und gegenüber dem Gehäuse frei ausdehnen können. Da der Kaltgassammler bei einem im Gegenstrom betriebenen Gas-Wärmetauscher weder auf der Primär- noch auf der Sekundärseite durch hohe Temperaturen gefährdet ist, kann man diesen Kaltgassammler durchaus mit konventionellen flexiblen Elementen, wie beispielsweise Wellrohren an das Gehäuse anschließen. Durch räumliche Trennung und entsprechende Isolierung kann man die Bauteile des Kaltgassammlers auch vor den hohen Temperaturen des Heißgassammlers schützen. Die flexiblen Elemente werden nicht durch das Gewicht der U-Rohre belastet.The heat exchanger proposed in the first claim avoids stresses because the U-tubes themselves and the cold gas collector attached to them can expand freely with respect to the hot gas collector and with respect to the housing. Since the cold gas collector is not endangered by high temperatures either on the primary or on the secondary side of a gas heat exchanger operated in counterflow, this cold gas collector can be connected to the housing with conventional flexible elements such as corrugated pipes. The components of the cold gas collector can also be protected from the high temperatures of the hot gas collector by spatial separation and appropriate insulation. The flexible elements are not burdened by the weight of the U-tubes.

Die im zweiten Anspruch vorgeschlagene Trennwand hat bei einem im Gegenstrom betriebenen Wärmetauscher örtlich jeweils eine Temperatur, die sich nur wenig von der Temperatur des benachbarten Wärmetauscherrohres unterscheidet. Da diese Trennwand dünnwandig und auf einer Seite isoliert ist und auf der anderen Seite von einem Gasstrom mit hoher Geschwindigkeit angeströmt wird, hat diese Trennwand auch bei betriebsbedingten Änderungen der Gastemperatur etwa die gleiche Temperatur wie das jeweils benachbarte Wärmetauscherrohr und dehnt sich dementsprechend etwa im gleichen Maße wie dieses.Rohr aus. Daher können zwischen Rohren und Trennwand keine sehr unterschiedlichen Ausdehnungen auftreten, und man kann diese Trennwand nicht nur für die Gasführung sondern auch als tragendes Bauteil zwischen dem Heißgassammler und dem Kaltgassammler benutzen.The partition wall proposed in the second claim has a local temperature in a countercurrently operated heat exchanger, which is only slightly different from the temperature of the adjacent heat exchanger Rohres differs. Since this partition is thin-walled and insulated on one side and a gas stream flows on the other side at high speed, this partition has about the same temperature as the neighboring heat exchanger tube even when the gas temperature changes due to operation, and expands accordingly to the same extent like this.tube out. Therefore, very different expansions cannot occur between the pipes and the partition wall, and this partition wall can be used not only for the gas routing but also as a supporting component between the hot gas collector and the cold gas collector.

Der im dritten Anspruch vorgeschlagene vom Primärgaskreislauf getrennte Raum ist bei Wärmetauschern für Kernenergieanlagen,von wesentlicher Bedeutung, da ja der Primärgaskreislauf unvermeidlich radioaktive Verunreinigungen enthält. Wenn man diesen Raum mit dem reinen Primärmedium füllt und durch eine geeignete Regelung oder durch Druckausgleich über einen Filter sicherstellt, daß in diesem Raum ständig der gleiche Druck herrscht wie im Primärgaskreislauf, dann ist dieser Raum nicht durch den hohen Druck des Primärgaskreislaufs gefährdet. Wenn man darüber hinaus in diesem Raum einen geringen Überdruck gegenüber dem Primärgaskreislauf aufrecht erhält, dann ist sogar gewährleistet, daß in diesem Raum auch bei kleinen Undichtigkeiten keine radioaktiven Verunreinigungen eindringen können. Bei Prüfungen oder Reparaturen am Wärmetauscher wird aber der Druck im Primärgaskreislauf herabgesetzt, so daß man diesen Raum unbesorgt von außen öffnen kann und von diesem Raum aus Sammler, U-Rohre und die Wände dieses Raumes prüfen kann, ohne den Primärgaskreislauf zu öffnen. Daher kann dieser Raum, der während des Betriebes nicht als Begrenzung des Primärgaskreislaufs dient, aus flexiblen Elementen bestehen.The space proposed in the third claim separated from the primary gas circuit is of essential importance in heat exchangers for nuclear power plants, since the primary gas circuit inevitably contains radioactive contaminants. If you fill this space with the pure primary medium and ensure that the pressure in the room is always the same as that in the primary gas circuit, by means of a suitable control or pressure compensation, then this room is not endangered by the high pressure of the primary gas circuit. If, in addition, a slight overpressure is maintained in this room compared to the primary gas circuit, then it is even guaranteed that no radioactive contaminants can penetrate into this room even with small leaks. During tests or repairs on the heat exchanger, the pressure in the primary gas circuit is reduced so that you can safely open this room from the outside and check collectors, U-pipes and the walls of this room from this room without opening the primary gas circuit. This space, which does not serve to limit the primary gas circuit during operation, can therefore consist of flexible elements.

