EP0743490B1 - Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable - Google Patents

Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable Download PDF

Info

Publication number
EP0743490B1
EP0743490B1 EP96400863A EP96400863A EP0743490B1 EP 0743490 B1 EP0743490 B1 EP 0743490B1 EP 96400863 A EP96400863 A EP 96400863A EP 96400863 A EP96400863 A EP 96400863A EP 0743490 B1 EP0743490 B1 EP 0743490B1
Authority
EP
European Patent Office
Prior art keywords
orifices
zones
wall
axial
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96400863A
Other languages
German (de)
English (en)
Other versions
EP0743490A1 (fr
Inventor
Denis Roger Henri Ansart
Patrick Samuel André Ciccia
Michel André Albert Desaulty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0743490A1 publication Critical patent/EP0743490A1/fr
Application granted granted Critical
Publication of EP0743490B1 publication Critical patent/EP0743490B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/30Arrangement of components
    • F05B2250/32Arrangement of components according to their shape
    • F05B2250/322Arrangement of components according to their shape tangential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the present invention relates to a combustion chamber, in particular of a turbomachine, which is delimited by at least one wall axial provided with a plurality of through holes constituting a "multi-perforation" intended, in particular, for the passage of a refrigeration of said axial wall, and provided with a plurality of holes for dilution regularly distributed in a transverse plane compared to the general direction of the flow of burnt gases from the combustion, each orifice having a geometric axis inclined at an angle A relative to the normal to said wall, said genometric axis being arranged in a plane containing said normal which makes an angle B by relation to the plan defined by said normal and the general direction flue gas flow.
  • the cooling mode by multiperforation is known.
  • the orifices are generally staggered with a network of equidistant meshes.
  • EP-A-0 486 133 discloses a wall of this type, in which the orifices are inclined in axial planes.
  • EP-A-0 492 864 further reveals that the orifices are also inclined by a tangential angle B which generally coincides with the angle of the flue gas vortex along the internal surface of the wall.
  • EP-A-0 592 161 shows in FIG. 6 an annular wall multi-perforated combustion chamber in which the orifices are defined by an axial inclination A and a tangential angle B of in such a way that the flow of fresh air introduced into the room creates a protective crown of air which swirls around the flow of burnt gases.
  • 3D calculations show that the flow of gases in the combustion chamber is not always longitudinal, but only in some areas it is slightly tilted or even opposed to flow, especially downstream of the dilution holes. It can be produce detachments of cooling air in these areas.
  • the purpose of the present invention is to prevent the air from the multiperforation does not take off from the wall.
  • the present invention therefore proposes to locally orient the orifices according to the local flow of the burnt gases.
  • the wall is subdivided into several zones, in each of which the orifices are defined by inclinations A and angles B respectively having identical values and calculated as a function characteristics of the flue gas flow in each of said zones.
  • said wall is subdivided in particular into first zones located respectively downstream of the dilution holes, and in which the orifices are directed against the current of the general direction of the flue gas flow, second and third zones arranged on either side of said first zones with respect to axial planes passing through the corresponding dilution holes, and a fourth zone covering the rest of said wall.
  • the holes in the fourth zone have an inclination axial greater than 30. Their angle B is substantially equal to 0 °. The flow of fresh air from these holes licks the surface internal wall in the direction of the axial flow of the burnt gases.
  • the orifices made in the first zones diffuse a cooling air against the current of the general direction of flue gas flow.
  • Their tilt A is between 0 ° and -60 °, and their angle B is substantially equal to 0 °.
  • a second and a third zone are provided, of which the orifices diffuse cooling air towards the passing axial plane through the corresponding dilution hole and in the direction of the general flow of burnt gases.
