EP0743490A1 - Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable - Google Patents

Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable Download PDF

Info

Publication number
EP0743490A1
EP0743490A1 EP96400863A EP96400863A EP0743490A1 EP 0743490 A1 EP0743490 A1 EP 0743490A1 EP 96400863 A EP96400863 A EP 96400863A EP 96400863 A EP96400863 A EP 96400863A EP 0743490 A1 EP0743490 A1 EP 0743490A1
Authority
EP
European Patent Office
Prior art keywords
orifices
zones
wall
flow
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96400863A
Other languages
German (de)
English (en)
Other versions
EP0743490B1 (fr
Inventor
Denis Roger Henri Ansart
Patrick Samuel André Ciccia
Michel André Albert Desaulty
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0743490A1 publication Critical patent/EP0743490A1/fr
Application granted granted Critical
Publication of EP0743490B1 publication Critical patent/EP0743490B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/30Arrangement of components
    • F05B2250/32Arrangement of components according to their shape
    • F05B2250/322Arrangement of components according to their shape tangential
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the present invention relates to a combustion chamber, in particular of a turbomachine, which is delimited by at least one axial wall provided with a plurality of through orifices constituting a "multi-perforation" intended, in particular, for the passage of a refrigeration fluid from said axial wall, and provided with a plurality of dilution holes regularly distributed in a transverse plane with respect to the general direction of the flow of the burnt gases originating from the combustion, each orifice having a geometric axis inclined at an angle A by with respect to the normal to said wall, said genometric axis being arranged in a plane containing said normal which makes an angle B with respect to the plane defined by said normal and the general direction of flow of the burnt gases.
  • the cooling mode by multiperforation is known.
  • the orifices are generally arranged in staggered rows with an equidistant network of meshes.
  • These ports are supplied with cooling air from the compressor.
  • the heat exchanges involved are then, forced convection inside the orifices, conduction within the wall itself.
  • the supply of cooling air to these orifices generates, downstream of the flow, on the internal part of the wall, a protective film between the chamber wall and the burnt gases from the combustion. In order to limit the degradation of the efficiency of this film, it is ensured that the cooling air does not mix too soon with the burnt gases.
  • the orifices are inclined at an angle A relative to the normal to the internal wall, so that the cooling air comes to lick this wall to be cooled.
  • EP-A-0 486 133 discloses a wall of this type, in which the orifices are inclined in axial planes.
  • EP-A-0 492 864 further reveals that the orifices are also inclined at a tangential angle B which generally coincides with the angle of the vortex of the combustion gases along the internal surface of the wall.
  • EP-A-0 592 161 shows in FIG. 6 a multi-perforated annular wall of a combustion chamber in which the orifices are defined by an axial inclination A and a tangential angle B of in such a way that the flow of fresh air introduced into the chamber creates a ring of protective air which swirls around the flow of the burnt gases.
  • 3D calculations show that the flow of gases in the combustion chamber is not always longitudinal, but that in certain areas, it is slightly inclined, or even opposite to the flow, in particular downstream of the dilution holes. . There may be detachments from the cooling air in these areas.
  • the purpose of the present invention is to prevent the air from the multi-perforation from taking off from the wall.
  • the present invention therefore proposes to locally orient the orifices as a function of the local flow of the burnt gases.
  • the combustion chamber is characterized in that the wall is subdivided into several zones, in each of which the orifices are defined by inclinations A and angles B having respectively identical values and calculated according to the characteristics of the flow of burnt gases in each of said zones.
  • Said wall is subdivided in particular into first zones situated respectively downstream of the dilution holes, and in which the orifices are directed against the current of the general direction of the flow of the burnt gases, of the second and third zones arranged on both sides another of said first zones with respect to the axial planes passing through the corresponding dilution holes, and a fourth zone covering the rest of said wall.