Die im 4. Anspruch vorgeschlagene Anordnung ist besonders zweckmäßig für Wärmetauscher, die in einem zylindrischen Gehäuse untergebracht werden sollen. Der durch hohe Temperaturen besonders beanspruchte Heißgassammler hat als gerades, zylindrisches Rohr eine geometrisch einfache Form mit klaren, exakt berechenbaren Beanspruchungen. Auch die Isolierung läßt sich an einem solchen geometrisch einfachen Bauteil einfach und zuverlässig anbringen. Der durch die geringere Gastemperatur wesentlich weniger beanspruchte Kaltgassammler dagegen umgibt den Heißgassammler ringförmig und konzentrisch und ist mit diesem bzw. dem Gehäuse durch flexible Elemente verbunden. Diese flexiblen Elemente können entweder zwei konzentrisch ineinander angeordnete Wellrohre sein, die einen Ringraum bilden oder mehrere, über den Umfang verteilte Wellrohre von geringerem Durchmesser. Beide Ausführungsformen können den in Anspruch 3 beschriebenen getrennten Raum bilden, wobei die Zuleitungen von außen zum Kaltgassammler innerhalb oder außerhalb dieses Raumes angeordnet sind.The arrangement proposed in claim 4 is particularly useful for heat exchangers that are to be accommodated in a cylindrical housing. The hot gas collector, which is particularly stressed by high temperatures, has a straight, cylindrical tube with a geometrically simple shape with clear, precisely calculable loads. The insulation can also be easily and reliably attached to such a geometrically simple component. By contrast, the cold gas collector, which is much less stressed by the lower gas temperature, surrounds the hot gas collector in a ring-shaped and concentric manner and is connected to it or the housing by flexible elements. These flexible elements can either be two corrugated tubes arranged concentrically one inside the other, which form an annular space, or several corrugated tubes of smaller diameter distributed over the circumference. Both embodiments can form the separate space described in claim 3, the supply lines from the outside to the cold gas collector being arranged inside or outside of this space.

Die im 5. Anspruch vorgeschlagene Halterung der U-Rohre überträgt das Gewicht der U-Rohre und ihre Kräfte auf den zentralen Heißgassammler, so daß die von dieser Einspannung bis zum Heißgassammler mit einem Bogen verlegten U-Rohre nur die an sich geringen Kräfte aufnehmen müssen, die sich aus einer unterschiedlichen Ausdehnung von Heißgassammler und Halterung ergeben können.The holder of the U-tubes proposed in claim 5 transmits the weight of the U-tubes and their forces to the central hot gas collector, so that the U-tubes laid from this clamping to the hot gas collector with an arc only have to absorb the low forces that can result from a different expansion of the hot gas collector and holder.

Die im 6. Anspruch vorgeschlagene konische Form des zentralen Heißgassammlers gestattet es, die auf unterschiedlichen Abständen von Sammlermitte angeordneten senkrechten U-Rohre alle mit dem gleichen Bogen an den zentralen Heißgassammler anzuschließen, so daß die Spannungen in allen Rohrbögen gleich sind.The conical shape of the central hot gas collector proposed in claim 6 allows the vertical U-pipes arranged at different distances from the center of the collector to be connected to the central hot gas collector with the same bend, so that the stresses in all pipe bends are the same.

Die im 7. Anspruch vorgeschlagene isolierende Wand zwischen dem zentralen Heißgassammler und dem Primärgaseintritt trennt diesen Sammler vom heißen Primärgaskreislauf. Daher kann dieser Sammler nur die Temperatur des Sekundärgases haben, die etwa 50° unter der des Primärgases liegt. Bei den hier vorgesehenen hohen Temperaturen sind 50 weniger von wesentlicher Bedeutung für die Festigkeit des Sammlers.The insulating wall proposed in claim 7 between the central hot gas collector and the primary gas inlet separates this collector from the hot primary gas circuit. Therefore, this collector can only have the temperature of the secondary gas, which is about 50 ° below that of the primary gas. At the high temperatures provided here, 50 are less important for the strength of the collector.

und 9. Die im 8./Anspruch vorgeschlagenen Blechmäntel sollen einerseits verhindern, daß das heiße Primärgas ohne Wärmeaustausch mit den U-Rohren an diesen vorbeifließt und andererseits den Wärmeaustausch zwischen zwei Heißgasströmen von unterschiedlicher Temperatur verringern. Daher ist zunächst in unmittelbarer Nähe des U-Rohr-Bündels ein nicht isolierter Blechmantel vorgesehen, der ständig etwa die gleiche Temperatur wie das Rohrbündel selbst aufweist und sich daher mit diesem im gleichen Sinne ausdehnt. Ein weiterer isolierter Blechmantel ist am Gehäuse befestigt und kann sich daher völlig unabhängig vom Rohrbündel ausdehnen. Der zwischen diesen beiden Blechmänteln vorhandene Spalt ist nur an seinem kalten Ende durch ein dort durchaus zulässiges- flexibles Element, beispielsweise ein Wellrohr, verschlossen, so daß durch diesen Spalt keine Teilmengen des Primärgases ohne Wärmeaustausch mit den U-Rohren abfließen können. Auch an dieser Stelle zeigen sich die Vorteile eines im Gegenstrom betriebenen Gas-Wärmetauschers, bei dem am kalten Ende tatsächlich nur geringe Temperaturen auftreten können und die dort zur einwandfreien Abdichtung notwendigen flexiblen Elemente sicher nicht gefährdet sind. Der wellenförmige Querschnitt der Blechmäntel löst zwei unterschiedliche Probleme; einerseits werden die Blechmäntel in Umfangsrichtung nachgiebig, so daß sie sich mit dem Rohrbündel zusammen ausdehnen können; andererseits werden durch diese Wellen, wenn ihre Teilung der benachbarten Rohrteilung entspricht, vermieden, daß zwischen den U-Rohren und den Blechmänteln Kanäle entstehen, in denen das Gas einen geringeren Strömungswiderstand findet, dementsprechend dort schneller strömt und weniger abgekühlt wird, so daß am Ende über den Querschnitt unterschiedliche Gastemperaturen zu erwarten sind.and 9. The sheet metal jackets proposed in claim 8 / claim are intended on the one hand to prevent the hot primary gas from flowing past the U-tubes without heat exchange and on the other hand to reduce the heat exchange between two hot gas streams of different temperatures. Therefore, a non-insulated sheet metal jacket is initially provided in the immediate vicinity of the U-tube bundle, which constantly has the same temperature as the tube bundle itself and therefore expands with it in the same sense. Another insulated sheet metal jacket is attached to the housing and can therefore expand completely independently of the tube bundle. The gap between these two sheet metal jackets is only closed at its cold end by a flexible element, such as a corrugated tube, which is quite permissible there, so that no subsets of the primary gas can flow through this gap without heat exchange with the U-tubes. At this point, too, the advantages of an im Counter-current operated gas heat exchanger, in which only low temperatures can actually occur at the cold end and the flexible elements necessary for perfect sealing are certainly not at risk. The corrugated cross section of the sheet metal jacket solves two different problems; on the one hand, the sheet metal jackets become flexible in the circumferential direction, so that they can expand together with the tube bundle; on the other hand, by these waves, if their division corresponds to the neighboring pipe division, it is avoided that channels develop between the U-pipes and the sheet metal jackets, in which the gas finds a lower flow resistance, accordingly flows faster there and is cooled less, so that in the end Different gas temperatures can be expected across the cross-section.