  • the combustion chamber 1 of annular type, has a outer annular axial wall 2 and an annular axial wall interior 3, joined at their upstream ends by a chamber bottom 4 equipped with injection systems 5, and having between their ends downstream an annular opening 6 for the exhaust of the burnt gases G towards a turbine not shown in the drawings.
  • the burnt gases G circulate in the internal cavity 7 of the combustion chamber 1 according to an axial general direction represented by the arrow D.
  • outer 2 and inner 3 axial walls define with the outer casings 8 and inner 9 of the annular passages 10 and 11 in which circulates cooling air A coming from a compressor not shown in the drawings and located upstream of the combustion 1.
  • the two walls 2 and 3 are provided with a plurality of holes for dilution 12 regularly distributed in an axial plane 13 perpendicular to the axis of the turbomachine, and a plurality of through holes 14 constituting a multi-perforation.
  • Part of the cooling air A enters axially into the internal cavity 7 through the dilution holes 12 and participates in depletion and cooling of the combustion gases in the dilution zone of combustion chamber 1, while the rest of air A enters the internal cavity 7 through the orifices 14 in order to form a cooling film on internal faces 2a and 3a of the walls axial 2 and 3.
  • Figure 2 shows the gas velocity diagram at vicinity of the internal face 2a of the external wall 2, in the region of two dilution holes 12a and 12b, this diagram having been obtained by 3D calculations.
  • This diagram shows that in zone 15 which separates the two dilution holes 12a and 12b, the gases flow in the direction D.
  • zones 16 located immediately downstream of the dilution 12a and 12b the gases flow on the contrary towards the holes of dilution 12a and 12b, i.e. in a direction globally opposite to direction D.
  • each zone 16 On either side of each zone 16, the gases flow in a direction inclined towards the axial plane 18 passing through the dilution hole corresponding, and generally directed in the direction of flow general of burnt gases D.
  • the burnt gases circulate according to direction D.
  • the 3D temperature diagram in the vicinity of the dilution also shows significant differences depending on the area.
  • the region of the wall 2 is subdivided and 3 which comprises the orifices 14 in several zones, in each of which, the angles of inclination A of the axes 30 of the orifices 14 by compared to the normal 31 to the wall are identical as well as the angles B planes 32 containing said axes 30 and the normals 31 relative to to the axial planes 33 containing said normal.
  • FIG 3 there is shown an axial wall portion 34 comprising two dilution holes 12a and 12b.
  • the arrow D represents the general direction of the flue gas flow in the combustion 1.
  • References 16a and 16b represent first zones in which the burnt gases flow against the current.
  • the burnt gases In the second zones 17a and 17b situated to the left of the axial planes 18a and 18b, the burnt gases generally flow in the direction of the arrows 19.
  • the gases In the third zones 19a and 19b located to the right of axial plane 18a and 18b, the gases flow in the direction of the arrows 20.
  • the gases flow generally in the direction of the arrow D.
  • the orifices 14 formed in the fourth zone 21 are defined by an inclination A 4 greater than 30 ° and an angle B substantially equal to 0 °.
  • the cooling air diffused by these orifices 14 enters the combustion chamber 1, in the general flow direction D of the gases, but with an inclination A 4 .
  • the orifices 14 formed in the first zone 16a are inclined so as to allow a diffusion of cooling air against the current of the general direction D.
  • the axes 30 of these orifices 14 form an angle A 1 with the normals 31 which is between -60 ° and 0 °.
  • the axes 30 of these orifices 14 are also parallel to the axial plane 18a passing through the axis 35 of the dilution hole 12a.
  • FIG 5 there is shown a small part 36 of the outer wall 2 at a third area 19b.
  • the orifices are drilled at an inclination A 3 relative to the normal 31 and in a plane making an angle B 3 with respect to the direction of the main flow D.
  • the angle B 3 is calculated in function of the average direction of local gas flow in the third zone 19b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

