EP0546827B1 - Dispositif de commande et de détection des conditions de combustion par un moteur à combustion interne - Google Patents
Dispositif de commande et de détection des conditions de combustion par un moteur à combustion interne Download PDFInfo
- Publication number
- EP0546827B1 EP0546827B1 EP19920311273 EP92311273A EP0546827B1 EP 0546827 B1 EP0546827 B1 EP 0546827B1 EP 19920311273 EP19920311273 EP 19920311273 EP 92311273 A EP92311273 A EP 92311273A EP 0546827 B1 EP0546827 B1 EP 0546827B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- fuel ratio
- fuel
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 111
- 239000000446 fuel Substances 0.000 claims description 209
- 239000007789 gas Substances 0.000 claims description 57
- 239000000203 mixture Substances 0.000 claims description 44
- 238000013459 approach Methods 0.000 claims description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 239000003990 capacitor Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/021—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P2017/006—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines using a capacitive sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
- F02P2017/121—Testing characteristics of the spark, ignition voltage or current by measuring spark voltage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
- F02P2017/123—Generating additional sparks for diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P17/00—Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
- F02P17/12—Testing characteristics of the spark, ignition voltage or current
- F02P2017/125—Measuring ionisation of combustion gas, e.g. by using ignition circuits
Definitions
- This invention relates to a combustion condition detecting and control device for an internal combustion engine which is capable of detecting and controlling an air-fuel ratio of an air-fuel mixture gas at a lean limit and a theoretical range so as to ensure a stable running of the internal combustion engine.
- an air-fuel sensor is used to detect an air-fuel ratio of the air-fuel mixture gas on the basis of an oxygen component and an unconsumed fuel in the exhaust gas to carry out a lean burning in each cylinder of the internal combustion engine.
- the air-fuel ratio is controlled to normally burn the leanest air-fuel mixture gas by considering the concentration variation of the mixture gas depending on the cylinder of the internal combustion engine. For this reason, the air-fuel ratio of the mixture gas tends to be greater so as to invite difficulty in purifying emition gas and enhancing fuel efficiency of internal combustion engine.
- the invention is made on the basis of the fact that an electrical current variation flowing between electrodes of a spark plug increases with the air-fuel mixture gas approaching to a critical air-fuel ratio which is in a lower limit the internal combustion engine can run.
- EP-A-0,513,995 which is prior art by virtue of Article 54(3) only, discloses an apparatus in which misfires are detected by charging the inherent stray capacitance of the spark plug after discharge and observing the rate of decay of that charge.
- a combustion condition detecting device for use in an internal combustion engine which includes an ignition circuit having a primary coil and a secondary coil connected to a spark plug by way of a diode and a series gap of a distributor, and having an interrupter means which on-off actuates a primary current flowing through the primary coil to induce secondary voltage across the secondary coil to apply a high voltage across electrodes of a spark plug through the diode and the series gap of the distributor so as to establish a spark discharge between electrodes of the spark plug;
- the combustion condition detecting device comprising:
- the electrical charge stored in the inherent capacitance of the spark plug discharges as an ionized current across the electrodes.
- An amount of the electrical discharge varies depending on ionized particles appeared around the electrodes when the sparking discharge ignites an air-fuel mixture gas.
- the variation of the electrical discharge increases as an air-fuel ratio of the mixture gas approaches a lean burning limit, and a certain limit which an exhaust gas recirculation can be carried out.
- FIG. 1 shows a schematic view of an internal combustion engine 100 into which a burning detecting device 500 and a burning control device 500a are incorporated.
- an air-fuel (A/F) sensor provided which has a combination of pumping element and an oxygen sensor to detect an air-fuel ratio in an air-fuel mixture gas on the basis of an oxygen component and uncosumed fuel component of the mixture gas.
- a fuel injector 301 provided which injects an appropriate amount of fuel into each cylinder of the internal combustion engine 100.
- an ignition system 400 there is provided has a primary circuit 11 having an ignition coil 1 which includes a primary coil 1a, and a secondary circuit 12a having a secondary coil 1b with a vehicular battery cell (V) as a power source.
- the primary coil 1a is electrically connected in series with a switching device 41 and a signal generator 42 to form an on-off actuating circuit 4, while the secondary coil 1b is electrically connected to a rotor 2a of a distributor 2 by way of a diode 22.
- the distributor 2 has stationary segments (Ra), the number of which corresponds to that of the cylinders of the internal combustion engine 100.