Die im 10.Anspruch vorgeschlagene Abstützung soll bei Inspektionen und Reparaturen den Kaltgassammler und die an ihm befestigten Bauteile tragen, damit der obere Teil des Heißgassammlers entfernt werden und sein unterer Teil geprüft werden kann. Außerdem kann diese Abstützung als Sicherung gegen Absturz des Wärmetauschers und als Begrenzung der Schwingungen bei Erdbeben dienen.The support proposed in claim 10 is intended to carry the cold gas collector and the components attached to it during inspections and repairs so that the upper part of the hot gas collector can be removed and its lower part can be checked. In addition, this support can serve as a safeguard against the heat exchanger falling and as a limitation of the vibrations during earthquakes.

Die Figuren 1 bis 5 zeigen mögliche Ausführungsbeispiele der Erfindung.

  • Figur 1 zeigt in schematischer Darstellung einen senkrechten Längsschnitt durch einen erfindungsgemäßen Wärmetauscher für einen gasgekühlten Hochtemperaturreaktor.
  • Figur 2 zeigt in vergrößerter Darstellung einen waagerechten Teilschnitt A-A durch Figur 1.
  • Figur 3 zeigt einen weiteren Teilschnitt B-B durch Fig.1.
  • Figur 4 zeigt eine Ansicht der Figur 3.
  • Figur 5 zeigt eine Alternative zu Figur 1.
Figures 1 to 5 show possible embodiments of the invention.
  • Figure 1 shows a schematic representation of a vertical longitudinal section through a heat exchanger according to the invention for a gas-cooled high-temperature reactor.
  • FIG. 2 shows an enlarged partial horizontal section AA through FIG. 1.
  • FIG. 3 shows a further partial section BB through FIG. 1.
  • FIG. 4 shows a view of FIG. 3.
  • FIG. 5 shows an alternative to FIG. 1.

In Figur 1 wird das ringsum geschlossene, zylindrische Wärmetauschergehäuse 1 an seinem oberen Ende durch eine Tragplatte 2 begrenzt, an der ein obere zentrales Heißgasrohr befestigt ist, das wiederum einen unteren zentralen Heißgassammler 4 trägt. Beide Teile sind innen durch die Isolierung 5 geschützt. Im unteren konischen Teil des zentralen Heißgassammlers 4 münden die heißen Enden der U-Rohre 6, die bei 7 eingespannt und mit einer besonderen Halterung 8 vom zentralen Heißgassammler 4 getragen werden. Außerdem trägt dieser Sammler 4 eine doppelwandige und im Längsschnitt ebenfalls U-förmige Trennwand 9, die mit einer Isolierung 10 gefüllt ist. Die U-Rohre 6 bilden ein ringförmiges Rohrbündel, das sowohl innen als auch außen zunächst durch einen konzentrischen, nicht isolierten Blechmantel 11 von U-förmigem Längsschnitt und dann von zwei konzentrischen, isolierten Blechmänteln 12 und 13 begrenzt ist. Zwischen diesen Blechmänteln ist ein Spalt vorgesehen, der am kalten Ende durch ein Wellrohr 14 flexibel abgedichtet ist. Die U-Rohre 6 und die doppelwandige Trennwand 9 tragen an ihrem kalten Ende eine ringförmige Rohrplatte 15, an deren Oberseite ein ebenfalls ringförmiger Kaltgassammler 16 lösbar befestigt ist. In diesen Sammler 16 münden mehrere, über den Umfang verteilte schraubenlinienartig gewundene Kaltgasrohre 17, die das kalte Sekundärgas von außen zu den U-Rohren 6 leiten. Die Rohrplatte 15 bildet zusammen mit dem oberen Ende des Gehäuses 1, mit der Tragplatte 2 und mit mindestens zwei konzentrischen Wellrohren 18 und 19 einen vom darunterliegenden Primärgaskreislauf getrennten Raum 20, der in Figur 1 auch-die Rohre 17 umschließt. Dieser Raum 20 ist bei Betrieb der Anlage mit dem reinen Medium des Primärgaskreislaufs gefüllt und wird mittels einer nicht näher dargestellten Regelung oder über einen Druckausgleich auf dem Druck des Primärgaskreislaufs gehalten. Auf diese Weise wird dieser Raum 20 nicht durch Druckdifferenzen belastet und kann bei herabgesetztem Druck im Primärgaskreislauf von außen geöffnet und zur Inspektion und Reparatur der Sammler und der U-Rohre benutzt werden, ohne daß der Primärgaskreislauf selbst geöffnet werden müßte. Unterhalb des Heißgassammlers 4 ist eine isolierende Wand 21 vorgesehen, die an der Halterung 8 befestigt ist und den Heißgassammler 4 vom Primärgaskreislauf trennt.In Figure 1, the completely closed, cylindrical heat exchanger housing 1 is delimited at its upper end by a support plate 2, to which an upper central hot gas pipe is attached, which in turn carries a lower central hot gas collector 4. Both parts are protected on the inside by the insulation 5. In the lower conical part of the central hot gas collector 4, the hot ends of the U-tubes 6, which are clamped at 7 and carried by the central hot gas collector 4 with a special holder 8, open out. In addition, this collector 4 carries a double-walled and also U-shaped partition 9 in longitudinal section, which is filled with insulation 10. The U-tubes 6 form an annular tube bundle, which is delimited both internally and externally initially by a concentric, non-insulated sheet metal jacket 11 of U-shaped longitudinal section and then by two concentric, insulated sheet metal jackets 12 and 13. A gap is provided between these sheet metal shells, which is flexibly sealed at the cold end by a corrugated tube 14. The U-tubes 6 and the double-walled partition 9 carry at their cold end an annular tube plate 15, on the top of which an annular cold gas collector 16 is also releasably attached. In this collector 16 several, distributed over the circumference helically wound cold gas pipes 17 open, which lead the cold secondary gas from the outside to the U-tubes 6. The tube plate 15 forms, together with the upper end of the housing 1, with the support plate 2 and with at least two concentric corrugated tubes 18 and 19, a space 20 which is separate from the primary gas circuit underneath and which also encloses the tubes 17 in FIG. This Room 20 is filled with the pure medium of the primary gas circuit during operation of the system and is kept at the pressure of the primary gas circuit by means of a control system (not shown in more detail) or by means of pressure compensation. In this way, this space 20 is not burdened by pressure differences and can be opened at reduced pressure in the primary gas circuit from the outside and used for inspection and repair of the collector and the U-pipes, without having to open the primary gas circuit itself. Below the hot gas collector 4 there is an insulating wall 21 which is fastened to the holder 8 and separates the hot gas collector 4 from the primary gas circuit.