La présente invention concerne une chambre de combustion, notamment de turbomachine, qui est délimitée par au moins une paroi axiale munie d'une pluralité d'orifices traversant constituant une "multiperforation" destinée, notamment, au passage d'un fluide de réfrigération de ladite paroi axiale, et munie d'une pluralité de trous de dilution régulièrement répartis dans un plan transversal par rapport à la direction générale de l'écoulement des gaz brûlés provenant de la combustion, chaque orifice ayant un axe géométrique incliné d'un angle A par rapport à la normale à ladite paroi, ledit axe génmétrique étant disposé dans un plan contenant ladite normale qui fait un angle B par rapport au plan défini par ladite normale et la direction générale d'écoulement des gaz brûlés.
Le mode de refroidissement par multiperforation est connu. Les orifices sont généralement disposés en quinconce avec un réseau de mailles équidistantes.
Ces orifices sont alimentés par de l'air de refroidissement issu du compresseur. Les échanges de chaleur mises en jeu sont alors, la convection forcée à l'intérieur des orifices, la conduction au sein même de la paroi. L'alimentation en air de refroidissement de ces orifices génère, en aval de l'écoulement, sur la partie interne de la paroi, un film protecteur entre la paroi de chambre et les gaz brûlés provenant de la combustion. Afin de limiter la dégradation de l'efficacité de ce film, on fait en sorte que l'air de refroidissement ne se mélange pas trop tôt aux gaz brûlés. Pour cela les orifices sont inclinés d'un angle A par rapport à la normale à la paroi interne, de sorte que l'air de refroidissement vienne lécher cette paroi à refroidir.
EP-A-0 486 133 dévoile une paroi de ce type, dans lequel les orifices sont inclinés dans des plans axiaux.
EP-A-0 492 864 révèle, en outre, que les orifices sont également inclinés d'un angle tangentiel B qui coïncide globalement avec l'angle du tourbillon des gaz de combustion le long de la surface interne de la paroi.
EP-A-0 592 161 montre en figure 6 une paroi annulaire multiperforée d'une chambre de combustion dans laquelle les orifices sont définis par une inclinaison axiale A et un angle tangentiel B de telle manière que le flux d'air frais introduit dans la chambre crée une couronne d'air protecteur qui tourbillonne autour du flux des gaz brûlés.
Dans tous les documents précédents, les inclinaisons A et les angles B qui définissent la direction des axes de chaque orifice par rapport à la direction générale d'écoulement des gaz brûlés, sont respectivement égaux à des valeurs déterminées.
Or, les calculs 3D montrent que l'écoulement des gaz dans la chambre de combustion n'est pas toujours longitudinal, mais que dans certaines zones, il est légèrement incliné, voire même opposé à l'écoulement, notamment en aval des trous de dilution. Il peut se produire des décollements de l'air de refroidissement dans ces zones.
Le but de la présente invention est d'éviter que l'air issu de la multiperforation ne décolle de la paroi.
La présente invention propose donc d'orienter localement les orifices en fonction de l'écoulement local des gaz brûlés.
Dans, la chambre de combustion connue par EP-A-0 492 864 cité ci-dessus la paroi est subdivisée en plusieurs zones, dans chacune desquelles les orifices sont définis par des inclinaisons A et des angles B ayant respectivement des valeurs identiques et calculées en fonction des caractéristiques de l'écoulement des gaz brûlés dans chacune desdites zones.
Selon l'invention, ladite paroi est subdivisée notamment en des premières zones situées respectivement en aval des trous de dilution, et dans lesquelles les orifices sont dirigés à contre courant de la direction générale de l'écoulement des gaz brûlés, des deuxièmes et troisièmes zones disposées de part et d'autre desdites premières zones par rapport aux plans axiaux passant par les trous de dilution correspondants, et une quatrième zone recouvrant le reste de ladite paroi.
Les orifices ménagés dans la quatrième zone ont une inclinaison axiale supérieure à 30. Leur angle B est sensiblement égal à 0°. L'écoulement d'air frais issu de ces orifices vient lécher la surface interne de la paroi dans le sens de l'écoulement axial des gaz brûlés.
Les orifices ménagés dans les premières zones, c'est-à-dire en aval des trous de dilution, diffusent un air de refroidissement à contre-courant de la direction générale d'écoulement des gaz brûlés. Leur inclinaison A est comprise entre 0° et -60°, et leur angle B est sensiblement égal à 0°.
De part et d'autre de chacune des premières zones, dans le sens circonférentiel, il est prévu une deuxième et une troisième zones, dont les orifices diffusent un air de refroidissement vers le plan axial passant par le trou de dilution correspondant et dans la direction de l'écoulement général des gaz brûlés.
D'autres avantages et caractéristiques de l'invention ressortiront à la lecture de la description suivante faite à titre d'exemple et en référence aux dessins annexés dans lesquels :
  • La figure 1 montre en coupe une chambre de combustion annulaire d'une turbomachine ;
  • la figure 2 est une représentation 3D de l'écoulement des gaz brûlés au voisinage de deux trous de dilution ;
  • la figure 3 montre la subdivision de la paroi multiperforée en plusieurs zones homogènes ;