- each of the stationary segments (Ra) is an free end of the rotor 2a adapted to approaches so as to make a rotor gap 21 (series gap) with the corresponding segments (Ra).
- Each of the segments (Ra) is connected to a spark plug 3 by way of a sparkplug cable 4A.
- the spark plug 3 has a center electrode and an outer electrode to form a spark gap between the electrodes, across which a spark discharging occurs when energized.
- the burning condition detecting device 500 includes the diode 22, a voltage charging circuit and a voltage divider circuit 5 which has a high impedance element 51 and a low impedance element 52 through which the sparkplug cable 4A is grounded.
- the voltage divider circuit 5 divides a sparkplug voltage in accordance with a ratio of the high impedance element 51 to the low impedance element 52.
- the on-off actuating circuit 4 serves as the voltage charging circuit to on-off actuate the primary coil 1a to induce a high voltage in the secondary coil 1b so as to electrically charge a static capacity inherent in the spark plug 3 at a predetermined time after an end of the sparking discharge.
- an attenuation detecting circuit 6 connected to detect an attenuation characteristics of a sparkplug voltage waveform.
- a control circuit 7 To the attenuation detecting circuit 6, is a control circuit 7 to detect a variation dgree of the attenuation characteristics of the sparkplug voltage waveform as described hereinafter.
- the on-off actuating circuit 4 detects a crank angle and a throttling degree of the engine to on-off actuate the primary coil 1a to induce the high voltage in the secondary coil 1b so that the timing of the spark corresponds to an advancement angle relevant to a revolution and load of the internal combustion engine 100.
- a capacitor (1 pF) serves as the high impedance element 51, while a capacitor (3000 pF) serves as the low impedance element 52 to divide the sparkplug voltage in accordance with the ratio of the capacitor (1 pF) to the capacitor (3000 pF).
- an electrical resistor 53 e.g. 2 M ⁇ connected in parallel therewith so as to form a discharge path for the capacitor 52.
- the voltage divider circuit 5 allows to divide the sparkplug voltage by the order of 1/3000, which makes it possible to determine a time constant of RC path to be approximately 6 milliseconds to render an attenuation time length relatively longer (3 milliseconds) as described hereinafter. Then the sparkplug voltage of 30000 V is divided to a level of 10 V, and inputted to the attenuation detecting circuit 6.
- the attenuation detecting circuit 6 has a peak hold circuit 61, to which an output from the voltage divider circuit 5 is fed.
- the attenuation detecting circuit 6 has a resistor circuit 62 which divides an output from the peak hold circuit 61, and having a comparator 63 to compare an output voltage from the resistor circuit 62 with an output voltage (reference voltage) from the voltage divider circuit 5, and producing a pulse to detect such a time length as to hold more than a predetermined voltage level in the sparkplug voltage waveform divided by the voltage divider circuit 5.
- the control circuit 7 has a feedback means 7a, a distinction means 7b, an adjusting means 7c and a renewal means 7d, each means of which is referred to as a circuit for the purpose of convinience hereinafter.
- the feedback circuit 7a controls an amount of the fuel from the fuel injector 301 in each cylinder, and feeding back to an air-fuel sensor 201, so that the air-fuel ratio (A/F) of the mixture gas is a lean air-fuel ratio which is predetermined on the basis of the stored data experimentally measured or calculated according to the running condition of the internal combustion engine 100.
- the distinction circuit 7b detects an air-fuel ratio of the air-fuel mixture gas corresponding to a stable burning limit of the internal combustion engine 100 on the basis of the attenuation detecting circuit 6.
- the adjusting circuit 7c adjusts an amount of fuel injected from the injector 301 to make the air-fuel ratio of the air-fuel mixture gas approach to a critical air-fuel ratio substantially corresponding to that of the stable burning limit in each cylinder of the internal combustion engine 100.
- the renewal circuit 7d renews the lean air-fuel ratio to approach it to a target air-fuel ratio which is determined on the basis of the critical air-fuel ratio.
- the amount of the fuel injected from the injector 301 is controlled so that the air-fuel ratio of the air-fuel mixture gas is the lean air fuel ratio (e.g. 20:1) which is leaner than a stoichiometric air-fuel ratio which is determined to be rather fuel-rich considering the air-fuel ratio variation in each cylinder of the internal combustion engine 100.
- the air-fuel ratio is detected by the air-fuel sensor 201, and fed back to the injector 301 so as to obviate the difference from the target air-fuel ratio.