Die Strömungsführung der beiden Wärmetauschermedien sind folgendermaßen:

  • Das heiße Primärgas tritt durch den waagerechten Rohrstutzen 22 in den zentralen, isolierten Blechmantel 13 ein, wird unterhalb der isolierenden Wand 21 umgelenkt und fließt zunächst abwärts und dann aufwärts an den U-Rohren 6 entlang durch einen Raum, der einerseits durch den Blechmantel 11 und andererseits durch die Trennwand 10 gebildet wird. Unterhalb der Rohrplatte 15 wird das inzwischen abgekühlte Primärgas nach unten umgelenkt und fließt zwischen dem Blechmantel 12 und dem Gehäuse 1 abwärts. Das kalte Sekundärgas fließt durch mehrere schraubenlinienartig ineinander gewendelte Rohre 17 in den ringförmigen Sammler 16 und von dort aus durch die in der Rohrplatte 15 befestigten U-Rohre 6 zum Heißgassammler 4 und tritt aus dem oberen Heißgasrohr 3 aus.
The flow of the two heat exchanger media is as follows:
  • The hot primary gas enters the central, insulated sheet metal jacket 13 through the horizontal pipe socket 22, is deflected below the insulating wall 21 and initially flows downwards and then upwards along the U-tubes 6 through a space which, on the one hand, through the sheet metal jacket 11 and on the other hand is formed by the partition 10. Below the tube plate 15, the primary gas, which has now cooled, is deflected downward and flows downward between the sheet metal jacket 12 and the housing 1. The cold secondary gas flows through a plurality of helically coiled tubes 17 into the annular collector 16 and from there through the U-tubes 6 fastened in the tube plate 15 to the hot gas collector 4 and emerges from the upper hot gas tube 3.

