EP0747595B1 - Dispositif et méthode de détection d'allumage - Google Patents

Dispositif et méthode de détection d'allumage Download PDF

Info

Publication number
EP0747595B1
EP0747595B1 EP96106063A EP96106063A EP0747595B1 EP 0747595 B1 EP0747595 B1 EP 0747595B1 EP 96106063 A EP96106063 A EP 96106063A EP 96106063 A EP96106063 A EP 96106063A EP 0747595 B1 EP0747595 B1 EP 0747595B1
Authority
EP
European Patent Office
Prior art keywords
ignition
spark
voltage
pulse
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96106063A
Other languages
German (de)
English (en)
Other versions
EP0747595A3 (fr
EP0747595A2 (fr
Inventor
Ekkehard Kollmann
Udo Mai
Roman Schichl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vogt Electronic AG
Original Assignee
Vogt Electronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vogt Electronic AG filed Critical Vogt Electronic AG
Publication of EP0747595A2 publication Critical patent/EP0747595A2/fr
Publication of EP0747595A3 publication Critical patent/EP0747595A3/fr
Application granted granted Critical
Publication of EP0747595B1 publication Critical patent/EP0747595B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Definitions

  • the invention relates to a method for ignition detection according to the preamble of claim 1.
  • Process for generating two ignition pulses within one work cycle for ignition or misfire detection are, for example in DE 42 18 803 A1, EP 0 546 827 A2 and US 53 88 560 described. While in DE 42 18 803 A1 the amplitude of the the second ignition spark voltage needle pulse is evaluated, a time analysis is carried out in US 53 88 560 the drop in the measured spark voltage after the second ignition. In EP 0 546 827 A2 a corresponding analysis of the Fall of the resulting ion current carried out.
  • the angular velocity the crankshaft measured when combustion occurred is higher than if there was no combustion.
  • additional mechanical sensors are required for this, which must be extremely sensitive in order to be proportionate to be able to detect small differences in speed.
  • Such Sensors are also complex and expensive.
  • an ignition detection is known, in which within one working cycle of the internal combustion engine two ignition sparks generated and the ignition voltage of the second spark is compared with a predetermined threshold. A ignition of the fuel mixture is detected, that the ignition voltage is below this threshold lies. However, if the ignition voltage is above this threshold, this is a criterion for non-ignition of the fuel mixture.
  • the problem with this method is that only the ignition voltage of the second spark is measured. This makes no distinction be whether reducing the ignition voltage alone by the ionization of the first spark or really by one there was ignition within the combustion chamber. Moreover can not be determined with this procedure whether a Ignition did not occur because no suitable ignition spark was generated or because there is no fuel mixture for the ignition was available in the combustion chamber.
  • the measured ignition voltage is also external Factors such as B. voltage drop at the distributor and Electrode erosion, depending. Such factors can change in the course of time slowly or z. B. when replacing the spark plugs suddenly change. If specified, these factors can only do one thing single threshold as a sure decision criterion whether the fuel mixture ignited, not taken into account become.
  • the threshold voltage depends on these Varying factors would also be appropriate Computer control only possible with great effort.
  • the present invention is based on the object Ignition detection method specifying the above Does not have disadvantages, the ignition detection in particular no mechanical Contains components, simply in existing systems can be integrated and works reliably.
  • the invention is based on a first spark the air-fuel mixture in the combustion chamber of a motor vehicle internal combustion engine to inflame and with at least a second Ignition spark that is ignited within the same work cycle, to prove the ignition of the fuel mixture.
  • the invention sees the AC voltage to generate at least the second spark, but preferably also for generating the first spark, one or more periods of two different high half-waves, the first half-wave being a Has amplitude that between the maximum necessary voltage if there is ionization between the electrodes of a spark plug the ignition system and the minimum necessary voltage non-existing ionization lies and the second half-wave has an amplitude which is above the maximum necessary There is tension.
  • a criterion for the ignition of the Air-fuel mixture is detected whether the second spark formed in the first half-wave of the AC voltage has or not.
  • the voltage of the first half-wave of the AC voltage is preferably to generate the spark or spark between 2kV and 6kV.
  • the voltage of the second half-wave is according to the invention greater than 30kV and is preferably about 32kV.
  • the first ignition pulse is generated from one or more periods (ignition sub-pulses) of the AC voltage, the ignition spark being formed during the second half-wave.
