EP0740846B1 - Feldemissionsvorrichtung mit innerem struktur zum ausrichten von phosphor-pixeln auf entsprechenden feldemittern - Google Patents

Feldemissionsvorrichtung mit innerem struktur zum ausrichten von phosphor-pixeln auf entsprechenden feldemittern Download PDF

Info

Publication number
EP0740846B1
EP0740846B1 EP95940804A EP95940804A EP0740846B1 EP 0740846 B1 EP0740846 B1 EP 0740846B1 EP 95940804 A EP95940804 A EP 95940804A EP 95940804 A EP95940804 A EP 95940804A EP 0740846 B1 EP0740846 B1 EP 0740846B1
Authority
EP
European Patent Office
Prior art keywords
faceplate
backplate
spacer
interior side
field emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95940804A
Other languages
English (en)
French (fr)
Other versions
EP0740846A1 (de
Inventor
Christopher J. Spindt
John E. Field
Duane A. Haven
Chungdee Pong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Candescent Intellectual Property Services Inc
Original Assignee
Candescent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/343,074 external-priority patent/US5650690A/en
Priority claimed from US08/343,075 external-priority patent/US5578899A/en
Priority claimed from US08/343,803 external-priority patent/US5543683A/en
Application filed by Candescent Technologies Inc filed Critical Candescent Technologies Inc
Publication of EP0740846A1 publication Critical patent/EP0740846A1/de
Application granted granted Critical
Publication of EP0740846B1 publication Critical patent/EP0740846B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • H01J9/242Spacers between faceplate and backplate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/08Electrodes intimately associated with a screen on or from which an image or pattern is formed, picked-up, converted or stored, e.g. backing-plates for storage tubes or collecting secondary electrons
    • H01J29/085Anode plates, e.g. for screens of flat panel displays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/467Control electrodes for flat display tubes, e.g. of the type covered by group H01J31/123
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/864Spacers between faceplate and backplate of flat panel cathode ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/8665Spacer holding means

Definitions

  • This invention relates generally to field emission devices, and more particularly, to field emission devices with at least one internal structure that includes fiducials to optically align the faceplate and the backplate, and at least one internal structure that fixes and constrains the faceplate and backplate to align a plurality of phosphor pixels with corresponding field emitters.
  • Field emission devices include a faceplate, a backplate and connecting walls around the periphery of the faceplate and backplate, forming a sealed vacuum envelope.
  • the envelope is held at vacuum pressure, which in the case of CRT displays is about 1 x 10 -7 torr or less.
  • the interior surface of the faceplate is coated with light emissive elements, such as phosphor or phosphor patterns, which define an active region of the display.
  • Cathodes, (field emitters) located adjacent to the backplate are excited to release electrons which are accelerated toward the phosphor on the faceplate, striking the phosphor, and causing the phosphor to emit light seen by the viewer at the exterior of the faceplate. Emitted electrons for each of the sets of the cathodes are intended to strike only certain targeted phosphors. There is generally a one-to-one correspondence between each emitter and a phosphor.
  • Flat panel displays are used in applications where the form-factor of a flat display is required. These applications are typically where there are weight constraints and the space available for installation is limited, such as in aircraft or portable computers.
  • a certain level of color purity and contrast are needed in field emission devices. Contrast is the difference between dark and bright areas. The higher the contrast, the better.
  • the parameters of resolution, color-purity and contrast in a flat cathodeluminescent display depend on the precise communication of a selected electron emitter with its corresponding phosphor pixels. Additionally, high picture brightness (lumens), requires either high power consumption or high phosphor efficiency (lumens/watt).
  • the backplate containing the emitter array must be spatially separated from the faceplate, containing the phosphor pixels, by a distance sufficient to prevent unwanted electrical events between the two. This distance, depending on the quality of the vacuum and the topography of the substrates, is typically greater than about 2 mm.
  • the vacuum envelope is unable to withstand 1 atmosphere or greater external pressure without inclusion of the spacer walls. If the spacer walls are not included then the faceplate and backplate can collapse. In rectangular displays, having greater than approximately a 1 inch diagonal, the faceplate and backplate are particularly susceptible to this type of mechanical failure due to their high aspect ratio, which is defined as the larger dimension of the display divided by the thickness of the faceplate or backplate.