In Figur 2 wird mit denselben Bezeichnungen wie in Figur 1 dargestellt, wie die U-Rohre 6 und zwar mit ihrem kalten Schenkel 6b und dem warmen Schenkel 6a im Querschnitt angeordnet sind. Bei den hier vorgeschlagenen Gas-Wärmetauschern soll die Primärgastemperatur mit Rücksicht auf möglichst geringe Wärmespannungen im Querschnitt keine wesentlichen Differenzen aufweisen. Daher müssen die Strömungswiderstände und damit auch die freien Querschnitte außerhalb der U-Rohre im Querschnitt von außen nach innen gleichbleiben. Daher hat es sich als zweckmäßig erwiesen, die einzelnen U-Rohremit konstanter Teilung in evolventenförmig gebogenen senkrechten Flächen anzuordnen. Diese, in Figur 2 aus jeweils dreizehn U-Rohren 6 bestehenden gebogenen Flächen können in der Werkstatt vormontiert und dann jeweils als ganze Fläche in den konzentrischen Blechmantel 11 montiert werden. Von innen nach außen betrachtet, wird die isolierte Blechwand 13, die als Führung für das eintretende heiße Primärgas dient, mit Abstand von dem inneren Blechmantel 11a umgeben, der zusammen mit der inneren Trennwand 9a die heißen Schenkel 6a der U-Rohre 6 begrenzt, während die äußere Trennwand 9b zusammen mit dem äußeren Blechmantel 11b die kalten Schenkel 6b der U-Rohre 6 begrenzt. Außerhalb des Blechmantels 11b ist mit Abstand der isolierte Blechmantel 12 angeordnet, der widerum mit dem in Figur 2 nicht dargestellten Gehäuse 1 einen Ringkanal für das abwärts strömende, abgekühlte Primärgas darstellt. Die Trennwände 9 und Blechmäntel 11 sind in Figur 2 mit einem gewellten Querschnitt dargestellt. Die Vorteile dieses wellenförmigen Querschnitts wurden bei der Beschreibung des 9. Anspruchs dargestellt. Zwischen den bereits erwähnten evolventenförmig gebogenen Flächen von U-Rohren 6 sind jeweils waagerechte Abstandshalter 24 vorgesehen, die bei der Montage in entsprechende Schlitze in Trennwand 9 und Blechmantel 11 gesteckt und dort gasdicht verschweißt werden.FIG. 2 shows with the same designations as in FIG. 1 how the U-tubes 6 are arranged in cross-section with their cold leg 6b and the warm leg 6a. In the gas heat exchangers proposed here, the primary gas temperature should not have any significant differences in cross-section with regard to the lowest possible thermal stresses. Therefore, the flow resistance and thus also the free cross-sections outside the U-tubes must remain the same in cross-section from outside to inside. It has therefore proven to be expedient to arrange the individual U-tubes with a constant pitch in involute-curved vertical surfaces. These curved surfaces, each consisting of thirteen U-tubes 6 in FIG. 2, can be preassembled in the workshop and then assembled as a whole surface in the concentric sheet metal jacket 11. Viewed from the inside out, the insulated sheet metal wall 13, which serves as a guide for the incoming hot primary gas, is surrounded at a distance by the inner sheet metal jacket 11a, which, together with the inner partition wall 9a, delimits the hot legs 6a of the U-tubes 6, while the outer partition 9b, together with the outer sheet metal jacket 11b, delimits the cold legs 6b of the U-tubes 6. Outside the sheet metal jacket 11b, the insulated sheet metal jacket 12 is arranged at a distance, which in turn, together with the housing 1 (not shown in FIG. 2), represents an annular channel for the cooled primary gas flowing downward. The partitions 9 and sheet metal jackets 11 are shown in FIG. 2 with a corrugated cross section. The advantages of this undulating cross-section were described in the description of the 9th Claim represented. Between the previously mentioned involute curved surfaces of U-tubes 6 are each provided with horizontal spacers 24 which are inserted into corresponding slots in partition 9 and sheet metal jacket 11 during assembly and are welded there in a gastight manner.

In den Figuren 3 und 4 wird dargestellt, wie die heißen Enden der U-Rohre 6 zwischen der Halterung 8 und der,Trennwand 9 befestigt sind. Auf den U-Rohren 6 sind mit kurzem Abstand übereinander zwei zylindrische Hülsen 30 befestigt, beispielsweise durch Hochtemperatur-Löten. Zwischen diese beiden Hülsen 30 werden bei der Montage entsprechende Blechstreifen 31 eingelegt, die evolventenförmig gebogen sind und an beiden Enden abgewinkelt, so daß sie in eine entsprechende Ausdrehung der Halterung 8 bzw. an der Trennwand 9 passen.FIGS. 3 and 4 show how the hot ends of the U-tubes 6 are fastened between the holder 8 and the partition 9. Two cylindrical sleeves 30 are fastened one above the other on the U-tubes 6, for example by high-temperature soldering. Corresponding sheet metal strips 31 are inserted between these two sleeves 30 during assembly, which are bent in an involute manner and angled at both ends, so that they fit into a corresponding rotation of the holder 8 or on the partition 9.

Figur 5 zeigt als Alternative zu Figur.1 den oberen Teil des Wärmetauschergehäuses 1, das ebenfalls an seinem oberen Ende durch eine Tragplatte 2 begrenzt ist, an der ein'oberes zentrales Heißgasrohr 3 befestigt ist, das wiederum einen unteren zentralen Heißgassammler 4 trägt. Anstelle der in Figur 1 dargestellten ringförmigen Rohrplatte 15 mit dem darauf verschraubten ringförmigen Kaltgassammler 16 ist hier ein hohlringförmiger Kaltgassammler 32 vorgesehen, der ähnlich wie in Figur 1 mit mehreren über den Umfang verteilten Kaltgasrohren 33 von außen mit Kaltgas versorgt werden kann. Der Kaltgassammler 32 selbst ist während des normalen Betriebes mit einem oder mehreren Deckeln 34 verschlossen, die innerhalb eines vom Primärgaskreislauf getrennten Raumes 20 angeordnet sind, der dieselbe Funktion hat wie der entsprechende Raum 20 in Figur 1 aber wesentlich kleiner ist und nur flexible Elemente 35 von wesentlich geringerem Durchmesser als Anschluß an die Tragplatte 2 benötigt. Dieser Raum ist bei Betrieb wie in Figur 1 mit einem Deckel 36 verschlossen und wird über eine nicht näher dargestellte Regelung oder einen Druckausgleich auf dem Druck des Primärgaskreislaufs gehalten. Teil 37 ist die im 10. Anspruch vorgeschlagene Abstützung für den Kaltgassammler 32 bzw. die Rohrplatte 15 aus Figur 1.FIG. 5 shows, as an alternative to FIG. 1, the upper part of the heat exchanger housing 1, which is likewise delimited at its upper end by a support plate 2 to which an upper central hot gas pipe 3 is fastened, which in turn carries a lower central hot gas collector 4. Instead of the annular tube plate 15 shown in FIG. 1 with the annular cold gas collector 16 screwed thereon, a hollow annular cold gas collector 32 is provided here, which, like in FIG. 1, can be supplied with cold gas from the outside with a plurality of cold gas pipes 33 distributed over the circumference. The cold gas collector 32 itself is closed during normal operation with one or more lids 34 which are arranged within a space 20 which is separate from the primary gas circuit and which has the same function as the corresponding space 20 in FIG. 1 but is significantly smaller and only flexible elements 35 from much smaller diameter than connection to the support plate 2 needed. During operation, as in FIG. 1, this space is closed with a cover 36 and is kept at the pressure of the primary gas circuit by means of a regulation (not shown) or a pressure equalization. Part 37 is the support proposed in claim 10 for the cold gas collector 32 or the tube plate 15 from FIG. 1.