  • the orifices formed in the fourth zone have an axial inclination greater than 30. Their angle B is substantially equal to 0 °. The flow of fresh air from these orifices licks the internal surface of the wall in the direction of the axial flow of the burnt gases.
  • the orifices formed in the first zones diffuse a cooling air counter-current to the general direction of flow of the burnt gases.
  • Their inclination A is between 0 ° and -60 °, and their angle B is substantially equal to 0 °.
  • each of the first zones in the circumferential direction, there is provided a second and a third zone, the orifices of which distribute cooling air towards the axial plane passing through the corresponding dilution hole and in the direction of the general flow of burnt gases.
  • the combustion chamber 1 of annular type, comprises an outer annular axial wall 2 and an inner annular axial wall 3, joined at their upstream ends by a chamber bottom 4 equipped with injection systems 5, and having between their downstream ends an annular opening 6 for the exhaust of the burnt gases G towards a turbine not shown in the drawings.
  • the burnt gases G circulate in the internal cavity 7 of the combustion chamber 1 in a general axial direction represented by the arrow D.
  • outer 2 and inner 3 axial walls define, with the outer 8 and inner 9 casings, annular passages 10 and 11 in which circulates cooling air A coming from a compressor not shown in the drawings and located upstream of the combustion chamber 1.
  • the two walls 2 and 3 are provided with a plurality of dilution holes 12 regularly distributed in an axial plane 13 perpendicular to the axis of the turbomachine, and with a plurality of through holes 14 constituting a multi-perforation.
  • Part of the cooling air A enters axially into the internal cavity 7 through the dilution holes 12 and participates in the depletion and cooling of the combustion gases in the dilution zone of the combustion chamber 1, while the rest of the air A enters the internal cavity 7 through the orifices 14 in order to form a cooling film on the internal faces 2a and 3a of the axial walls 2 and 3.
  • FIG. 2 shows the diagram of the gas velocities in the vicinity of the internal face 2a of the external wall 2, in the region of two dilution holes 12a and 12b, this diagram having been obtained by 3D calculations.
  • This diagram shows that, in the zone 15 which separates the two dilution holes 12a and 12b, the gases flow in the direction D.
  • the gases on the contrary flow towards the dilution holes 12a and 12b, that is to say in a direction generally opposite to the direction D.
  • the gases flow in a direction inclined towards the axial plane 18 passing through the corresponding dilution hole, and generally directed in the general flow direction of the burnt gases D.
  • the burnt gases circulate in the direction D.
  • the 3D temperature diagram in the vicinity of the dilution holes also shows significant differences depending on the zones.
  • the region of the wall 2 and 3 which has the orifices 14 is subdivided into several zones, in each of which, the angles of inclination A of the axes 30 of the orifices 14 relative to the normal to the wall are identical , as well as the angles B of the planes 32 containing said axes 30 and the normals 31 with respect to the axial planes 33 containing said normals.
  • FIG 3 there is shown an axial wall portion 34 having two dilution holes 12a and 12b.
  • the arrow D represents the general direction of the flow of the burnt gases in the combustion chamber 1.
  • the references 16a and 16b represent the first zones in which the burnt gases flow against the current.
  • the burnt gases flow generally in the direction of the arrows 19.
  • the gases flow in the direction of the arrows 20.
  • the orifices 14 formed in the fourth zone 21 are defined by an inclination A 4 greater than 30 ° and an angle B substantially equal to 0 °.
  • the cooling air diffused by these orifices 14 enters the combustion chamber 1, in the general flow direction D of the gases, but with an inclination A 4 .
  • the orifices 14 formed in the first zone 16a are inclined so as to allow a diffusion of cooling air against the current of the general direction D.
  • the axes 30 of these orifices 14 form an angle A 1 with the normals 31 which is between -60 ° and 0 °.
  • the axes 30 of these orifices 14 are also parallel to the axial plane 18a passing through the axis 35 of the dilution hole 12a.
  • FIG 5 there is shown a small part 36 of the outer wall 2 at a third area 19b.
  • the orifices are drilled at an inclination A 3 relative to the normal 31 and in a plane making an angle B 3 with respect to the direction of the main flow D.
  • the angle B 3 is calculated in function of the average direction of local gas flow in the third zone 19b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