- the air-fuel ratio in each cylinder of the internal combustion engine 100 is adjusted to be the critical air-fuel ratio substantially corresponding to that of the stable burning limit in each cylinder of the internal combustion engine 100 in the following manner.
- the signal generator 42 generates pulse signals (a), (b) as shown at (A) in Fig. 2 in order to induce a primary current in the primary circuit 11 as shown at (B) in Fig. 2.
- the pulse (a) of wider width (h) energizes the spark plug 3 to establish the spark between the electrodes of the spark plug 3.
- the pulse (b) following the pulse (a) delays by the time (i) of 0.5 ⁇ 1.5 ms.
- the pulse (b) has a thinner width to electrically charge the stray capacity inherent in the the spark plug 3.
- the sparkplug voltage appears in the secondary coil 1b of the secondary circuit 12a as shown at (C) in Fig. 2. Due to the high voltage (p) established following the termination of the pulse signal (a), the sparking discharge starts to occur between the electrodes, and accompanying an inductive discharge voltage waveform (q).
- a counter-electromotive voltage accompanies a negative voltage waveform (r) flowing through the secondary circuit 12a, and a voltage waveform (s) follows.
- the sparkplug voltage is enhanced again to induce the voltage waveform (s) through the secondary circuit 12a when the primary coil 1a is deenergized.
- the enhanced voltage level is determined as desired by the delay time (i) and the width of the pulse signals (b).
- the level of the voltage waveform (s) is 4 - 6 KV, the magnitude of which is enough to break down the rotor gap 21, but not enough to establish a discharge between the electrodes of the spark plug 3 when the air-fuel mixture gas staying in the spark gap is free from ionized particles.
- the diode 22 prevents an electrical charge (3 - 5 KV) in the spark plug 3 from being released to the ignition coil 1 by way of the rotor gap 21 so as not to drop the voltage of the spark plug 3. This makes it possible to store the electrical charge (3 - 5 KV) in the stray capacity (usually 10 - 20 pF) inherent in the spark plug 3.
- Width variation of the discharged current waveform is in the narrow range as shown at (52) when the air-fuel ratio is generally 15:1.
- width variation of the discharged current waveform is in the exceedingly wider range as shown at (S1).
- the width variation of the discharged current waveform is detected by the attenuation detecting circuit 6 in the following manner.
- a peak voltage of the charged voltage is held by the peak hold circuit 61, and the peak voltage is divided by 1/3 to provide a reference voltage (v) which is compared with an output voltage waveform by the comparator 63.
- the comparator 63 determines a time length which holds the output voltage waveform higher than the reference voltage (v) to generate pulses t1 ⁇ t4 as shown at (E) in Fig. 2.
- the pulses t1 ⁇ t4 are fed to the control circuit 7.
- the width of the pulses t2, t4 corresponds to a magnitude of the attenuation time variation of the charged voltage waveform.
- the pulse t2 shows that the attenuation time variation of the charged voltage waveform is great when an air-fuel ratio of the air-fuel mixture gas generally corresponds to the stable burning limit in each cylinder of the internal combustion engine 100.
- the variation of the concecutive ten pulses t2 deviated from the reference value is totaled in each cylinder of the internal combustion engine 100.
- the air-fuel ratio approaches to the critical air-fuel ratio generally corresponding to that of the stable burning limit in each cylinder of the internal combustion engine 100.
- the amount of the fuel from the injector 301 is adjusted to carry out the lean burning in each cylinder of the internal combustion engine 100.
- the renewal circuit 7d of the control circuit 7 renews the lean air-fuel ratio (20:1) to approach it to approach it to the target air-fuel ratio (e.g. 22:1) which is determined on the basis of the critical air-fuel ratio totaled in each cylinder of the internal combustion engine 100 in adjusting the amount of the fuel from the injector 301.
- a control circuit 70 is employed as shown in Fig. 2a.
- the control circuit 70 has a feedback circuit 70a which adjusts an amount of the fuel from the injector 301 in each cylinder of the internal combustion engine 100, and feeding back to the injector 301 so that the air-fuel ratio of the air-fuel mixture gas become a target air-fuel ratio which is predetermined on the basis of the stored data experimentally measured or calculated according to the running condition of the internal combustion engine 100.
- the attenuation detecting circuit 6 detects a variation of the air-fuel ratio in each cylinder, and accumulating deviation from the reference value of the pulse t2 which corresponds to the air-fuel ratio in each cylinder of the internal combustion engine 100.