  • la figure 4 est une coupe axiale à grande échelle de la paroi multiperforée selon un plan axial passant par l'axe d'un trou de dilution ;
  • la figure 5 est une représentation en perspective d'une portion de paroi dans laquelle les orifices de la multiperforation ont une inclinaison axiale et tangentielle.
  • La chambre de combustion 1, de type annulaire, comporte une paroi axiale annulaire extérieure 2 et une paroi axiale annulaire intérieure 3, réunies à leurs extrémités amont par un fond de chambre 4 équipé de systèmes d'injection 5, et présentant entre leurs extrémités aval une ouverture annulaire 6 pour l'échappement des gaz brûlés G vers une turbine non représentée sur les dessins. Les gaz brûlés G circulent dans la cavité interne 7 de la chambre de combustion 1 selon une direction générale axiale représentée par la flèche D.
    Les parois axiales extérieure 2 et intérieure 3 délimitent avec les carters extérieur 8 et intérieur 9 des passages annulaires 10 et 11 dans lesquels circule un air de refroidissement A issu d'un compresseur non représenté sur les dessins et situé en amont de la chambre de combustion 1.
    Les deux parois 2 et 3 sont munis d'une pluralité- de trous de dilution 12 régulièrement répartis dans un plan axial 13 perpendiculaire à l'axe de la turbomachine, et d'une pluralité d'orifices traversants 14 constituant une multiperforation.
    Une partie de l'air de refroidissement A pénètre axialement dans la cavité interne 7 par les trous de dilution 12 et participe à l'appauvrissement et au refroidissement des gaz de combustion dans la zone de dilution de la chambre de combustion 1, tandis que le reste de l'air A pénètre dans la cavité interne 7 par les orifices 14 afin de former un film de refroidissement sur des faces internes 2a et 3a des parois axiales 2 et 3.
    La figure 2 montre le diagramme des vitesses des gaz au voisinage de la face interne 2a de la paroi extérieure 2, dans la région de deux trous de dilution 12a et 12b, ce diagramme ayant été obtenu par des calculs 3D.
    Ce diagramme montre que, dans la zone 15 qui sépare les deux trous de dilution 12a et 12b, les gaz s'écoulent dans la direction D.
    Dans les zones 16 situées immédiatement en aval des trous de dilution 12a et 12b, les gaz circulent au contraire vers les trous de dilution 12a et 12b, c'est-à-dire dans une direction globalement opposée à la direction D.
    De part et d'autre de chaque zone 16, les gaz s'écoulent selon une direction inclinée vers le plan axial 18 passant par le trou de dilution correspondant, et globalement dirigée dans le sens de l'écoulement général des gaz brûlés D.
    En amont des trous de dilution 12a et 12b et dans la région éloignée des trous de dilution 12a et 12b, les gaz brûlés circulent selon la direction D.
    Le diagramme 3D des températures au voisinage des trous de dilution montre également des écarts notables en fonction des zones.
    Selon la présente invention, on subdivise la région de la paroi 2 et 3 qui comporte les orifices 14 en plusieurs zones, dans chacune desquelles, les angles d'inclinaison A des axes 30 des orifices 14 par rapport aux normales 31 à la paroi sont identiques, ainsi que les angles B des plans 32 contenant lesdits axes 30 et les normales 31 par rapport aux plans axiaux 33 contenant lesdites normales.
    Sur la figure 3, on a représenté une portion de paroi axiale 34 comportant deux trous de dilution 12a et 12b. La flèche D représente la direction générale de l'écoulement des gaz brûlés dans la chambre de combustion 1.
    Les références 16a et 16b représentent des premières zones dans lesquelles les gaz brûlés s'écoulent à contre-courant. Dans les deuxièmes zones 17a et 17b situées à gauche des plans axiaux 18a et 18b, les gaz brûlés s'écoulent dans l'ensemble selon la direction des flèches 19. Dans les troisièmes zones 19a et 19b situées à droite des plan axiaux 18a et 18b, les gaz s'écoulent dans le sens des flèches 20.
    Dans la quatrième zone 21 située en dehors des zones 16a, 16b, 17a, 17b, 19a et 19b, les gaz s'écoulent globalement dans le sens de la flèche D.
    Comme on le voit sur la figure 4, les orifices 14 ménagés dans la quatrième zone 21 sont définis par une inclinaison A4 supérieure à 30° et un angle B sensiblement égal à 0°. L'air de refroidissement diffusé par ces orifices 14 pénètre dans la chambre de combustion 1, dans le sens de l'écoulement général D des gaz, mais avec une inclinaison A4.
    Les orifices 14 ménagés dans la première zone 16a sont inclinés de manière à permettre une diffusion d'un air de refroidissement à contre-courant de la direction générale D. Les axes 30 de ces orifices 14 font un angle A1 avec les normales 31 qui est compris entre -60° et 0°. Les axes 30 de ces orifices 14 sont également parallèles au plan axial 18a passant par l'axe 35 du trou de dilution 12a.
    Sur la figure 5, on a représenté une petite partie 36 de la paroi extérieure 2 au niveau d'une troisième zone 19b. Dans cette troisième zone 19b, les orifices sont percés selon une inclinaison A3 par rapport à la normale 31 et dans un plan faisant un angle B3 par rapport à la direction de l'écoulement principal D. L'angle B3 est calculé en fonction de la direction moyenne de l'écoulement local des gaz dans la troisième zone 19b.