La présente invention concerne une chambre de combustion, notamment pour turbomachine, qui est délimitée par une paroi axiale multiperforée. Les orientations des orifices sont adaptées en fonction de l'écoulement local des gaz, notamment au voisinage des trous de dilution (12a, 12b). La paroi (34) est subdivisée en des premières zones (16a, 16b) dans lesquelles les orifices sont dirigés à contre-courant de la direction générale (D) des gaz brûlés, des deuxièmes (17a, 17b) et troisièmes zones (19a, 19b) disposées de part et d'autre des premières zones, dans lesquelles les orifices ont une inclinaison axiale et une inclinaison tangentielle, et une quatrième zone (21) dans laquelle les orifices sont inclinées axialement dans le sens de l'écoulement général (D) des gaz brûlés. <IMAGE>

Description

  • La présente invention concerne une chambre de combustion, notamment de turbomachine, qui est délimitée par au moins une paroi axiale munie d'une pluralité d'orifices traversant constituant une "multiperforation" destinée, notamment, au passage d'un fluide de réfrigération de ladite paroi axiale, et munie d'une pluralité de trous de dilution régulièrement répartis dans un plan transversal par rapport à la direction générale de l'écoulement des gaz brûlés provenant de la combustion, chaque orifice ayant un axe géométrique incliné d'un angle A par rapport à la normale à ladite paroi, ledit axe génmétrique étant disposé dans un plan contenant ladite normale qui fait un angle B par rapport au plan défini par ladite normale et la direction générale d'écoulement des gaz brûlés.
  • Le mode de refroidissement par multiperforation est connu. Les orifices sont généralement disposés en quinconce avec un réseau de mailles équidistantes.
  • Ces orifices sont alimentés par de l'air de refroidissement issu du compresseur. Les échanges de chaleur mises en jeu sont alors, la convection forcée à l'intérieur des orifices, la conduction au sein même de la paroi. L'alimentation en air de refroidissement de ces orifices génère, en aval de l'écoulement, sur la partie interne de la paroi, un film protecteur entre la paroi de chambre et les gaz brûlés provenant de la combustion. Afin de limiter la dégradation de l'efficacité de ce film, on fait en sorte que l'air de refroidissement ne se mélange pas trop tôt aux gaz brûlés. Pour cela les orifices sont inclinés d'un angle A par rapport à la normale à la paroi interne, de sorte que l'air de refroidissement vienne lécher cette paroi à refroidir.
  • EP-A-0 486 133 dévoile une paroi de ce type, dans lequel les orifices sont inclinés dans des plans axiaux.
  • EP-A-0 492 864 révèle, en outre, que les orifices sont également inclinés d'un angle tangentiel B qui coïncide globalement avec l'angle du tourbillon des gaz de combustion le long de la surface interne de la paroi.
  • EP-A-0 592 161 montre en figure 6 une paroi annulaire multiperforée d'une chambre de combustion dans laquelle les orifices sont définis par une inclinaison axiale A et un angle tangentiel B de telle manière que le flux d'air frais introduit dans la chambre crée une couronne d'air protecteur qui tourbillonne autour du flux des gaz brûlés.
  • Dans tous les documents précédents, les inclinaisons A et les angles B qui définissent la direction des axes de chaque orifice par rapport à la direction générale d'écoulement des gaz brûlés, sont respectivement égaux à des valeurs déterminées.
  • Or, les calculs 3D montrent que l'écoulement des gaz dans la chambre de combustion n'est pas toujours longitudinal, mais que dans certaines zones, il est légèrement incliné, voire même opposé à l'écoulement, notamment en aval des trous de dilution. Il peut se produire des décollements de l'air de refroidissement dans ces zones.
  • Le but de la présente invention est d'éviter que l'air issu de la multiperforation ne décolle de la paroi.
  • La présente invention propose donc d'orienter localement les orifices en fonction de l'écoulement local des gaz brûlés.
  • Selon l'invention, la chambre de combustion est caractérisée par le fait que la paroi est subdivisée en plusieurs zones, dans chacune desquelles les orifices sont définis par des inclinaisons A et des angles B ayant respectivement des valeurs identiques et calculées en fonction des caractéristiques de l'écoulement des gaz brûlés dans chacune desdites zones.
  • Ladite paroi est subdivisée notamment en des premières zones situées respectivement en aval des trous de dilution, et dans lesquelles les orifices sont dirigés à contre courant de la direction générale de l'écoulement des gaz brûlés, des deuxièmes et troisièmes zones disposées de part et d'autre desdites premières zones par rapport aux plans axiaux passant par les trous de dilution correspondants, et une quatrième zone recouvrant le reste de ladite paroi.
  • Les orifices ménagés dans la quatrième zone ont une inclinaison axiale supérieure à 30. Leur angle B est sensiblement égal à 0°. L'écoulement d'air frais issu de ces orifices vient lécher la surface interne de la paroi dans le sens de l'écoulement axial des gaz brûlés.
  • Les orifices ménagés dans les premières zones, c'est-à-dire en aval des trous de dilution, diffusent un air de refroidissement à contre-courant de la direction générale d'écoulement des gaz brûlés. Leur inclinaison A est comprise entre 0° et -60°, et leur angle B est sensiblement égal à 0°.
  • De part et d'autre de chacune des premières zones, dans le sens circonférentiel, il est prévu une deuxième et une troisième zones, dont les orifices diffusent un air de refroidissement vers le plan axial passant par le trou de dilution correspondant et dans la direction de l'écoulement général des gaz brûlés.