- the injector 301 is controlled to reduce the diviation from the reference value of the pulse t2 to decrease the variation of the air-fuel ratio in each cylinder of the internal combustion engine 100.
- the injector 301 is controlled to make the target air-fuel ratio approach to e.g. 22:1 which is leaner than the stoichiometric air-fuel ratio predetermined on the basis of the variation of air-fuel ratio in each cylinder of the internal combustion engine 100.
- the target air-fuel ratio is detected by the air-fuel sensor 201, and fed back so as to eliminate the deviation from the target value.
- the attenuation detecting circuit 6 detects the variation of the air-fuel ratio in each cylinder to adjust it with a total amount of the injected fuel unchanged.
- numerals 70b, 70c respectively correspond to the distinction circuit 7b, 7c in the first modification form of the invention.
- a control circuit 80 employs an oxygen sensor 82, an output voltage from which rapidly decreases because an oxygen component in the exhaust gas increases when the air-fuel ratio of the air-fuel mixture gas is leaner than the stoichiometric air-fuel ratio. For this reason, as shown in Fig. 3, the control circuit 80 has a feedback circuit 80a which controls the injector 301 in each cylinder to make the air-fuel ratio approach the stoichiometric air-fuel ratio. As shown at t5, t6 in Fig. 3a, the variation of the attenuation time length of the output voltage waveform reduces so that the air-fuel ratio of the mixture gas becomes 15:1 or 14.7:1 in some cylinders. In this instance, the variation of the attenuation time length is exceedingly small, it is necessary to precisely detect the variation in each cylinder of the internal combustion engine 100.
- the attenuation detecting circuit 6 detects a variation of the air-fuel ratio in each cylinder of the internal combustion engine 100, and accumulating deviation from the reference value of the pulse t5 (t6) which corresponds to the air-fuel ratio in each cylinder of the internal combustion engine 100.
- the injector 301 is controlled to reduce the deviation from the reference value of the pulse t5 (t6) to decrease the variation of the air-fuel ratio in each cylinder of the internal combustion engine 100.
- the attenuation detecting circuit 6 detects the variation of the air-fuel ratio in each cylinder to adjust it with a total amount of the injected fuel unchanged.
- munerals 80b, 80c respectively correspond to the distinction circuit 7b, 7c in the first modification form of the invention.
- the control circuit 80 is effectively employed to an Exhaust Gas Recirculation System (EGR) in which a part of the exhaust gas is returned to the air-intake system to be added to the air-fuel mixture gas. It is difficult to increase the exhaust gas recirculation rate to the stable burning limit in each cylinder when a variation of the exhaust gas recirculation rate differs by each cylinder of the internal combustion engine.
- the control circuit 80 makes it possible to effectively carry out the exhaust gas recirculation by detecting the variation of the exhaust gas recirculation rate on the basis of the air-fuel ratio in each cylinder of the internal combustion engine.
- the control circuit 80 makes it possible to adjust the air-fuel ratio in each cylinder to an optimum air-fuel ratio in accordance with the warm-up running condition of the internal combustion engine.
- the voltage charging circuit may be provided independent of the on-off actuating circuit 4 used at the time on-off actuating the primary coil 1a. It is also noted that in a distributorless ignitor, a diode is generally provided to prevent the backward flow of the current except when the high voltage is applied to a spark plug. In the invention, the diode functions as a checker of the backward flow of the sparkplug voltage.
- the polarity of the ignition coil 1 may be positive or negative, but the positive polarity of the ignition coil 1 will do better in precisely detecting the output voltage waveform shown at (C), (D) in Fig. 2. It is noted that the on-off actuating timing may be determined with the crank angle of the engine as a reference, so that the ATDC (After Top Dead Center) is e.g. 10 degrees to precisely cope with the running condition of the engine such as a change of the engine revolution.
- a control circuit 90 employs an angular sensor 8 which detects an angular velocity of a crank in the internal combustion engine 100 as shown in Fig. 4.
- the angular velocity of the crank varies with the increase of the air-fuel ratio of the air-fuel mixture gas in each cylinder of the internal combustion engine 100.
- the angular velocity of the crank varies so that the air-fuel ratio exceeds e.g. 22:1, it is impossible to maintain a stable burning condition in each cylinder of the internal combustion engine 100 as understood from Fig. 5.