    Claims (6)

    1. Chambre de combustion, notamment de turbomachine, qui est délimitée par au moins une paroi axiale (2, 3) munie d'une pluralité d'orifices (14) traversant constituant une "multiperforation" destinée, notamment, au passage d'un fluide de réfrigération (A) de ladite paroi axiale (2, 3), et munie d'une pluralité de trous de dilution (12) régulièrement répartis dans un plan transversal (13) par rapport à la direction générale (D) de l'écoulement des gaz brûlés (G) provenant de la combustion, chaque orifice (14) ayant un axe géométrique (30) incliné d'un angle A par rapport à la normale (31) à ladite paroi (2, 3) ledit axe géométrique (30) étant disposé dans un plan (32) contenant ladite normale (31) qui fait un angle B par rapport au plan (33) défini par ladite normale et la direction générale (D) d'écoulement des gaz brûlés, dans laquelle
      la paroi (2, 3) est subdivisée en plusieurs zones (16a, 16b, 17a, 17b, 19a, 19b, 21), dans chacune desquelles les orifices (14) sont définis par des inclinaisons A et des angles B ayant respectivement des valeurs identiques et calculées en fonction de l'écoulement local des gaz brûlés (6) dans chacune desdites zones,
      caractérisée par le fait que ladite paroi (2, 3) est subdivisée en des premières zones (16a, 16b) situées respectivement en aval des trous de dilution (12a, 12b) et dans lesquelles les orifices (14) sont dirigés à contre-courant de la direction générale (D) de l'écoulement des gaz brûlés (G), des deuxièmes (17a, 17b) et troisièmes zones disposées de part et d'autre desdites premières zones (16a, 16b) par rapport aux plan axiaux (18a, 18b) passant par les trous de dilution (12a, 12b) correspondants, et une quatrième zone (21) recouvrant le reste de ladite paroi (2, 3).
    2. Chambre selon la revendication 1, caractérisée par le fait que les orifices (14) ménagés dans la quatrième zone (21) sont définis par une inclinaison A supérieure à 30°.
    3. Chambre selon la revendication 2, caractérisée par le fait que les orifices (14) ménagés dans la quatrième zone (21) sont définis par un angle B sensiblement égal à 0°.
    4. Chambre selon la revendication 1, caractérisée par le fait que les orifices (14) ménagés dans les premières zones (16a, 16b) sont définis par une inclinaison A comprise entre 0° et -60°.
    5. Chambre selon la revendication 4, caractérisée par le fait que les orifices (14) ménagés dans les premières zones (16a, 16b) sont définis par un angle B sensiblement égal à 0°.
    6. Chambre selon la revendication 2, caractérisée par le fait que les orifices (14) ménagés dans les deuxièmes zones (17a, 17b) sont définis par des angles B ayant des valeurs opposées aux angles B définissant les orifices (14) ménagés dans les troisièmes zones (19a, 19b).
    EP96400863A 1995-04-26 1996-04-24 Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable Expired - Lifetime EP0743490B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9504968A FR2733582B1 (fr) 1995-04-26 1995-04-26 Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable
    FR9504968 1995-04-26