  • D'autres avantages et caractéristiques de l'invention ressortiront à la lecture de la description suivante faite à titre d'exemple et en référence aux dessins annexés dans lesquels :
    • La figure 1 montre en coupe une chambre de combustion annulaire d'une turbomachine ;
    • 2 la figure 2 est une représentation 3D de l'écoulement des gaz brûlés au voisinage de deux trous de dilution ;
    • la figure 3 montre la subdivision de la paroi multiperforée en plusieurs zones homogènes ;
    • la figure 4 est une coupe axiale à grande échelle de la paroi multiperforée selon un plan axial passant par l'axe d'un trou de dilution ;
    • la figure 5 est une représentation en perspective d'une portion de paroi dans laquelle les orifices de la multiperforation ont une inclinaison axiale et tangentielle.
  • La chambre de combustion 1, de type annulaire, comporte une paroi axiale annulaire extérieure 2 et une paroi axiale annulaire intérieure 3, réunies à leurs extrémités amont par un fond de chambre 4 équipé de systèmes d'injection 5, et présentant entre leurs extrémités aval une ouverture annulaire 6 pour l'échappement des gaz brûlés G vers une turbine non représentée sur les dessins. Les gaz brûlés G circulent dans la cavité interne 7 de la chambre de combustion 1 selon une direction générale axiale représentée par la flèche D.
  • Les parois axiales extérieure 2 et intérieure 3 délimitent avec les carters extérieur 8 et intérieur 9 des passages annulaires 10 et 11 dans lesquels circule un air de refroidissement A issu d'un compresseur non représenté sur les dessins et situé en amont de la chambre de combustion 1.
  • Les deux parois 2 et 3 sont munis d'une pluralité- de trous de dilution 12 régulièrement répartis dans un plan axial 13 perpendiculaire à l'axe de la turbomachine, et d'une pluralité d'orifices traversants 14 constituant une multiperforation.
  • Une partie de l'air de refroidissement A pénètre axialement dans la cavité interne 7 par les trous de dilution 12 et participe à l'appauvrissement et au refroidissement des gaz de combustion dans la zone de dilution de la chambre de combustion 1, tandis que le reste de l'air A pénètre dans la cavité interne 7 par les orifices 14 afin de former un film de refroidissement sur des faces internes 2a et 3a des parois axiales 2 et 3.
  • La figure 2 montre le diagramme des vitesses des gaz au voisinage de la face interne 2a de la paroi extérieure 2, dans la région de deux trous de dilution 12a et 12b, ce diagramme ayant été obtenu par des calculs 3D.
  • Ce diagramme montre que, dans la zone 15 qui sépare les deux trous de dilution 12a et 12b, les gaz s'écoulent dans la direction D.
  • Dans les zones 16 situées immédiatement en aval des trous de dilution 12a et 12b, les gaz circulent au contraire vers les trous de dilution 12a et 12b, c'est-à-dire dans une direction globalement opposée à la direction D.
  • De part et d'autre de chaque zone 16, les gaz s'écoulent selon une direction inclinée vers le plan axial 18 passant par le trou de dilution correspondant, et globalement dirigée dans le sens de l'écoulement général des gaz brûlés D.
  • En amont des trous de dilution 12a et 12b et dans la région éloignée des trous de dilution 12a et 12b, les gaz brûlés circulent selon la direction D.
  • Le diagramme 3D des températures au voisinage des trous de dilution montre également des écarts notables en fonction des zones.
  • Selon la présente invention, on subdivise la région de la paroi 2 et 3 qui comporte les orifices 14 en plusieurs zones, dans chacune desquelles, les angles d'inclinaison A des axes 30 des orifices 14 par rapport aux normales 31 à la paroi sont identiques, ainsi que les angles B des plans 32 contenant lesdits axes 30 et les normales 31 par rapport aux plans axiaux 33 contenant lesdites normales.
  • Sur la figure 3, on a représenté une portion de paroi axiale 34 comportant deux trous de dilution 12a et 12b. La flèche D représente la direction générale de l'écoulement des gaz brûlés dans la chambre de combustion 1.
  • Les références 16a et 16b représentent des premières zones dans lesquelles les gaz brûlés s'écoulent à contre-courant. Dans les deuxièmes zones 17a et 17b situées à gauche des plans axiaux 18a et 18b, les gaz brûlés s'écoulent dans l'ensemble selon la direction des flèches 19. Dans les troisièmes zones 19a et 19b situées à droite des plan axiaux 18a et 18b, les gaz s'écoulent dans le sens des flèches 20.
  • Dans la quatrième zone 21 située en dehors des zones 16a, 16b, 17a, 17b, 19a et 19b, les gaz s'écoulent globalement dans le sens de la flèche D.
  • Comme on le voit sur la figure 4, les orifices 14 ménagés dans la quatrième zone 21 sont définis par une inclinaison A4 supérieure à 30° et un angle B sensiblement égal à 0°. L'air de refroidissement diffusé par ces orifices 14 pénètre dans la chambre de combustion 1, dans le sens de l'écoulement général D des gaz, mais avec une inclinaison A4.
  • Les orifices 14 ménagés dans la première zone 16a sont inclinés de manière à permettre une diffusion d'un air de refroidissement à contre-courant de la direction générale D. Les axes 30 de ces orifices 14 font un angle A1 avec les normales 31 qui est compris entre -60° et 0°. Les axes 30 de ces orifices 14 sont également parallèles au plan axial 18a passant par l'axe 35 du trou de dilution 12a.
  • Sur la figure 5, on a représenté une petite partie 36 de la paroi extérieure 2 au niveau d'une troisième zone 19b. Dans cette troisième zone 19b, les orifices sont percés selon une inclinaison A3 par rapport à la normale 31 et dans un plan faisant un angle B3 par rapport à la direction de l'écoulement principal D. L'angle B3 est calculé en fonction de la direction moyenne de l'écoulement local des gaz dans la troisième zone 19b.