  • This first ignition pulse normally serves to ignite the fuel-air mixture.
  • a second ignition pulse is generated, which can also consist of several ignition part pulses. Now that there are ions generated by the flame between the electrodes of the spark plug, the low voltage of the first half-wave of the second ignition pulse can generate the ignition spark.
  • the time that elapses after the AC voltage is switched on until the spark is formed can be used, for example, by measuring the current through the spark plugs to determine a statement about the ignition of the air-fuel mixture. If the ignition spark generated by the first ignition pulse has ignited, the ignition spark of the second ignition pulse occurs during the first half-wave. If the ignition from the first ignition pulse has failed to occur, the ignition spark does not ignite until the second half-wave during the second ignition pulse, ie later than in the normal case. This is detected according to the invention.
  • the ignition voltage of the two It is also possible to measure ignition pulses, not the high voltage itself, but to evaluate a value proportional to it.
  • a value can be the primary voltage, for example be on an ignition transmitter of the ignition system.
  • the primary charging current of an ignition coil of the ignition system evaluate as a proportional value for the ignition voltage.
  • Another development of the invention provides within of a work cycle not only to generate two ignition pulses, but each of these firing pulses into at least two firing pulse to divide.
  • Suitable ignition systems for this are e.g. B. high-frequency alternating current ignition systems, that are capable of multiple Sparks very quickly in a row within a single one Generate work cycle.
  • the ignition part pulses of an ignition pulse are triggered so quickly that the Ionization, caused by the respective immediate previous ignition part pulse and the resultant Partial spark, only slightly reduced. This is due to of the first firing pulse triggered a spark and has the Gas discharge trained, so there is a big difference between determine the ignition voltages of these two ignition part sparks. There is no such difference if the did not develop the first partial spark.
  • a third Case occur.
  • This third case occurs when an im Combustion chamber fuel-air mixture due to the partial sparks of the first pulse was ignited. Now she cares Ignition in the combustion chamber for ionization of the discharge gap, which leads to the fact that the first spark of the second spark at a much lower ignition voltage than at the first partial spark of the first spark occurs.
  • the ignition voltages or charging currents of the partial sparks of the first and second spark can thus be decided whether an unsuccessful ignition to a non-existent fuel-air mixture or lack of spark formation is.
  • a corresponding Signal sent to a control unit as soon as no ignition of the air-fuel mixture has taken place. Furthermore the supply of the air-fuel mixture to the combustion chamber prevented to avoid destruction of the catalyst. Finally, the driver of the internal combustion engine becomes audible or optical signal that indicates the malfunction displays.
  • Figure 1 shows an embodiment of a circuit arrangement for an ignition stage according to the invention.
  • the circuit arrangement has five terminals 1, 2, 3, 4 and 5.
  • terminal 1 are, for example, 200V, 15V at terminal 2, at the terminal 3 a current control signal and a switch-on signal at terminal 4 on.
  • Terminal 5 is connected to the reference potential.
  • a capacitor 6 is connected, also a capacitor between terminal 2 and terminal 5 7.
  • a resistor 8 connected to a capacitor 9, the resistor 8 is connected to the terminal 2.
  • the Terminal 2 is connected to terminal 4 via a further resistor 10 in connection. Between terminal 3 and terminal 5 for reference potential a further capacitor 11 is connected.
  • the Terminal 3 is connected to the non-inverting input of a comparator 12 in connection, whose inverting input to the Connection point of the resistor 8 and the capacitor 9 switched is.
  • the output of the comparator 12 is on the one hand the terminal 4 in connection and on the other hand with two basic connections of two complementary transistors 14, 15, which with their emitter connections are interconnected.
  • the collector of the NPN transistor is at terminal 2 and the collector of the pnp transistor 15 connected to the terminal 5.
  • the Connection point of the two emitter connections of these transistors 14, 15 is through a resistor 16 to the base terminal a power switching transistor 18 in connection.
  • the collector connection this power transistor 18 is through the primary winding 19 an ignition coil 20 with the terminal 1 in connection.
  • the emitter connection of the power transistor 18 is via a Resistor 11 connected to terminal 5 for reference potential. Parallel to the load path of the power transistor 18 and the Resistor 11 is connected to a capacitor 23, as is one Free-wheeling diode 24, with its cathode connection to the primary winding 19 of the ignition coil 20 is placed.