Claims (7)

Die vorliegende Erfindung betrifft einen Wärmetauscher für Gase von hoher Temperatur, insbesondere für die Übertragung der Wärme eines Hochtemperaturreaktors von einem Primärgaskreislauf auf einen Sekundärgaskreislauf. Das Sekundärgas soll im Gegenstrom zum Primärgas in zahlreichen, parallel geschalteten U-Rohren geführt werden.The present invention relates to a heat exchanger for gases of high temperature, in particular for the transfer of heat from a high-temperature reactor from a primary gas circuit to a secondary gas circuit. The secondary gas is to be conducted in counterflow to the primary gas in numerous parallel U-pipes. Wärmetauscher, deren wärmeübertragende Flächen aus U-Rohren bestehen, haben insbesondere als Dampferzeuger erhebliche Vorteile gegenüber Wärmetauschern mit geraden Rohren, weil die U-Rohre zwar an ihren beiden Enden fest eingespannt sind, sich aber mit ihren U-Bogen gegenüber dem Gehäuse oder gegenüber ihrer Aufhängung frei ausdehnen können. Gegenüber den für Gase von hoher Temperatur vorgeschlagenen Wenderohrwärmetauschern haben die U-Rohrwärmetauscher einige wesentliche Vorteile. Einerseits sind sie einfacher herzustellen und auch leichter zu montieren und sind daher im ganzen preisgünstiger: andererseits sind U-Rohre nach der Montage und auch nach längerer Betriebszeit leichter zu prdfen und auch zu reparieren, weil man die langen, geraden Schenkel dieser U-Rohre schnell und zuverlässig von innen mit langen Sonden prüfen kann, was bei Wendelrohrwärmetauschern wegen der komplizierten Form sehr schwierig ist. Außerdem hat ein im Gegenstrom betriebener Gas-Wärmetauscher zwischen dem Primär- und dem Sekundärmedium nur eine geringe und auch über die Länge der Rohre annähernd konstante Temperaturdifferenz, so daß weder in den Rohren selbst noch in ihrer Aufhängung oder in den die Rohre umgebenden Kanalwandungen wesentliche Temperaturdifferenzen auftreten können, die unzulässige Spannungen verursachen. Ungeachtet dieser Vorteile hat aber ein U-RohrWärmetauscher für Gase von beispielsweise 950 C erhebliche Probleme, weil man die Zu- bzw. Ableitungen und die entsprechenden Sammler für das kalte bzw. heiße Gas räumlich und konstruktiv voneinander trennen muß; um einerseits Spannungen zwischen Bauteilen unterschiedlicher Temperatur und andererseits unerwünschte Wärmeverluste zu vermeiden. Da die Zu- bzw. Ableitungen und die entsprechenden Sammler für das kalte bzw. heiße Gas erhebliche Abmessungen haben und dementsprechend bei verschiedenen Betriebszuständen insbesondere in Längsrichtung sehr unterschiedliche Ausdehnungen zu erwarten sind, muß wenigstens ein Sammler elastisch befestigt sein. Die U-Rohre selbst können diese Ausdehnungen nicht aufnehmen, weil bei den hier vorgesehenen hohen Temperaturen die noch zulässigen Spannungen für die verwendbaren Werkstoffe gering sind. angeordneten Halterung eingespannt und führen von dort jeweils mit einem elastischen Rohrbogen zum Heißgassammler.Heat exchangers, whose heat-transferring surfaces consist of U-tubes, have considerable advantages, particularly as steam generators, compared to heat exchangers with straight tubes, because the U-tubes are firmly clamped at both ends, but with their U-bends against the housing or against them Can extend the suspension freely. Compared to the reversible tubular heat exchangers proposed for gases of high temperature, the U tubular heat exchangers have several significant advantages. On the one hand, they are easier to manufacture and easier to assemble and are therefore cheaper overall: on the other hand U-tubes are easier to test and repair after assembly and also after a long period of operation, because you can quickly and reliably check the long, straight legs of these U-tubes from the inside with long probes, which is very important for spiral tube heat exchangers because of their complicated shape is difficult. In addition, a gas heat exchanger operated in countercurrent between the primary and the secondary medium has only a small temperature difference, which is also approximately constant over the length of the pipes, so that there are no significant temperature differences in the pipes themselves, in their suspension or in the duct walls surrounding the pipes can occur that cause impermissible voltages. Regardless of these advantages, however, a U-tube heat exchanger for gases of, for example, 950 C has considerable problems because the supply and discharge lines and the corresponding collectors for the cold and hot gas have to be separated spatially and constructively; on the one hand to avoid tensions between components of different temperatures and on the other hand to avoid undesirable heat losses. Since the supply and discharge lines and the corresponding collectors for the cold or hot gas have considerable dimensions and, accordingly, very different expansions can be expected in different operating states, in particular in the longitudinal direction, at least one collector must be elastically fastened. The U-tubes themselves cannot accommodate these expansions because at the high temperatures provided here, the stresses that are still permissible for the materials that can be used are low. arranged bracket clamped and lead from there with an elastic pipe bend to the hot gas collector. 6. Wärmetauscher nach Anspruch 5 mit folgendem Merkmal: a) Der zentrale Heißgassammler ist im Bereich der Rohreinmündungen der U-Rohre konisch gestaltet. 6. Heat exchanger according to claim 5 with the following feature: a) The central hot gas collector is designed conically in the area of the pipe openings of the U-pipes. 7. Wärmetauscher nach Anspruch 1 mit folgenden Merkmalen : a) Zwischen dem zentralen Heißgassammler für das Sekundärgas und dem Primärgaskreislauf ist eine isolierende Wand angeordnet. 7. Heat exchanger according to claim 1 with the following features: a) An insulating wall is arranged between the central hot gas collector for the secondary gas and the primary gas circuit. 8. Wärmetauscher nach Anspruch 4 mit folgenden Merkmalen : a) Die U-Rohre sind sowohl nach außen als auch nach innen durch zwei konzentrische Blechmäntel begrenzt, b) zwischen diesen beiden Blechmänteln ist ein Spalt vorgesehen, c) dieser Spalt ist am heißen Ende offen und am kalten Ende durch ein flexibles Element verschlossen, d) von diesen beiden Blechmänteln ist der nicht am Rohrbündel angrenzende Blechmantel isoliert. 8. Heat exchanger according to claim 4 with the following features: a) The U-tubes are bounded both externally and internally by two concentric sheet metal shells, b) a gap is provided between these two sheet metal shells, c) this gap is open at the hot end and closed by a flexible element at the cold end, d) the sheet metal jacket not adjacent to the tube bundle is isolated from these two sheet metal jackets. 9. Wärmetauscher nach Anspruch 2 oder 4 mit folgendem Merkmal : a) Die an das Bündel der U-Rohre angrenzenden Trennwände oder Blechmäntel haben einen wellenförmigen Querschnitt. 9. Heat exchanger according to claim 2 or 4 with the following feature: a) The partitions or sheet metal jackets adjoining the bundle of U-tubes have a wavy cross section. 10. Wärmetauscher nach Anspruch 1 in einem Gehäuse mit folgenden Merkmalen : a) Unterhalb des Kaltgassammlers ist am Gehäuse eine Abstützung für diesen Sammler vorgesehen; b) der obere Teil des Heißgassammlers ist nach oben ausbaubar. 10. Heat exchanger according to claim 1 in a housing with the following features: a) A support for this collector is provided on the housing below the cold gas collector; b) The upper part of the hot gas collector can be removed upwards.
EP79103980A 1978-10-26 1979-10-15 Heat exchanger for high-temperature gases Expired EP0010679B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79103980T ATE4747T1 (en) 1978-10-26 1979-10-15 HEAT EXCHANGER FOR HIGH TEMPERATURE GASES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19782846581 DE2846581A1 (en) 1978-10-26 1978-10-26 HEAT EXCHANGER FOR GASES OF HIGH TEMPERATURE
DE2846581 1978-10-26