Claims (7)

  1. Chambre de combustion, notamment de turbomachine, qui est délimitée par au moins une paroi axiale (2, 3) munie d'une pluralité d'orifices (14) traversant constituant une "multiperforation" destinée, notamment, au passage d'un fluide de réfrigération (A) de ladite paroi axiale (2, 3), et munie d'une pluralité de trous de dilution (12) régulièrement répartis dans un plan transversal (13) par rapport à la direction générale (D) de l'écoulement des gaz brûlés (G) provenant de la combustion, chaque orifice (14) ayant un axe géométrique (30) incliné d'un angle A par rapport à la normale (31) à ladite paroi (2, 3) ledit axe géométrique (30) étant disposé dans un plan (32) contenant ladite normale (31) qui fait un angle B par rapport au plan (33) défini par ladite normale et la direction générale (D) d'écoulement des gaz brûlés,
    caractérisée par le fait que la paroi (2, 3) est subdivisée en plusieurs zones (16a, 16b, 17a, 17b, 19a, 19b, 21), dans chacune desquelles les orifices (14) sont définis par des inclinaisons A et des angles B ayant respectivement des valeurs identiques et calculées en fonction de l'écoulement local des gaz brûlés (6) dans chacune desdites zones.
  2. Chambre selon la revendication 1, caractérisée par le fait que ladite paroi (2, 3) est subdivisée en des premières zones (16a, 16b) situées respectivement en aval des trous de dilution (12a, 12b) et dans lesquelles les orifices (14) sont dirigés à contre-courant de la direction générale (D) de l'écoulement des gaz brûlés (G), des deuxièmes (17a, 17b) et troisièmes zones disposées de part et d'autre desdites premières zones (16a, 16b) par rapport aux plan axiaux (18a, 18b) passant par les trous de dilution (12a, 12b) correspondants, et une quatrième zone (21) recouvrant le reste de ladite paroi (2, 3).
  3. Chambre selon la revendication 2, caractérisée par le fait que les orifices (14) ménagés dans la quatrième zone (21) sont définis par une inclinaison A supérieure à 30°.
  4. Chambre selon la revendication 3, caractérisée par le fait que les orifices (14) ménagés dans la quatrième zone (21) sont définis par un angle B sensiblement égal à 0°.
  5. Chambre selon la revendication 2, caractérisée par le fait que les orifices (14) ménagés dans les premières zones (16a, 16b) sont définis par une inclinaison A comprise entre 0° et -60°.
  6. Chambre selon la revendication 5, caractérisée par le fait que les orifices (14) ménagés dans les premières zones (16a, 16b) sont définis par un angle B sensiblement égal à 0°.
  7. Chambre selon la revendication 3, caractérisée par le fait que les orifices (14) ménagés dans les deuxièmes zones (17a, 17b) sont définis par des angles B ayant des valeurs opposées aux angles B définissant les orifices (14) ménagés dans les troisièmes zones (19a, 19b).
EP96400863A 1995-04-26 1996-04-24 Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable Expired - Lifetime EP0743490B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9504968 1995-04-26
FR9504968A FR2733582B1 (fr) 1995-04-26 1995-04-26 Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable

Publications (2)