  • the use of spacer walls in the interior of the field emission device substantially eliminates this mechanical failure.
  • the faceplates and backplates for the desired flat, light portable display are typically about 1 mm thick. To avoid seeing the spacer walls at the exterior of the faceplate, the spacer walls should be hidden behind a suitable structure such as a black matrix.
  • flat panel displays to date and standard CRT's have high-temperature assembly requirements, including but not limited to plasma addressed liquid crystal (PALC), and the like, where the alignment during assembly consists of external, mechanical alignment of the faceplate and the backplate so that the correspondence of the phosphor pixels and the associated cathode emitters are initially within tolerance.
  • PLC plasma addressed liquid crystal
  • These external fixturing devices travel with the field emission display through the required high temperature bonding and sealing processes.
  • External fixturing devices have difficulties in maintaining a high precision of alignment because of differences in the coefficient of thermal expansion between the field emission display and the fixturing. Resulting misalignment gives a loss of colour purity and resolution in the field emission display.
  • Another disadvantage of external tooling is the cost of individual fixture tooling for each field emission display during the sealing and thermal processing of the displays.
  • a field emission display which does not use external fixturing devices in the high temperature bonding and sealing processes
  • a faceplate for a field emission display that includes a black matrix grid, formed on the faceplate interior side and made of column and row guard bands, with a wall locator formed in a column or row guard
  • a self aligned focus grid for field emission display and
  • a plurality of scattering shields in a high voltage display, a plurality of scattering shields, defining a subpixel volume, to reduce electron escape.
  • the invention provides a field emission display device according to claim 1 comprising:
  • the invention provides a method for forming a backplate structure according to claim 17 for a field emission device for use in the display as aforesaid, the method comprising:
  • the field emission display device includes a faceplate according to claim 20 and a backplate according to claim 38.
  • the faceplate has an interior side with an active region made of pluralities of phosphor pixel elements.
  • the backplate has an interior side with pluralities of field emitters, each plurality of field emitters defining a sweet spot.
  • Sidewalls are positioned between the faceplate and the backplate to form an enclosed sealed envelope between the sidewalls, backplate interior side and the faceplate interior side.
  • At least one spacer wall is positioned in the envelope to support the backplate and the faceplate against forces acting in a direction toward the envelope.
  • at least one internal structure is included that fixes and constrains the faceplate and the backplate relative to each other, and aligns phosphor pixels with corresponding field emitters.
  • the internal structure includes a spacer wall gripper with a receiving trench formed on the interior side of the faceplate, and a locator formed on the interior side of the backplate.
  • the spacer wall is mounted in the receiving trench and is retained in the locator.
  • the wall gripper has sufficient flexibility to receive the spacer wall in a substantially straightened geometry which is easily maintained throughout the sealing and thermal processing of the display.
  • Each receiving trench has a trapezoid geometry which is very effective in gripping the spacer wall.
  • the width of the receiving trench is the same width or smaller than a width of the spacer wall.
  • the faceplate and backplate can each include an alignment fiducial.
  • a spacer wall is positioned in the wall gripper.
  • the faceplate and backplate fiducials are then optically aligned, and brought together so that the spacer wall becomes positioned in the locator. This essentially eliminates the need for external fixturing devices during the bonding and sealing stages, and the phosphor pixels are aligned with the corresponding field emitters.
  • the spacer wall is fixably mounted in the receiving trench by the use of, for example, a frit.
  • the spacer wall can have a different coefficient of thermal expansion than the faceplate or the backplate. This results because the receiving trench is able to grip and position the spacer walls even though there is a difference in thermal expansion of the faceplate, backplate and spacer walls during the thermal and sealing processing.
  • a faceplate for a field emission display that includes a black matrix formed on an interior surface of the faceplate, and a wall locator formed in the black matrix.
  • the invention can also provide a flat panel display with a faceplate interior side that includes a plurality of scattering shields surrounding each phosphor subpixel a defining a subpixel volume.
  • a flat panel display is a display in which a faceplate and backplate are substantially parallel, and the thickness of the display is small compared to the thickness of a conventional deflected-beam CRT display.
  • the thickness of the display is measured in a direction substantially perpendicular to the faceplate and backplate.
  • the thickness of a flat panel display is substantially less than about 51 mm (2.0 inches), and in one embodiment it is about 4.5 to 7.0 mm.