  • connection point of the resistor 8 and the capacitor 9 is via a further resistor 13 to the connection point of the power transistor 18 and the resistor 11 placed. This the latter connection point is also over a Resistor 17 to the base or gate of the power transistor 18 switched.
  • the ignition coil also has a secondary winding 21, the electrodes 25, 26 are connected at their two connections are.
  • the circuit arrangement shown in FIG. 1 has this also a clock generator.
  • This clock generator consists of essentially from a clock generator block 28, the plus input is connected to the Q output.
  • the Q output stands moreover via a diode 29 with the connection point of the Resistor 8 and the capacitor 9 in contact. At this connection point the cathode of the diode 29 is placed.
  • the minus entrance of the clock generator module 28 is connected to the terminal 4, during the clock input via a capacitor 30 the terminal 5 is connected for reference potential. Between the Clock input of the clock generator module 28 and the terminal 2 is another resistor 31 placed.
  • A is the switch-on signal for switching on Ignition stage designated. This switch-on signal is sent to the Terminal 4 of the ignition output stage is applied and is a square wave signal a predetermined duration.
  • D is the gate or base voltage of the power switching transistor 18. This signal is a square wave voltage whose lengths depend on the current through the Detach ignition coil.
  • C is the collector current, which is a triangular ramp signal. The steepness of the The ramp in turn depends on the inductance of the ignition coil.
  • D is the collector voltage across the capacitor 23 Ignition output stage of Figure 1 designated. The collector voltage is sinusoidal half-wave.
  • the signal curve E denotes the by current flowing through this capacitor 23, F denotes the current by the freewheeling diode 24.
  • H is the secondary voltage with capacitance. in the Difference to the signal curve G, this signal oscillates there, where the collector voltage shows a half wave.
  • the signal curve I shows the typical secondary voltage at the secondary winding of the ignition coil of the connected spark plug.
  • the AC voltage is used to generate at least one second spark, but preferably also selected the first spark so that the first half wave is a Has amplitude, which is between the maximum necessary Voltage if there is ionization between the electrodes a spark plug of the ignition system and the minimum necessary voltage if there is no ionization.
  • the first half wave between U1 and U3 and must therefore be in the area not hatched.
  • the second Half wave is chosen so large that it is certainly above the maximum necessary voltage is that with existing ionization occurs between the electrodes of a spark plug of the ignition system. In the present case, the second half-wave must therefore be larger than U4.
  • the second half-wave is preferably so size chosen as U5.
  • first and the second ignition pulse in the same way and generated with the same AC voltage can be based on the second ignition pulse can be determined whether the first ignition pulse caused a fire or not. If there is a fire can already be the first half-wave of the second Ignition pulse generate an ignition spark. Has no inflammation by the first ignition pulse, however, leads first the second half-wave of the second ignition pulse for ignition. This, of course, only if there is an air-fuel mixture in the combustion chamber is available.
  • the critical field strength required to form a gas discharge is necessary from the ions and in the combustion chamber depending on the existing foreign ionization.
  • constant geometric Dimensions and constant external influences is the to form a gas discharge or a spark between two electrodes, e.g. B. the electrodes of a spark plug, necessary Voltage also constant.
  • external ionization e.g. B. thermal ionization, as is the case with ignition of the fuel mixture occurs in the combustion chamber, ions If it is brought into the area of the electrodes, it drops for generation a spark necessary ignition voltage.
  • the first.Ignition pulse ideally generates a spark, serves to ignite the air-fuel mixture.
  • the second ignition pulse there is also a spark generated.
  • the second ignition pulse it is detected when exactly the spark is formed, i.e. during the first half wave or the second half-wave.
  • a decision whether this ionization by the first Ignition pulse triggered first sparks or by the ignition of the fuel mixture is not easy possible. There is one way to safely decide this in it, the amount of time between the two firing pulses large to choose that the ionization generated by the first spark is safely dismantled.
  • the second voltage value is clear less than the first one, this certainly indicates an ignition of the fuel mixture. Because the duration of this ionization of the high voltage applied and the swirl conditions in the combustion chamber can be a relatively long one Time period may be necessary until the ionization is degraded. This can cause time problems, especially at high speeds lead if the period is longer than a work cycle period because then the second impulse is no longer during this one Work cycle can be ignited.