- the control circuit 90 further has a feedback circuit 90a, a distinction circuit 90b, an adjusting circuit 90c and an renewal circuit 90d a shown in Fig. 5a.
- A/F 20
- the feedback circcuit 90a works as described in the first modification form of the invention.
- the distinction circuit 90b detects an air-fuel ratio of the air-fuel mixture gas corresponding to a stable burning limit of the internal combustion engine 100 on the basis of an output from the attenuation detecting circuit 6.
- the adjusting circuit 90c adjusts an amount of the injected fuel from the injector 301 to make the air-fuel ratio of the air-fuel mixture gas approach to a critical air-fuel ratio which is substantially corresponding to that of the stable burning limit in each cylinder of the internal combustion engine 100.
- the renewal circuit 90d renews the lean air-fuel ratio to approach it to a target air-fuel ratio which is determined on the basis of the critical air-fuel ratio.
- a control circuit 95 employs a combustion pressure sensor 9 which detects a combustion pressure in a specified cylinder of the internal combustion engine 100 as shown in Fig. 6.
- the combustion pressure varies with the increase of the air-fuel ratio of the air-fuel mixture gas in each cylinder of the internal combustion engine 100.
- the combustion pressure varies so that the air-fuel ratio exceeds e.g. 22:1, it is impossible to maintain a stable burning condition in each cylinder of the internal combustion engine 100 as understood from Fig. 7.
- the control circuit 95 further has a feedback circuit 95a, a distinction circuit 95 b, an adjusting circuit 95c and an renewal circuit 95d.
- the feedback circuit 95a works as described in the first modification form of the invention.
- the distinction circuit 95b detects an air-fuel ratio of the air-fuel mixture gas corresponding to a stable burning limit of the internal combustion engine 100 on the basis of an output from the attenuation detecting circuit 6.
- the adjusting circuit 95c adjusts an amount of the injected fuel from the injector 301 to make the air-fuel ratio of the air-fuel mixture gas approach to a critical air-fuel ratio which is substantially corresponding to that of the stable burning limit in each cylinder of the internal combustion engine 100.
- the renewal circuit 95d renews the lean air-fuel ratio to approach it to a target air-fuel ratio which is determined on the basis of the critical air-fuel ratio.
- combustion pressure sensor may be incorporated into the spark plug, or otherwise the combustion pressure sensor may be installed independently of the spark plug.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Ignition Installations For Internal Combustion Engines (AREA)
Claims (10)
- Dispositif de détection de conditions de combustion destiné à être utilisé dans un moteur à combustion interne qui comporte un circuit d'allumage ayant une bobine primaire (1a) et une bobine secondaire (1b) reliées à une bougie d'allumage (3) par l'intermédiaire d'une diode (22) et d'un entrefer série (21) d'un distributeur, et ayant un moyen formant interrupteur (4) qui conduit/coupe un courant primaire traversant la bobine primaire pour induire une tension secondaire dans la bobine secondaire pour appliquer une tension élevée aux électrodes d'une bougie d'allumage par l'intermédiaire de la diode et de l'entrefer série du distributeur de façon à établir une décharge d'étincelle entre les électrodes de la bougie d'allumage, le dispositif de détection de conditions de combustion comprenant:un moyen pour charger électriquement une capacité parasite propre à la bougie d'allumage afin de former une tension de bougie d'allumage soit pendant l'établissement de la décharge d'étincelle, soit pendant un laps de temps prédéterminé juste après la fin de la décharge d'étincelle;un circuit (5) diviseur de tension qui divise la tension de bougie d'allumage conformément à un élément (51) à haute impédance et un élément (52) à basse impédance;un circuit (61) de détection de niveau de tension qui détecte la forme d'onde de tension de bougie d'allumage divisée par le circuit diviseur de tension; etun circuit (63, 7b) de détection d'atténuation qui détecte un degré de variation d'un temps d'atténuation de la forme d'onde de tension de bougie d'allumage et détermine à partir de celui-ci une variation du rapport air/carburant d'un mélange gazeux d'air et de carburant injecté par un injecteur de carburant dans un cylindre du moteur à combustion interne.
- Dispositif selon la revendication 1, dans lequel ledit moyen pour charger électriquement la capacité parasite comprend un circuit (4) chargeur de tension qui met sous tension/hors tension la bobine primaire pour induire une tension de charge dans le circuit secondaire.