  • a flat panel display 10 includes a faceplate 12, backplate 14 and side walls 16, which together form a sealed envelope 18 that is held at vacuum pressure, e.g., approximately 1.33 x 10 -5 Pa (1 x 10 -7 torr) or less.
  • One or more spacer walls 20 support faceplate 12 against backplate 14.
  • Spacer walls 20 can include electrodes positioned along their longitudinal length.
  • spacer walls 20 include walls, posts and wall segments.
  • spacer walls 20 have a sufficiently small thickness so that they provide minimal interference with the operation of flat panel display 10, particularly the cathodes (field emitters) and phosphors of the device.
  • Spacer walls 20 are made of a ceramic, glass, glass-ceramic, ceramic tape, ceramic reinforced glass, devitrified glass, amorphous glass in a flexible matrix, metal with electrically insulating coating, bulk resistivity materials such as a titanium aluminum chromium oxide, high-temperature vacuum compatible polyimides or insulators such as silicon nitride.
  • Spacer walls 20 have a thickness of about 20 to 60 ⁇ m, and a center-to-center spacing of about 8 to 10 mm. Spacer walls 20 provide internal supports for maintaining spacing between faceplate 12 and backplate 14 at a substantially uniform value across the entire active area of the display at an interior surface of faceplate 12.
  • a plurality of field emitters 22 are formed on a surface of backplate 14 within envelope 18.
  • field emitters 22 can include a plurality of field emitters or a single field emitter.
  • Row and column electrodes control the emission of electrons from field emitters 22. The electrons are accelerated toward a phosphor coated interior surface of faceplate 12.
  • Integrated circuit chips 24 include driving circuitry for controlling the voltage of the row and column electrodes so that the flow of electrons to faceplate 12 is regulated. Electrically conductive traces are used to electrically connect circuitry on chips 24 to the row and column electrodes.
  • faceplate 12 and backplate 14 consist of glass that is about 1.1 mm thick.
  • a hermetic seal 26 of solder glass including but not limited to Owens-Illinois CV 120, attaches side walls 16 to faceplate 12 and backplate 14 to create sealed envelope 18.
  • the solder glass must withstand a 450 degree C sealing temperature.
  • Within envelope 18 the pressure is typically 1.33 x 10 -6 Pa (10 -8 torr) or less. This high level of vacuum is achieved by evacuating envelope 18 through pump port 28 at high temperature to cause absorbed gasses to be removed from all internal surfaces. Envelope 18 is then hermetically sealed by a pump port patch 30.
  • Faceplate 12 includes pluralities of pixels. In order to provide good purity of color and high resolution, electrons emitted by field emitters 22 are directed to, and fall only on a corresponding plurality of pixels. An electron beam 34 from field emitters 22 is focussed and directed by a focus grid 36 to a color picture element comprised of a plurality of phosphors 32, and a black matrix 37 formed on an interior side of faceplate 12.
  • Various parameters are associated with the direction of electrons from field emitters 22 to the proper associated plurality of phosphor pixels 32. These include, but are not limited to, (i) the precision of location of the field emitter 22 relative to focus grid 36, (ii) the precision of location of the plurality of phosphor pixels 32 relative to black matrix 37, and (iii) the alignment of focus grid 36 to black matrix 37.
  • a light reflective layer including but not limited to aluminum, is deposited on black matrix 37 and phosphor pixels 32 with a thickness of about 20 to 60 nm (200-600 ⁇ ).
  • the ratio of area of the plurality of phosphor pixels 32 to black matrix 37 for a 10 inch diameter screen with color resolution of 640(x3) x 480 picture elements is about 50%.
  • the minimum width of black matrix 37 is therefore about 25.4 ⁇ m (0.001 inches). This implies a maximum misalignment of electron beam 34 to the corresponding phosphor pixels 32 (from all contributors) to be less than half the maximum black matrix width (12.7 ⁇ m or 0.0005 inches) at any location of field emission device 10.
  • Field emission display 10 includes at least one internal structure in envelope 18 that fixes and constrains faceplate 12 to backplate 14, and thus aligns a plurality of phosphor pixels 32 with a corresponding sweet spot associated with the field emitters 22 to within a predetermined tolerance of 12.7 ⁇ m (0.0005 inches) or less.