  • the duration of the two Pulse chosen so short that it is safe within one Work cycle can be constant or variable, e.g. B. depending on the speed.
  • the inventive method can be advantageously also with ignition systems, e.g. B.
  • High frequency AC ignition systems apply in which several ignition pulses very quickly in succession can be generated within one work cycle. With these systems, as shown below, there is an additional one It is possible to differentiate whether the fuel mixture ignites not done because no spark was generated, or because there is no fuel mixture in the combustion chamber.
  • the two ignition pulses mentioned above are used for this purpose generated as at least two ignition pulses each.
  • Ignition sparks consist of only two partial sparks.
  • the time interval these two partial sparks is so low according to the invention choose the ionization in the combustion chamber caused by the Partial spark was caused, only slightly reduced and the at least two partial sparks appear as a single spark.
  • a third case can occur here.
  • This third case arises when there is one in the combustion chamber Air / fuel mixture due to the first partial spark was ignited by an impulse. Now it takes care of the combustion chamber flame present for ionization of the discharge gap, which leads to the first spark of the second Spark at a much lower ignition voltage than the first Partial spark of the first spark occurs.
  • By evaluation the current increases of the partial sparks of the first and the second spark or the associated currents through the primary winding thus it can be decided whether a non-ignition occurs non-existent fuel-air mixture or a lack of training of a spark within the combustion chamber is.
  • pulses I1, I2 are shown that within a Work cycle AT of the internal combustion engine for the generation of Ignition pulses are used.
  • each of these pulses I1, I2 from a single pulse I1A, I2A exists.
  • the rising edge of the first pulse I1A appears at time t1 and the rising edge of the second Pulse I2A at time t2.
  • the two times t1, t2 lie within the work cycle AT.
  • the distance between the Time t1, t2 is chosen so that at time t2 one is due sparking generated by the first pulse I1A setting ionization safely decayed within the combustion chamber is.
  • the 5b are those belonging to the mentioned ignition pulses I1A, I2A Ignition voltages U1A, U2A shown when inside the combustion chamber has no ignition.
  • the Amplitudes of the two ignition voltages U1A and U2A are the same or approximately the same size, because at the time of the occurrence of the second ignition pulse I2A no ionization within the Combustion chamber is more available.
  • the non-ignition can either be due to the fact that no fuel-air mixture within of the combustion chamber is present or in that the first Pulse I1A did not lead to a spark.
  • Fig. 5c the ignition voltage ratios are shown when ignition occurs within the combustion chamber. It is clearly that compared to the ignition voltage U1A of the first Pulse I1A lower ignition voltage U2A of the second ignition pulse I2A recognizable.
  • each of the already mentioned pulses I1A, I2A immediately to follow another pulse I1B or I2B.
  • This further pulses I1B and I2B are shown in broken lines in FIG. 5a. These two pulses follow the pulses I1A and I2A temporally so close to each other that they are like a single ignition pulse appear.
  • 5d, 5e and 5f are the associated ones Ignition voltages under different operating conditions shown.
  • FIG. 5d shows the ignition voltages which are established if there is a spark due to the first firing pulse I1A has formed within the combustion chamber and one Gas discharge sets, but no fuel-air mixture inside of the combustion chamber is available. Inflammation can do not adjust.
  • This non-ignition will be similar as in Fig. 5b, detected by the ignition voltage U2A is approximately the same size as the ignition voltage U1A. That one Spark has formed due to the first ignition pulse I1A based on the significantly lower ignition voltages U1B and U2B in Comparable to the ignition voltages U1A and U2A.
  • This lower ignition voltage U1B or U2B stems from that by by sparking the first firing pulse I1A or I2A conditional ionization within the combustion chamber.
  • the Ignition part pulses I1B and I2B immediately after the first ignition part pulses I1A and I2A can follow this ionization based on the lower ignition voltage U1B or U2B can be detected.
  • the lower ignition voltage is due to a steeper course of the Collector current can be detected on the primary side of the ignition system.
  • Fig. 5e the relationships are shown when due to the first ignition part pulse I1A no spark and therefore no gas discharge and therefore no ignition within the combustion chamber trains.
  • the ignition voltages are U1A, U1B and U2A and U2B about the same size.
  • 5f shows the conditions when the ignition has taken place.
  • the ignition voltages U1B, U2A and U2B are significantly lower than the ignition voltage U1A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Claims (16)