Publications (2)

Publication Number Publication Date
EP0010679A1 true EP0010679A1 (en) 1980-05-14
EP0010679B1 EP0010679B1 (en) 1983-09-21

Family

ID=6053147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79103980A Expired EP0010679B1 (en) 1978-10-26 1979-10-15 Heat exchanger for high-temperature gases

Country Status (5)

Country Link
US (1) US4285393A (en)
EP (1) EP0010679B1 (en)
JP (1) JPS5560191A (en)
AT (1) ATE4747T1 (en)
DE (2) DE2846581A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2535836A1 (en) * 1982-11-05 1984-05-11 Novatome HEAT EXCHANGER FOR HIGH TEMPERATURE FLUIDS WITH ONE OF THE FLUIDS BETWEEN AND EXIT FROM THE UPPER PART OF THE EXCHANGER
CH662638A5 (en) * 1982-11-24 1987-10-15 Sulzer Ag HEAT TRANSFER SYSTEM, PREFERRED FOR A PROCESS GAS.
FR2548345B1 (en) * 1983-07-01 1985-10-18 Commissariat Energie Atomique HEAT EXCHANGER C
GB2152204B (en) * 1983-12-30 1988-02-24 Smidth & Co As F L Heat exchanger
JPS60170589U (en) * 1984-04-20 1985-11-12 石川島播磨重工業株式会社 Heat exchanger
CH665274A5 (en) * 1984-07-05 1988-04-29 Sulzer Ag HEAT EXCHANGER.
DE3529634A1 (en) * 1985-08-19 1987-02-26 Steinmueller Gmbh L & C HEAT EXCHANGER FOR THE HEAT EXCHANGE BETWEEN A HOT GAS AND A FLUID AGENT IN PIPE BUNNING HEATING AREAS, ESPECIALLY STEAM GENERATOR FOR GAS-COOLED HIGH TEMPERATURE REACTORS
US4861661A (en) * 1986-06-27 1989-08-29 E. I. Du Pont De Nemours And Company Co-spun filament within a hollow filament and spinneret for production thereof
US5140886A (en) * 1989-03-02 1992-08-25 Yamaha Corporation Musical tone signal generating apparatus having waveform memory with multiparameter addressing system
SE519051C2 (en) * 2001-05-21 2003-01-07 Rekuperator Svenska Ab Device for pipe connection for heat exchanger
EP1460365A4 (en) * 2001-12-25 2005-01-05 Honda Motor Co Ltd Heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR702777A (en) * 1930-09-24 1931-04-16 heat exchanger
GB1175972A (en) * 1966-10-13 1970-01-01 English Electric Co Ltd Heat exchangers.
DE2658086A1 (en) * 1976-02-27 1977-09-08 Voest Ag Heat exchanger for nuclear reactor system - using U-tubes in symmetrical arrangement with central axial manifold and radial tube sheet (OE 15.3.77)
FR2369658A2 (en) * 1976-11-12 1978-05-26 Sulzer Ag HEAT TRANSFER CIRCUIT