    Publications (2)

    Publication Number Publication Date
    EP0743490A1 EP0743490A1 (fr) 1996-11-20
    EP0743490B1 true EP0743490B1 (fr) 1999-06-09

    Family

    ID=9478445

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96400863A Expired - Lifetime EP0743490B1 (fr) 1995-04-26 1996-04-24 Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable

    Country Status (5)

    Country Link
    US (1) US5775108A (fr)
    EP (1) EP0743490B1 (fr)
    JP (1) JP3302559B2 (fr)
    DE (1) DE69602804T2 (fr)
    FR (1) FR2733582B1 (fr)

    Families Citing this family (41)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2770283B1 (fr) * 1997-10-29 1999-11-19 Snecma Chambre de combustion pour turbomachine
    US6145319A (en) * 1998-07-16 2000-11-14 General Electric Company Transitional multihole combustion liner
    US6408629B1 (en) 2000-10-03 2002-06-25 General Electric Company Combustor liner having preferentially angled cooling holes
    US6620457B2 (en) * 2001-07-13 2003-09-16 General Electric Company Method for thermal barrier coating and a liner made using said method
    FR2856468B1 (fr) * 2003-06-17 2007-11-23 Snecma Moteurs Chambre de combustion annulaire de turbomachine
    FR2856467B1 (fr) * 2003-06-18 2005-09-02 Snecma Moteurs Chambre de combustion annulaire de turbomachine
    US7146816B2 (en) * 2004-08-16 2006-12-12 Honeywell International, Inc. Effusion momentum control
    US20060037323A1 (en) * 2004-08-20 2006-02-23 Honeywell International Inc., Film effectiveness enhancement using tangential effusion
    US7464554B2 (en) * 2004-09-09 2008-12-16 United Technologies Corporation Gas turbine combustor heat shield panel or exhaust panel including a cooling device
    US7614235B2 (en) * 2005-03-01 2009-11-10 United Technologies Corporation Combustor cooling hole pattern
    FR2892180B1 (fr) * 2005-10-18 2008-02-01 Snecma Sa Amelioration des perfomances d'une chambre de combustion par multiperforation des parois
    US7631502B2 (en) * 2005-12-14 2009-12-15 United Technologies Corporation Local cooling hole pattern
    US7546737B2 (en) * 2006-01-24 2009-06-16 Honeywell International Inc. Segmented effusion cooled gas turbine engine combustor
    FR2899315B1 (fr) * 2006-03-30 2012-09-28 Snecma Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine
    US7887322B2 (en) * 2006-09-12 2011-02-15 General Electric Company Mixing hole arrangement and method for improving homogeneity of an air and fuel mixture in a combustor
    US7942006B2 (en) * 2007-03-26 2011-05-17 Honeywell International Inc. Combustors and combustion systems for gas turbine engines
    US8091367B2 (en) * 2008-09-26 2012-01-10 Pratt & Whitney Canada Corp. Combustor with improved cooling holes arrangement
    FR2941287B1 (fr) * 2009-01-19 2011-03-25 Snecma Paroi de chambre de combustion de turbomachine a une seule rangee annulaire d'orifices d'entree d'air primaire et de dilution
    US8640464B2 (en) * 2009-02-23 2014-02-04 Williams International Co., L.L.C. Combustion system
    FR2955374B1 (fr) * 2010-01-15 2012-05-18 Turbomeca Chambre de combustion multi-percee a ecoulements tangentiels contre giratoires
    FR2974162B1 (fr) * 2011-04-14 2018-04-13 Safran Aircraft Engines Virole de tube a flamme dans une chambre de combustion de turbomachine
    FR2979416B1 (fr) * 2011-08-26 2013-09-20 Turbomeca Paroi de chambre de combustion
    EP3039340B1 (fr) * 2013-08-30 2018-11-28 United Technologies Corporation Passages de dilution à tourbillonnement à section contractée pour chambre de combustion de moteur à turbine à gaz
    US9453424B2 (en) * 2013-10-21 2016-09-27 Siemens Energy, Inc. Reverse bulk flow effusion cooling
    FR3013996B1 (fr) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera Procede de reparation locale de barrieres thermiques
    FR3014115B1 (fr) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera Procede et systeme de depot d'oxyde sur un composant poreux
    WO2015103357A1 (fr) 2013-12-31 2015-07-09 United Technologies Corporation Ensemble paroi de moteur à turbine à gaz à architecture d'écoulement améliorée
    EP3099976B1 (fr) 2014-01-30 2019-03-13 United Technologies Corporation Flux de refroidissement pour un panneau principal dans une chambre de combustion de moteur à turbine à gaz
    US20160258623A1 (en) * 2015-03-05 2016-09-08 United Technologies Corporation Combustor and heat shield configurations for a gas turbine engine
    DE102016201452A1 (de) 2016-02-01 2017-08-03 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer mit Wandkonturierung
    JP6026028B1 (ja) * 2016-03-10 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法
    US10823410B2 (en) 2016-10-26 2020-11-03 Raytheon Technologies Corporation Cast combustor liner panel radius for gas turbine engine combustor
    US10830448B2 (en) 2016-10-26 2020-11-10 Raytheon Technologies Corporation Combustor liner panel with a multiple of heat transfer augmentors for a gas turbine engine combustor
    US10670269B2 (en) * 2016-10-26 2020-06-02 Raytheon Technologies Corporation Cast combustor liner panel gating feature for a gas turbine engine combustor
    US10669939B2 (en) 2016-10-26 2020-06-02 Raytheon Technologies Corporation Combustor seal for a gas turbine engine combustor
    US10935243B2 (en) 2016-11-30 2021-03-02 Raytheon Technologies Corporation Regulated combustor liner panel for a gas turbine engine combustor
    US11015529B2 (en) 2016-12-23 2021-05-25 General Electric Company Feature based cooling using in wall contoured cooling passage
    US10480327B2 (en) 2017-01-03 2019-11-19 General Electric Company Components having channels for impingement cooling
    US10753283B2 (en) 2017-03-20 2020-08-25 Pratt & Whitney Canada Corp. Combustor heat shield cooling hole arrangement
    US11029027B2 (en) 2018-10-03 2021-06-08 Raytheon Technologies Corporation Dilution/effusion hole pattern for thick combustor panels
    CN113251441B (zh) * 2021-06-28 2022-03-25 南京航空航天大学 一种新型航天发动机用多斜孔板椭球摆冷却结构