  1. Procédé de reconnaissance de l'allumage dans une installation d'allumage équipant un moteur à combustion interne, selon lequel, à l'intérieur d'un cycle de travail, il est produit une première impulsion d'allumage (I1A) pour engendrer une première étincelle d'allumage et au moins une seconde impulsion d'allumage pour engendrer une seconde étincelle d'allumage à partir d'une tension alternative,
    caractérisé en ce que
    la tension alternative utilisée pour produire au moins la seconde étincelle d'allumage a une ou plusieurs périodes dont les demi-ondes ont des hauteurs différentes,
    la première demi-onde présente une amplitude qui se situe entre la tension maximale nécessaire (U1) lorsqu'existe une ionisation entre les électrodes (25, 26) d'une bougie de l'installation d'allumage et la tension minimale nécessaire (U3) quand il n'y a pas d'ionisation,
    la seconde demi-onde présente une amplitude qui se situe au-dessus de la tension maximale nécessaire (U4) quand il n'y a pas d'ionisation,
    le critère retenu pour savoir si le mélange combustible a été enflammé consiste à déterminer si la seconde étincelle d'allumage s'est formée ou non pendant la première demi-onde de la tension alternative.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    la première étincelle d'allumage est obtenue avec la même tension alternative que la seconde étincelle.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    la tension de la première demi-onde de la tension alternative est comprise entre 2 kV et 6 kV.
  4. Procédé selon l'une des revendications 1 à 3,
    caractérisé en ce que
    la tension de la première demi-onde est supérieure à 30 kV, de préférence environ 32 kV.
  5. Procédé selon l'une des revendications 1 à 4,
    caractérisé en ce que
    les deux demi-ondes d'une période de la tension alternative varient l'une par rapport à l'autre.
  6. Procédé selon l'une des revendications 1 à 5,
    caractérisé en ce que
    la durée après enclenchement de la tension alternative pour réaliser la seconde impulsion d'allumage jusqu'à formation de l'étincelle d'allumage est mesurée et utilisée comme critère de la réussite de l'inflammation du mélange combustible.
  7. Procédé selon la revendication 6,
    caractérisé en ce qu'
    on saisit, à partir de l'enclenchement de la tension alternative, le courant qui traverse la bobine d'allumage et on détermine la durée nécessaire pour que le courant ait atteint une amplitude caractérisant l'inflammation.
  8. Procédé selon l'une des revendications 1 à 7,
    caractérisé en ce que
    comme critère de reconnaissance de l'inflammation du mélange combustible, on saisit du côté primaire de l'installation d'allumage un paramètre contenant une information sur l'ionisation du parcours de la décharge gazeuse.
  9. Procédé selon la revendication 8,
    caractérisé en ce que
    sur le côté primaire de l'installation d'allumage, on saisit le courant de charge d'une bobine (19) de l'installation d'allumage.
  10. Procédé selon la revendication 9,
    caractérisé en ce qu'
    on saisit la montée de courant traversant la bobine d'allumage (19) et on retient comme critère d'une inflammation réussie du mélange combustible une pente donnée de la montée du courant.
  11. Procédé selon la revendication 10,
    caractérisé en ce que
    la montée du courant traversant la bobine d'allumage est saisie en mesurant le temps séparant le début de la traversée de la bobine (19) par le courant et l'obtention d'une amplitude donnée du courant.
  12. Procédé selon l'une des revendications 1 à 11,
    caractérisé en ce que
    les première et seconde étincelles d'allumage sont obtenues à partir d'une tension alternative à haute fréquence et ces deux étincelles sont composées chacune de plusieurs mais au moins de deux étincelles élémentaires (I1A, I1B, I2A, I2B),
    on saisit les valeurs de tension (U1A, U1B, U2A, U2B) correspondant chaque fois aux étincelles élémentaires qui se produisent d'abord, ou des valeurs proportionnelles à ces tensions, on établit à partir de ces valeurs la différence (U) et on l'utilise comme critère d'une inflammation effective.
  13. Procédé selon la revendication 12,
    caractérisé en ce que
    pour chacune des impulsions élémentaires (I1A, I1B, I2A, I2B), appartenant à une impulsion d'allumage (I1, I2) on saisit la tension d'allumage correspondante (U1A, U1B, U2A, U2B) ou des valeurs proportionnelles à ces tensions, on établit chaque fois la différence (dU) et à partir de celle-ci, on déduit si une étincelle d'allumage a été formée.
  14. Procédé selon la revendication 12,
    caractérisé en ce que
    des valeurs de dU et U, on déduit si l'inflammation du mélange combustible n'a pas eu lieu parce qu'il n'y a pas eu d'étincelle ou parce qu'il n'y avait pas de carburant dans la chambre de combustion.
  15. Procédé selon l'une des revendications 12 à 14,
    caractérisé en ce que
    comme valeur proportionnelle à la tension, on saisit et on évalue les temps pendant lesquels le courant a traversé la bobine de l'installation d'allumage.
  16. Procédé selon l'une des revendications 1 à 15,
    caractérisé en ce que
    quand il n'y a pas eu inflammation du mélange air-carburant, un signal est envoyé à une unité de commande qui empêche l'envoi du mélange combustible à la chambre de combustion correspondante et transmet un signal correspondant au conducteur.
EP96106063A 1995-06-08 1996-04-18 Dispositif et méthode de détection d'allumage Expired - Lifetime EP0747595B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19520852A DE19520852C1 (de) 1995-06-08 1995-06-08 Vorrichtung und Verfahren zur Zündungserkennung
DE19520852 1995-06-08