Publication Number Publication Date
EP0743490A1 true EP0743490A1 (fr) 1996-11-20
EP0743490B1 EP0743490B1 (fr) 1999-06-09

Family

ID=9478445

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96400863A Expired - Lifetime EP0743490B1 (fr) 1995-04-26 1996-04-24 Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable

Country Status (5)

Country Link
US (1) US5775108A (fr)
EP (1) EP0743490B1 (fr)
JP (1) JP3302559B2 (fr)
DE (1) DE69602804T2 (fr)
FR (1) FR2733582B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840466A1 (fr) * 2006-03-30 2007-10-03 Snecma Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine
FR2974162A1 (fr) * 2011-04-14 2012-10-19 Snecma Virole de tube a flamme dans une chambre de combustion de turbomachine

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2770283B1 (fr) * 1997-10-29 1999-11-19 Snecma Chambre de combustion pour turbomachine
US6145319A (en) * 1998-07-16 2000-11-14 General Electric Company Transitional multihole combustion liner
US6408629B1 (en) 2000-10-03 2002-06-25 General Electric Company Combustor liner having preferentially angled cooling holes
US6620457B2 (en) * 2001-07-13 2003-09-16 General Electric Company Method for thermal barrier coating and a liner made using said method
FR2856468B1 (fr) * 2003-06-17 2007-11-23 Snecma Moteurs Chambre de combustion annulaire de turbomachine
FR2856467B1 (fr) * 2003-06-18 2005-09-02 Snecma Moteurs Chambre de combustion annulaire de turbomachine
US7146816B2 (en) * 2004-08-16 2006-12-12 Honeywell International, Inc. Effusion momentum control
US20060037323A1 (en) * 2004-08-20 2006-02-23 Honeywell International Inc., Film effectiveness enhancement using tangential effusion
US7464554B2 (en) * 2004-09-09 2008-12-16 United Technologies Corporation Gas turbine combustor heat shield panel or exhaust panel including a cooling device
US7614235B2 (en) * 2005-03-01 2009-11-10 United Technologies Corporation Combustor cooling hole pattern
FR2892180B1 (fr) * 2005-10-18 2008-02-01 Snecma Sa Amelioration des perfomances d'une chambre de combustion par multiperforation des parois
US7631502B2 (en) * 2005-12-14 2009-12-15 United Technologies Corporation Local cooling hole pattern
US7546737B2 (en) * 2006-01-24 2009-06-16 Honeywell International Inc. Segmented effusion cooled gas turbine engine combustor
US7887322B2 (en) * 2006-09-12 2011-02-15 General Electric Company Mixing hole arrangement and method for improving homogeneity of an air and fuel mixture in a combustor
US7942006B2 (en) * 2007-03-26 2011-05-17 Honeywell International Inc. Combustors and combustion systems for gas turbine engines
US8091367B2 (en) * 2008-09-26 2012-01-10 Pratt & Whitney Canada Corp. Combustor with improved cooling holes arrangement
FR2941287B1 (fr) * 2009-01-19 2011-03-25 Snecma Paroi de chambre de combustion de turbomachine a une seule rangee annulaire d'orifices d'entree d'air primaire et de dilution
WO2010096817A2 (fr) 2009-02-23 2010-08-26 Williams International Co., L.L.C. Système de combustion
FR2955374B1 (fr) * 2010-01-15 2012-05-18 Turbomeca Chambre de combustion multi-percee a ecoulements tangentiels contre giratoires
FR2979416B1 (fr) * 2011-08-26 2013-09-20 Turbomeca Paroi de chambre de combustion
EP3039340B1 (fr) * 2013-08-30 2018-11-28 United Technologies Corporation Passages de dilution à tourbillonnement à section contractée pour chambre de combustion de moteur à turbine à gaz
US9453424B2 (en) * 2013-10-21 2016-09-27 Siemens Energy, Inc. Reverse bulk flow effusion cooling
FR3014115B1 (fr) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera Procede et systeme de depot d'oxyde sur un composant poreux
FR3013996B1 (fr) 2013-12-02 2017-04-28 Office National Detudes Et De Rech Aerospatiales Onera Procede de reparation locale de barrieres thermiques
WO2015103357A1 (fr) 2013-12-31 2015-07-09 United Technologies Corporation Ensemble paroi de moteur à turbine à gaz à architecture d'écoulement améliorée
WO2015116360A1 (fr) * 2014-01-30 2015-08-06 United Technologies Corporation Flux de refroidissement pour un panneau principal dans une chambre de combustion de moteur à turbine à gaz
US20160258623A1 (en) * 2015-03-05 2016-09-08 United Technologies Corporation Combustor and heat shield configurations for a gas turbine engine
DE102016201452A1 (de) * 2016-02-01 2017-08-03 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer mit Wandkonturierung
JP6026028B1 (ja) * 2016-03-10 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法
US10830448B2 (en) 2016-10-26 2020-11-10 Raytheon Technologies Corporation Combustor liner panel with a multiple of heat transfer augmentors for a gas turbine engine combustor
US10670269B2 (en) * 2016-10-26 2020-06-02 Raytheon Technologies Corporation Cast combustor liner panel gating feature for a gas turbine engine combustor
US10823410B2 (en) 2016-10-26 2020-11-03 Raytheon Technologies Corporation Cast combustor liner panel radius for gas turbine engine combustor
US10669939B2 (en) 2016-10-26 2020-06-02 Raytheon Technologies Corporation Combustor seal for a gas turbine engine combustor
US10935243B2 (en) 2016-11-30 2021-03-02 Raytheon Technologies Corporation Regulated combustor liner panel for a gas turbine engine combustor
US11015529B2 (en) 2016-12-23 2021-05-25 General Electric Company Feature based cooling using in wall contoured cooling passage
US10480327B2 (en) 2017-01-03 2019-11-19 General Electric Company Components having channels for impingement cooling
US10753283B2 (en) 2017-03-20 2020-08-25 Pratt & Whitney Canada Corp. Combustor heat shield cooling hole arrangement
US11029027B2 (en) 2018-10-03 2021-06-08 Raytheon Technologies Corporation Dilution/effusion hole pattern for thick combustor panels
CN113251441B (zh) * 2021-06-28 2022-03-25 南京航空航天大学 一种新型航天发动机用多斜孔板椭球摆冷却结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2410138A2 (fr) * 1977-11-29 1979-06-22 Snecma Perfectionnements aux chambres de combustion pour moteur a turbine a gaz
FR2635577A1 (fr) * 1988-08-17 1990-02-23 Rolls Royce Plc Chambre de combustion pour moteur a turbine a gaz
EP0512670A1 (fr) * 1991-05-03 1992-11-11 General Electric Company Patrons de refroidissement préférentiels pour parois de chambres de combustion, percées de trous permettant le refroidissement par injection d'air
EP0592161A1 (fr) * 1992-10-06 1994-04-13 ROLLS-ROYCE plc Chambre de combustion pour turbine à gaz
US5307637A (en) * 1992-07-09 1994-05-03 General Electric Company Angled multi-hole film cooled single wall combustor dome plate
US5323602A (en) * 1993-05-06 1994-06-28 Williams International Corporation Fuel/air distribution and effusion cooling system for a turbine engine combustor burner