    Family Cites Families (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR512723A (fr) * 1920-01-05 1921-01-29 Rene Lucien Joseph Pierrel Générateur de gaz sous pression par combustion continue en vase clos
    GB1271084A (en) * 1968-05-13 1972-04-19 T C Borrie Ltd Improvements in or relating to cartridge-operated hand tools
    IL42390A0 (en) * 1972-08-02 1973-07-30 Gen Electric Impingement cooled combustor dome
    US3916619A (en) * 1972-10-30 1975-11-04 Hitachi Ltd Burning method for gas turbine combustor and a construction thereof
    DE2607214A1 (de) * 1976-02-23 1977-09-01 Volkswagenwerk Ag Brennkammer fuer gasturbinen
    FR2410138A2 (fr) * 1977-11-29 1979-06-22 Snecma Perfectionnements aux chambres de combustion pour moteur a turbine a gaz
    CH634128A5 (de) * 1978-06-13 1983-01-14 Bbc Brown Boveri & Cie Kuehlvorrichtung an einer wand.
    US4790140A (en) * 1985-01-18 1988-12-13 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Liner cooling construction for gas turbine combustor or the like
    DE3711751A1 (de) * 1987-04-07 1988-10-20 Bergwerksverband Gmbh Gleichstromdatenuebertragungseinrichtung
    GB2221979B (en) * 1988-08-17 1992-03-25 Rolls Royce Plc A combustion chamber for a gas turbine engine
    US5329773A (en) * 1989-08-31 1994-07-19 Alliedsignal Inc. Turbine combustor cooling system
    US5181379A (en) * 1990-11-15 1993-01-26 General Electric Company Gas turbine engine multi-hole film cooled combustor liner and method of manufacture
    CA2056592A1 (fr) * 1990-12-21 1992-06-22 Phillip D. Napoli Chemise de chambre de combustion a refroidissement par gaine d'air a trous multiples avec demarreur a gaine d'air rainuree
    US5241827A (en) * 1991-05-03 1993-09-07 General Electric Company Multi-hole film cooled combuster linear with differential cooling
    US5307637A (en) * 1992-07-09 1994-05-03 General Electric Company Angled multi-hole film cooled single wall combustor dome plate
    GB9220937D0 (en) * 1992-10-06 1992-11-18 Rolls Royce Plc Gas turbine engine combustor
    US5323602A (en) * 1993-05-06 1994-06-28 Williams International Corporation Fuel/air distribution and effusion cooling system for a turbine engine combustor burner
    FR2714152B1 (fr) * 1993-12-22 1996-01-19 Snecma Dispositif de fixation d'une tuile de protection thermique dans une chambre de combustion.