Publications (3)

Publication Number Publication Date
EP0747595A2 EP0747595A2 (fr) 1996-12-11
EP0747595A3 EP0747595A3 (fr) 1998-05-20
EP0747595B1 true EP0747595B1 (fr) 2000-02-23

Family

ID=7763869

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96106063A Expired - Lifetime EP0747595B1 (fr) 1995-06-08 1996-04-18 Dispositif et méthode de détection d'allumage

Country Status (4)

Country Link
US (1) US5682860A (fr)
EP (1) EP0747595B1 (fr)
JP (1) JP2741191B2 (fr)
DE (2) DE19520852C1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012014776A1 (de) * 2012-07-25 2014-01-30 Volkswagen Aktiengesellschaft Verfahren und Steuergerät zur Erkennung von Verbrennungsaussetzern

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470662B1 (en) 2000-10-31 2002-10-29 Terry A. Burke Multiple blade cutting apparatus for rotary lawn mower
US11988184B2 (en) * 2019-05-03 2024-05-21 Walbro Llc Engine ignition system with multiple ignition events

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676506B1 (fr) * 1991-05-15 1993-09-03 Siemens Automotive Sa Procede et dispositif de detection de rates d'allumage dans un cylindre de moteur a combustion interne et leur application.
JP2566702B2 (ja) * 1991-09-02 1996-12-25 日本特殊陶業株式会社 ガソリン機関の失火検出装置
EP0546827B1 (fr) * 1991-12-10 1997-04-09 Ngk Spark Plug Co., Ltd Dispositif de commande et de détection des conditions de combustion par un moteur à combustion interne
JPH05306670A (ja) * 1992-04-28 1993-11-19 Honda Motor Co Ltd 内燃機関の失火検出装置
DE4218803A1 (de) * 1992-06-06 1993-12-09 Vdo Schindling Verfahren zur Überwachung des Betriebes einer Brennkraftmaschine
FR2712934B1 (fr) * 1993-11-22 1996-01-26 Marelli Autronica Procédé et dispositif d'allumage à bobine, pour moteur à allumage commandé.
JP3387653B2 (ja) * 1993-12-17 2003-03-17 日本特殊陶業株式会社 燃焼状態検出方法及び燃焼状態検出装置
JP3277079B2 (ja) * 1993-12-28 2002-04-22 日本特殊陶業株式会社 燃焼状態検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012014776A1 (de) * 2012-07-25 2014-01-30 Volkswagen Aktiengesellschaft Verfahren und Steuergerät zur Erkennung von Verbrennungsaussetzern