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR512723A (fr) * 1920-01-05 1921-01-29 Rene Lucien Joseph Pierrel Générateur de gaz sous pression par combustion continue en vase clos
GB1271084A (en) * 1968-05-13 1972-04-19 T C Borrie Ltd Improvements in or relating to cartridge-operated hand tools
IL42390A0 (en) * 1972-08-02 1973-07-30 Gen Electric Impingement cooled combustor dome
US3916619A (en) * 1972-10-30 1975-11-04 Hitachi Ltd Burning method for gas turbine combustor and a construction thereof
DE2607214A1 (de) * 1976-02-23 1977-09-01 Volkswagenwerk Ag Brennkammer fuer gasturbinen
CH634128A5 (de) * 1978-06-13 1983-01-14 Bbc Brown Boveri & Cie Kuehlvorrichtung an einer wand.
US4790140A (en) * 1985-01-18 1988-12-13 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Liner cooling construction for gas turbine combustor or the like
DE3711751A1 (de) * 1987-04-07 1988-10-20 Bergwerksverband Gmbh Gleichstromdatenuebertragungseinrichtung
US5329773A (en) * 1989-08-31 1994-07-19 Alliedsignal Inc. Turbine combustor cooling system
US5181379A (en) * 1990-11-15 1993-01-26 General Electric Company Gas turbine engine multi-hole film cooled combustor liner and method of manufacture
CA2056592A1 (fr) * 1990-12-21 1992-06-22 Phillip D. Napoli Chemise de chambre de combustion a refroidissement par gaine d'air a trous multiples avec demarreur a gaine d'air rainuree
FR2714152B1 (fr) * 1993-12-22 1996-01-19 Snecma Dispositif de fixation d'une tuile de protection thermique dans une chambre de combustion.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2410138A2 (fr) * 1977-11-29 1979-06-22 Snecma Perfectionnements aux chambres de combustion pour moteur a turbine a gaz
FR2635577A1 (fr) * 1988-08-17 1990-02-23 Rolls Royce Plc Chambre de combustion pour moteur a turbine a gaz
EP0512670A1 (fr) * 1991-05-03 1992-11-11 General Electric Company Patrons de refroidissement préférentiels pour parois de chambres de combustion, percées de trous permettant le refroidissement par injection d'air
US5307637A (en) * 1992-07-09 1994-05-03 General Electric Company Angled multi-hole film cooled single wall combustor dome plate
EP0592161A1 (fr) * 1992-10-06 1994-04-13 ROLLS-ROYCE plc Chambre de combustion pour turbine à gaz
US5323602A (en) * 1993-05-06 1994-06-28 Williams International Corporation Fuel/air distribution and effusion cooling system for a turbine engine combustor burner