- Dispositif selon la revendication 1, dans lequel ledit moyen pour charger électriquement la capacité parasite emploie une énergie électrique résiduelle dans le circuit d'allumage pour charger la capacité parasite propre à la bougie d'allumage juste après la fin de la décharge d'étincelle entre les électrodes de la bougie d'allumage.
- Dispositif selon la revendication 1, 2 ou 3, comportant en outre:un détecteur (201) de rapport air/carburant disposé dans un circuit d'échappement (200) du moteur à combustion interne (100) pour détecter un rapport air/carburant du mélange gazeux d'air et de carburant sur la base de la teneur en oxygène et de la teneur en carburant imbrûlé des gaz d'échappement du circuit d'échappement; etun circuit de commande (7a-d) comprenant:(a) un moyen de réinjection servant à réguler la quantité de carburant injecté depuis l'injecteur de carburant dans chaque cylindre du moteur à combustion interne, et réinjectant dans l'injecteur de façon que le rapport air/carburant du mélange gazeux d'air et de carburant soit un rapport air/carburant de mélange pauvre qui est prédéterminé sur la base de données obtenues expérimentalement ou calculées en fonction des conditions de fonctionnement du moteur à combustion interne;(b) un moyen de distinction servant à détecter un rapport air/combustible du mélange gazeux d'air et de carburant correspondant à une limite de combustion stable dans chaque cylindre du moteur à combustion interne sur la base d'un signal de sortie du circuit de détection d'atténuation;(c) un moyen de réglage servant à régler la quantité de carburant injectée depuis l'injecteur de carburant pour amener le rapport air-combustible du mélange gazeux d'air et de carburant à tendre vers un rapport critique air/carburant qui correspond sensiblement à celui de la limite de combustion stable dans chaque cylindre du moteur à combustion interne;(d) un moyen de renouvellement servant à renouveler le rapport air/carburant de mélange pauvre pour le faire tendre vers un rapport cible air/carburant qui est déterminé sur la base du rapport critique air/carburant.
- Dispositif selon la revendication 1, 2 ou 3, comportant en outre:un détecteur (201) de rapport air-combustible disposé dans un circuit d'échappement (200) du moteur à combustion interne (100) pour détecter un rapport air/carburant du mélange gazeux d'air et de carburant sur la base de la teneur en oxygène et de la teneur en carburant imbrûlé des gaz d'échappement du circuit d'échappement; etun circuit de commande servant à commander une quantité de carburant injectée depuis l'injecteur de carburant sur la base d'un signal de sortie du détecteur de rapport air/carburant afin que le rapport air/carburant du mélange gazeux d'air et de carburant soit un rapport cible air/carburant prédéterminé en fonction des conditions de fonctionnement du moteur à combustion interne, et détectant des conditions de combustion dans chaque cylindre du moteur à combustion interne sur la base du circuit de détection d'atténuation afin de régler la quantité de carburant injecté pour rendre sensiblement uniformes les conditions de combustion dans chaque cylindre du moteur à combustion interne.
- Dispositif selon la revendication 1, 2 ou 3, comportant en outre:un détecteur (201) de rapport air/carburant disposé dans un circuit d'échappement (200) du moteur à combustion interne (100) pour détecter un rapport air/carburant du mélange gazeux d'air et de carburant sur la base de la teneur en oxygène et de la teneur en carburant imbrûlé des gaz d'échappement du circuit d'échappement;un détecteur (82) d'oxygène disposé dans un circuit d'échappement du moteur à combustion interne pour détecter si un rapport air/carburant du moteur à combustion interne est ou n'est pas supérieur à un rapport stoechiométrique air/carburant sur la base de la teneur en oxygène et de la teneur en carburant imbrûlé des gaz d'échappement du circuit d'échappement; etun circuit de commande (80a-b) servant à commander une quantité de carburant injectée depuis l'injecteur de carburant sur la base d'un signal de sortie du détecteur d'oxygène afin que le rapport air/carburant du mélange gazeux d'air et de carburant soit le rapport stoechiométrique air/carburant prédéterminé en fonction des conditions de fonctionnement du moteur à combustion interne, et détectant des conditions de combustion dans chaque cylindre du moteur à combustion interne sur la base du dispositif de détection de conditions de combustion afin de régler la quantité de carburant injecté pour rendre sensiblement uniformes les conditions de combustion dans chaque cylindre du moteur à combustion interne.