Also Published As

Publication number Publication date
EP0747595A3 (fr) 1998-05-20
DE59604476D1 (de) 2000-03-30
EP0747595A2 (fr) 1996-12-11
US5682860A (en) 1997-11-04
JPH08338353A (ja) 1996-12-24
JP2741191B2 (ja) 1998-04-15
DE19520852C1 (de) 1996-09-19

Similar Documents

Publication Publication Date Title
DE19924001C2 (de) Verbrennungszustand-Erfassungsvorrichtung für einen Verbrennungsmotor
DE102008036477B4 (de) Verbrennungsmotor-Verbrennungsbedingungs-Erfassungsvorrichtung und Verbrennungsbedingungs-Erfassungsverfahren
DE4324863C2 (de) Schaltungsanordnung zur Flammerkennung
DE19601353C2 (de) Verbrennungszustandserfassungsvorrichtung für eine Brennkraftmaschine mit innerer Verbrennung
DE4207140C2 (de) Fehlzündungsdetektorsystem zum Detektieren einer Fehlzündung in einem Verbrennungsmotor
DE19514633C2 (de) Vorrichtung zur Erfassung von Fehlzündungen in einer Brennkraftmaschine
DE4138823C2 (de) Vorrichtung zur Erfassung eines Ionenstroms
DE4204484C2 (de) Verbrennungsdetektorvorrichtung für eine Brennkraftmaschine
EP0790406A2 (fr) Système d'allumage électronique pour moteurs à combustion interne
EP0752580B1 (fr) Circuit de mesure pour courant ionique
DE4133049C2 (de) Zündvorrichtung für Verbrennungsmotoren
DE4241471C2 (de) Verbrennungsermittlungsvorrichtung für eine Brennkraftmaschine
DE19733869A1 (de) Vorrichtung zur Feststellung des Verbrennungszustands einer Brennkraftmaschine
DE4132858C2 (de) Steuervorrichtung mit Feldzündungsdetektion für eine Brennkraftmaschine
DE102009026852A1 (de) Verfahren zum Betreiben eines Mehrfunken-Zündsystems, sowie ein Mehrfunken-Zündsystem
DE4233224C2 (de) Vorrichtung zum Erfassen der Verbrennung des Gemisches in einem Zylinder einer Brennkraftmaschine
EP1893868B1 (fr) Circuit pour saisir des grandeurs concernant la combustion
DE102016221656A1 (de) Zündsteuervorrichtung und zündsteuerverfahren für verbrennungsmotor
DE4303241C2 (de) Vorrichtung zur Erfassung und Entscheidung eines Auftretens einer Fehlzündung bei einer Brennkraftmaschine
DE10252567B4 (de) Verbrennungszustands-Detektionsvorrichtung für eine Brennkraftmaschine
DE19648951C2 (de) Fehlzündungserfasserungsvorrichtung für einen Verbrennungsmotor
DE60119879T2 (de) Vorrichtung zur Erkennung von Zündaussetzern bei einer Brennkraftmaschine
DE10229848B4 (de) Feuerungszustandsermittlungssystem für Verbrennungsmotoren
DE4239803C2 (de) Ionisationsstromdetektoreinrichtung für eine Brennkraftmaschine
EP0747595B1 (fr) Dispositif et méthode de détection d'allumage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19980526

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990621

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000223

REF Corresponds to:

Ref document number: 59604476

Country of ref document: DE

Date of ref document: 20000330

ITF It: translation for a ep patent filed

Owner name: FIAMMENGHI - DOMENIGHETTI

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030414

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030417

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030425

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040419

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090527

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103