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KÖHLER + BEER: "calculation of the disturbance to combustion chamber film cooling due to air injection through a row of jets", ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN UND WELTRAUMFORSCHUNG, vol. 9, no. 1, February 1985 (1985-02-01), KOLN DE, pages 34 - 42, XP002010370 *
STEVENS S J ET AL: "EXPERIMENTAL STUDIES OF COMBUSTOR DILUTION ZONE AERODYNAMICS PART I: MEAN FLOWFIELDS", JOURNAL OF PROPULSION AND POWER, vol. 6, no. 3, 1 May 1990 (1990-05-01), pages 297 - 304, XP000126906 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840466A1 (fr) * 2006-03-30 2007-10-03 Snecma Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine
FR2899315A1 (fr) * 2006-03-30 2007-10-05 Snecma Sa Configuration d'ouvertures de dilution dans une paroi de chambre de combustion de turbomachine
US7891194B2 (en) 2006-03-30 2011-02-22 Snecma Configuration of dilution openings in a turbomachine combustion chamber wall
FR2974162A1 (fr) * 2011-04-14 2012-10-19 Snecma Virole de tube a flamme dans une chambre de combustion de turbomachine

Also Published As

Publication number Publication date
FR2733582B1 (fr) 1997-06-06
FR2733582A1 (fr) 1996-10-31
DE69602804D1 (de) 1999-07-15
JPH08312960A (ja) 1996-11-26
JP3302559B2 (ja) 2002-07-15
EP0743490B1 (fr) 1999-06-09
DE69602804T2 (de) 2000-01-27
US5775108A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
EP0743490B1 (fr) Chambre de combustion comportant une multiperforation d&#39;inclinaison axiale et tangentielle variable
EP2771618B1 (fr) Paroi annulaire de chambre de combustion à refroidissement amélioré au niveau des trous primaires et/ou de dilution
EP0803681B1 (fr) Optimisation du mélange des gaz brûlés dans une chambre de combustion annulaire
CA2987526C (fr) Paroi annulaire de chambre de combustion a refroidissement optimise
EP1818613B1 (fr) Chambre de combustion d&#39;une turbomachine
CA2503066C (fr) Anneau de turbine
CA2639980C (fr) Chambre de combustion d&#39;une turbomachine
CA2475083C (fr) Circuits de refroidissement pour aube de turbine a gaz
EP0481885B1 (fr) Dispositif de refroidissement de la paroi d&#39;une chambre de combustion
EP1777458A1 (fr) Amélioration des performances d&#39;une chambre de combustion par multiperforation des parois
CA2636661C (fr) Chambre de combustion comportant des deflecteurs de protection thermique de fond de chambre et moteur a turbine a gaz en etant equipe
EP1288438A1 (fr) Circuits de refroidissement pour aube de turbine à gaz
EP3519679A1 (fr) Aube de turbine comportant un circuit de refroidissement
EP1558886B1 (fr) Système de gestion de l&#39;énergie thermique développée par un moteur thermique de véhicule automobile
EP0752560B1 (fr) Chambre de combustion comportant une paroi annulaire multiperforée
FR2982009A1 (fr) Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et/ou de dilution
EP2463610B1 (fr) Échangeur de chaleur notamment pour véhicule automobile
EP3359880B1 (fr) Chambre de combustion annulaire pour turbomachine
WO2022189739A1 (fr) Échangeur de chaleur surfacique avec sorties additionelles
FR3067448A1 (fr) Dispositif de ventilation pour vehicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960515

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19971031

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990610

REF Corresponds to:

Ref document number: 69602804

Country of ref document: DE

Date of ref document: 19990715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120517 AND 20120523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140327

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140321

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150414

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69602804

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150424