- Dispositif selon la revendication 1, 2 ou 3, comportant en outre:un détecteur (8) de détection d'angle servant à détecter une variation de la vitesse angulaire d'un vilebrequin dans le moteur à combustion interne (100);un circuit de commande (90a-d) comprenant:(a) un moyen de réinjection servant à réguler dans certaines limites l'ampleur de la variation de la vitesse angulaire d'une manivelle, et réinjectant dans l'injecteur de façon que le rapport air/carburant du mélange gazeux d'air et de carburant soit un rapport air/carburant de mélange pauvre qui est prédéterminé en fonction des conditions de fonctionnement du moteur à combustion interne;(b) un moyen de distinction servant à détecter un rapport air/combustible correspondant à une limite de combustion stable dans chaque cylindre du moteur à combustion interne sur la base d'un signal de sortie du circuit de détection d'atténuation;(c) un moyen de réglage servant à régler la quantité de carburant injectée pour amener le rapport air-combustible du mélange d'air et de carburant à tendre vers un rapport critique air/carburant qui correspond sensiblement à celui de la limite de combustion stable dans chaque cylindre du moteur à combustion interne;(d) un moyen de renouvellement servant à renouveler le rapport air/carburant de mélange pauvre pour le faire tendre vers un rapport cible air/carburant qui est déterminé sur la base du rapport critique air/carburant.
- Dispositif selon la revendication 1, 2 ou 3, comportant en outre:un détecteur (9) de pression servant à détecter une pression de combustion dans un cylindre donné du moteur à combustion interne;un circuit de commande (95a-d) comprenant:(a) un moyen de réinjection servant à réguler dans certaines limites l'ampleur de la variation de la pression de combustion dans chaque cylindre du moteur à combustion interne, et réinjectant dans le détecteur de pression de l'injecteur de façon que le rapport air/carburant du mélange gazeux d'air et de carburant soit un rapport air/carburant de mélange pauvre qui est prédéterminé en fonction des conditions de fonctionnement du moteur à combustion interne;(b) un moyen de distinction servant à détecter un rapport air/combustible correspondant à une limite de combustion stable dans chaque cylindre du moteur à combustion interne sur la base d'un signal de sortie du circuit de détection d'atténuation;(c) un moyen de réglage servant à régler la quantité de carburant injectée pour amener le rapport air-combustible du mélange d'air et de carburant à tendre vers un rapport critique air/carburant qui correspond sensiblement à celui de la limite de combustion stable dans chaque cylindre du moteur à combustion interne; et(d) un moyen de renouvellement servant à renouveler le rapport air/carburant de mélange pauvre pour le faire tendre vers un rapport cible air/carburant qui est déterminé sur la base du rapport critique air/carburant.
- Dispositif de commande de combustion comportant un dispositif de détection de conditions de combustion selon l'une quelconque des revendications précédentes.
- Véhicule comportant un dispositif selon l'une quelconque des revendications précédentes.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3326138A JP2525979B2 (ja) | 1991-06-05 | 1991-12-10 | ガソリン機関の燃焼状態検出装置 |
JP326138/91 | 1991-12-10 | ||
JP52041/92 | 1992-03-11 | ||
JP5204192 | 1992-03-11 | ||
JP18620992A JPH064617A (ja) | 1992-06-18 | 1992-06-18 | I2 l論理回路のシミュレーション装置 |
JP4174398A JP2914825B2 (ja) | 1991-07-25 | 1992-07-01 | ガソリン機関の燃焼制御装置 |
JP174398/92 | 1992-07-01 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0546827A2 EP0546827A2 (fr) | 1993-06-16 |
EP0546827A3 EP0546827A3 (fr) | 1994-02-16 |
EP0546827B1 true EP0546827B1 (fr) | 1997-04-09 |
Family
ID=27462722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19920311273 Expired - Lifetime EP0546827B1 (fr) | 1991-12-10 | 1992-12-10 | Dispositif de commande et de détection des conditions de combustion par un moteur à combustion interne |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP0546827B1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19520852C1 (de) * | 1995-06-08 | 1996-09-19 | Vogt Electronic Ag | Vorrichtung und Verfahren zur Zündungserkennung |
DE19524541C1 (de) * | 1995-07-05 | 1996-12-05 | Telefunken Microelectron | Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine |