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2468903A (en) * 1945-09-22 1949-05-03 Tech Studien Ag Vertical tubular heat exchanger
US3156296A (en) * 1960-12-05 1964-11-10 C Aug Schmidt Sohne G M B H Ma High pressure pre-heater for feed water
US3187807A (en) * 1961-05-03 1965-06-08 Babcock & Wilcox Co Heat exchanger
DE1551050A1 (en) * 1967-03-25 1970-02-05 Siemens Ag Steam generator, especially for pressurized water nuclear reactors
US3596638A (en) * 1968-10-15 1971-08-03 Siemens Ag Forced-flow steam generator to be heated by pressurized coolant of a nuclear reactor
US3670810A (en) * 1971-01-15 1972-06-20 Atomic Power Dev Ass Inc Heat exchanger
US3741167A (en) * 1971-03-02 1973-06-26 Foster Wheeler Corp Sodium heated steam generator
US3850231A (en) * 1973-05-24 1974-11-26 Combustion Eng Lmfbr intermediate heat exchanger
DE2539440C3 (en) * 1975-09-04 1979-06-07 Linde Ag, 6200 Wiesbaden Heat exchanger with two cylindrical container jackets arranged one inside the other, which form annular spaces
DE2612081A1 (en) * 1976-03-22 1977-10-20 Kraftwerk Union Ag STEAM GENERATORS FOR PRESSURE WATER NUCLEAR REACTORS
US4098329A (en) * 1976-07-29 1978-07-04 The United States Of America As Represented By The United States Department Of Energy Modular heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR702777A (en) * 1930-09-24 1931-04-16 heat exchanger
GB1175972A (en) * 1966-10-13 1970-01-01 English Electric Co Ltd Heat exchangers.
DE2658086A1 (en) * 1976-02-27 1977-09-08 Voest Ag Heat exchanger for nuclear reactor system - using U-tubes in symmetrical arrangement with central axial manifold and radial tube sheet (OE 15.3.77)
FR2369658A2 (en) * 1976-11-12 1978-05-26 Sulzer Ag HEAT TRANSFER CIRCUIT

Also Published As

Publication number Publication date
ATE4747T1 (en) 1983-10-15
JPS5560191A (en) 1980-05-07
EP0010679B1 (en) 1983-09-21
DE2846581A1 (en) 1980-05-08
JPS6334395B2 (en) 1988-07-11
DE2966196D1 (en) 1983-10-27
US4285393A (en) 1981-08-25

Similar Documents

Publication Publication Date Title
DE60103389T2 (en) A HEAT EXCHANGE
DE3039787A1 (en) HEAT EXCHANGER
EP0048326A2 (en) Hot-gas cooler for a coal gasification plant
EP0010679B1 (en) Heat exchanger for high-temperature gases
CH670501A5 (en)
DE2459472C2 (en) GAS HEATED STEAM GENERATOR, IN PARTICULAR FOR NUCLEAR REACTOR PLANTS
DE2650922C2 (en) Heat exchanger for the transfer of heat generated in a high-temperature reactor to an intermediate circuit gas
CH646245A5 (en) HEAT EXCHANGER WITH PIPE COILS AND AT LEAST ONE GROUP OF SUPPORT PLATES FOR THE PIPE COILS.
DE3436549C1 (en) Heat exchanger, in particular for cooling gas from a high-temperature reactor
DE2624688C3 (en) Heat transfer system for gas-cooled high-temperature reactors
DE2459189C2 (en) Circular cross-section heat exchanger for gaseous media
DE2700563C3 (en) Heat exchanger for a high temperature reactor
DE2536757C3 (en) Steam generator with heating by liquid metal
DE2854499C2 (en) Gas-heated straight tube steam generator in element construction for a nuclear reactor plant
DE2711545C2 (en) Heat exchangers with a large number of straight tube bundles
DE2437016A1 (en) Circular cross-section heat exchanger - having series of concentric annular straight tubes bundles with annular collectors and distributors
DE3530715C2 (en)
DE3418528C2 (en)
DE3012596A1 (en) Heat exchanger esp. steam generator for gas cooled reactor - has helical tube bundle in annular space with central steam outlet duct
DE3017705A1 (en) SUPPORT CONSTRUCTION FOR A HOT GAS CHANNEL
DE2640728A1 (en) HEAT TRANSFER, PREFERRED FOR GAS MEDIA
DE3516958C2 (en)
DE2830225C2 (en) Heat exchanger for high pressure and high temperature use
DE2729526A1 (en) VERTICAL HEAT EXCHANGER CIRCULAR CROSS SECTION
DE2624244C2 (en) Recuperative heat exchanger in a vertical arrangement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19801114

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 4747

Country of ref document: AT

Date of ref document: 19831015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2966196

Country of ref document: DE

Date of ref document: 19831027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19831031

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19891009

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19891026

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19891027

Year of fee payment: 11

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19901016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910628

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920918

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921027

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19931015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: GHT -G. FUR HOCKTEMPERATURREAKTOR-TECHNIK M.B.H.

Effective date: 19931031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940916

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19941031

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941216

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950118

Year of fee payment: 16

EUG Se: european patent has lapsed

Ref document number: 79103980.3

Effective date: 19910603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19951015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19951015

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960702

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960501