    Also Published As

    Publication number Publication date
    DE69602804D1 (de) 1999-07-15
    JPH08312960A (ja) 1996-11-26
    FR2733582B1 (fr) 1997-06-06
    DE69602804T2 (de) 2000-01-27
    EP0743490A1 (fr) 1996-11-20
    US5775108A (en) 1998-07-07
    FR2733582A1 (fr) 1996-10-31
    JP3302559B2 (ja) 2002-07-15

    Similar Documents

    Publication Publication Date Title
    EP0743490B1 (fr) Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable
    EP2771618B1 (fr) Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution
    CA2987526C (fr) Paroi annulaire de chambre de combustion a refroidissement optimise
    EP0803681B1 (fr) Optimisation du mélange des gaz brûlés dans une chambre de combustion annulaire
    CA2639980C (fr) Chambre de combustion d'une turbomachine
    CA2503066C (fr) Anneau de turbine
    EP1818613B1 (fr) Chambre de combustion d'une turbomachine
    CA2475083C (fr) Circuits de refroidissement pour aube de turbine a gaz
    FR2752916A1 (fr) Chemise de protection thermique pour chambre de combustion de turboreacteur
    CA2636659C (fr) Deflecteur de fond de chambre, chambre de combustion le comportant et moteur a turbine a gaz en etant equipe
    EP1777458A1 (fr) Amélioration des performances d'une chambre de combustion par multiperforation des parois
    EP0481885B1 (fr) Dispositif de refroidissement de la paroi d'une chambre de combustion
    FR2599821A1 (fr) Chambre de combustion pour turbomachines a orifices de melange assurant le positionnement de la paroi chaude sur la paroi froide
    FR2639678A1 (fr) Compartiment, notamment a chicanes, du type resonateur de helmholtz attenuateur de bruits, chemisage acoustique notamment annulaire, pour un canal notamment annulaire d'un moteur a turbines a gaz, et moteur equipe de ces dispositifs
    WO2018060627A1 (fr) Aube de turbine comportant un circuit de refroidissement
    CA2598543A1 (fr) Chambre de combustion annulaire d'une turbomachine
    EP0752560A1 (fr) Chambre de combustion comportant une paroi annulaire multiperforée
    FR2999277A1 (fr) Paroi annulaire de chambre de combustion en aval d'un compresseur centrifuge
    EP3359880B1 (fr) Chambre de combustion annulaire pour turbomachine
    FR3036753A1 (fr) Cage annulaire de palier a roulement pour une turbomachine
    FR3098569A1 (fr) Paroi annulaire pour chambre de combustion de turbomachine comprenant des trous primaires, des trous de dilution et des orifices de refroidissement inclines
    CA3110912A1 (fr) Boitier d'alimentation en air sous pression d'un dispositif de refroidissement par jets d'air
    FR3070058A1 (fr) Turbomachine pour aeronef comprenant un element de refroidissement ameliorant le refroidissement par convection et offrant un refroidissement par impact de jet d'air d'une bride de liaison terminale de paroi de chambre annulaire de combustion

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19960515

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    17Q First examination report despatched

    Effective date: 19971031

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990610

    REF Corresponds to:

    Ref document number: 69602804

    Country of ref document: DE

    Date of ref document: 19990715

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20120517 AND 20120523

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140327

    Year of fee payment: 19

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140321

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20150414

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 69602804

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20150424

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20151103

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20150424