DE19614388C1 (de) * | 1996-04-12 | 1997-07-03 | Stiebel Eltron Gmbh & Co Kg | Verfahren und Vorrichtung zur Auswertung der Qualität eines Kraftstoff-Luftgemisches |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2356440A1 (de) * | 1973-11-12 | 1975-05-15 | Hartmann & Braun Ag | Einrichtung zur erfassung der zuendspannung |
DE3210810C2 (de) * | 1982-03-24 | 1984-11-08 | Mataro Co. Ltd., Georgetown, Grand Cayman Islands | Regelsystem zur Beeinflussung der Zusammensetzung der in einer fremdgezündeten Brennkraftmaschine zu verbrennenden Ladungen |
GB2105408B (en) * | 1982-06-09 | 1985-03-06 | Inst Francais Du Petrole | A method for automatically regulating the time of combustion initiation in an internal combustion engine |
EP0115907A3 (fr) * | 1983-01-10 | 1986-03-19 | Automotive Engine Associates | Contrôle de la régularité de combustion d'un moteur à combustion interne en boucle fermée pour contrôler le rapport air/combustible ou le recyclage des gaz d'échappement |
GB2141259A (en) * | 1983-06-03 | 1984-12-12 | Ford Motor Co | Automatic control of i.c. engines |
DE3882396T2 (de) * | 1987-02-26 | 1993-11-18 | Ngk Spark Plug Co | Gerät zur Bestimmung vom Mischungsverhältnis von Benzin und Alkohol oder ähnlichem. |
SE457831B (sv) * | 1987-08-27 | 1989-01-30 | Saab Scania Ab | Foerfarande och arrangemang foer detektering av joniseringsstroem i en foerbraenningsmotors taendsystem |
JPH02104978A (ja) * | 1988-10-13 | 1990-04-17 | Mitsubishi Electric Corp | 内燃機関の失火検出装置 |
US5036669A (en) * | 1989-12-26 | 1991-08-06 | Caterpillar Inc. | Apparatus and method for controlling the air/fuel ratio of an internal combustion engine |
US5365910A (en) * | 1991-05-14 | 1994-11-22 | Ngk Spark Plug Co., Ltd. | Misfire detector for use in internal combustion engine |
-
1992
- 1992-12-10 EP EP19920311273 patent/EP0546827B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0546827A2 (fr) | 1993-06-16 |
EP0546827A3 (fr) | 1994-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4621599A (en) | Method and apparatus for operating direct injection type internal combustion engine | |
US6360587B1 (en) | Pre-ignition detector | |
US5272914A (en) | Ignition system for internal combustion engines | |
US5365910A (en) | Misfire detector for use in internal combustion engine | |
JP2008522066A (ja) | 高速マルチスパーク点火 | |
EP0847495B1 (fr) | Procede pour commander l'allumage dans des moteurs a combustion interne | |
US5895839A (en) | Combustion state detecting apparatus for an internal-combustion engine | |
US5861551A (en) | Combustion state detecting apparatus for an internal-combustion engine | |
JPH09324735A (ja) | 内燃機関用燃焼状態検知装置 | |
US6564786B2 (en) | Apparatus and method for controlling ignition of an internal combustion engine | |
US6205844B1 (en) | Combustion state detecting device for an internal combustion engine | |
US5349299A (en) | Fuel supply misfire-detecting system for internal combustion engines | |
US5253627A (en) | Burning condition detecting device and burning control device in an internal combustion engine | |
US6040698A (en) | Combustion state detecting apparatus for an internal-combustion engine | |
EP0546827B1 (fr) | Dispositif de commande et de détection des conditions de combustion par un moteur à combustion interne | |
JP2572494B2 (ja) | ガソリン機関の燃焼状態および飛火ミス検出装置 | |
EP0513996A1 (fr) | Détecteur de ratés d'allumage pour un moteur à combustion interne | |
JP2914825B2 (ja) | ガソリン機関の燃焼制御装置 | |
US5365905A (en) | Misfire-detecting system for internal combustion engines | |
JP2525979B2 (ja) | ガソリン機関の燃焼状態検出装置 | |
JPH05164033A (ja) | 内燃機関の失火検出装置 | |
US5415148A (en) | Misfire-detecting system for internal combustion engines | |
CA1161101A (fr) | Dispositif d'allumage par etincelle pour moteurs a combustion interne | |
JPH0599113A (ja) | ガソリン機関の失火検出装置 | |
JP2641799B2 (ja) | イオン電流検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19940427 |
|
17Q | First examination report despatched |
Effective date: 19950622 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69218900 Country of ref document: DE Date of ref document: 19970515 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20021204 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021210 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031210 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20051209 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070703 |