  • This internal structure is a wall gripper 42 formed on an internal side of faceplate 12, and a locator 44 formed on an interior side of backplate 14. It will be appreciated that wall gripper 42 can be formed on back plate 14, and locator 44 can be formed on faceplate 12.
  • a spacer wall 20 is mounted in wall gripper 42, and retained in locator 44.
  • the most significant parameter of the alignment issue is the precision to which faceplate 12, e.g., black matrix 37 and phosphor pixels 32, is aligned to backplate 14, e.g., focus grid 36 and field emitters 22, and thereafter held in place without movement during the thermal assembly process. This is achieved with the internal structure in envelope 18 without the use of external fixturing devices.
  • Black matrix 37 is made of a photo-patternable material including but not limited to black chromium, polyimide, black frit, and the like. Both black matrix 37 and focus grid 36 are configured by photolithography. The phototooling to create black matrix 37 is substantially the same as the phototooling used to create focus grid 36, wall gripper 42 and locator 44.
  • Spacer walls 20 are first mounted in wall gripper 42. Thereafter, faceplate 12 and backplate 14 are locked together, to within the allowed tolerances, by positioning spacer walls 20 in corresponding locators 44.
  • faceplate 12 and backplate 14 consist of glass that is about 1.1 mm thick.
  • a hermetic seal 26 of solder glass including but not limited to Owens-Illinois CV 120, attaches side walls 16 to faceplate 12 and backplate 14 to create sealed envelope 18.
  • the entire display 10 must withstand a 450 degree C sealing temperature.
  • the pressure is typically 1.33 x 10 -6 Pa (10 -7 torr) or less. This high level of vacuum is achieved by evacuating envelope 18 through pump port 28 at high temperature to cause absorbed gases to be removed from all internal surfaces. Envelope 18 is then sealed by a pump port patch 30.
  • Faceplate 12 includes a plurality of phosphor subpixels 32. Electrons defining an electron beam 34 are accelerated from a plurality of field emitters with energies in the range of 1kV to 10kV. Electron beam 34 is focused by focus grid 36 to strike a corresponding phosphor subpixel 32. There is a one-to-one correspondence between a set of field emitters 22, positioned within a section of focus grid 36, to a phosphor subpixel 32. Each phosphor subpixel 32 is surrounded by a plurality of scattering shields 38 which define a subpixel volume 40.
  • FIG. 5 illustrates the results with a black matrix but without scattering shields 38. Electrons in electron beam 34 are accelerated from a plurality of field emitters 22 to strike their corresponding phosphor subpixels 32. Some of these electrons are back scattered from a phosphor subpixel or an adjacent area to an internal support 20 as represented by ray 35. Other electrons are back scattered and strike non-corresponding phosphor subpixels, as shown with ray 39. Back scattered electrons can strike other insulating elements in envelope 18. Back scattering electrons onto resistive surfaces, such as internal supports 20, affects the ratio of brightness to power of display 10 by limiting the amount of current that can be used. Further, the back scattering onto internal supports 20 limits the height of internal supports 20 and thus the high voltage.
  • a black matrix typically has a low aspect ratio. Additionally, it is difficult to make a structure with a sufficient aspect ratio to prevent electrons escaping from their subpixel volume 40.
  • Back scattered electrons strike scattering shields 38, represented by rays 41 and 43, and do not leave their scattering shield volumes 40. They remain essentially captured in their scattering shield volumes 40.
  • scattering shields 38 capture the back scattered electrons as in the case of ray 45, preventing them from striking non-corresponding phosphor subpixels.
  • scattering shield 38 height is 12 ⁇ m, 25 ⁇ m, 25 ⁇ m, 50 ⁇ m, 75 ⁇ m, 100 ⁇ m, or greater.
  • the actual height and size will vary depending on dimensions of the display.
  • Scattering shields 38 can have heights in the range of about 20 to 200 ⁇ m, 20 to 100 ⁇ m, and 50 to 100 ⁇ m, scattering shields 38 provide a fivefold improvement in contrast.
  • Scattering shields 38 can be made of a photo pattemable material including but not limited to polyimide. At least a portion of scattering shields 38 can include a black matrix material.
  • fiducials 45 and 47 can be integral to the structure of black matrix 37 and focus grid 36 respectively. Additionally, masks for fiducials 45 and 47 are integral to the phototooling, creating a geometric relationship between fiducial 45 and black matrix 37, and fiducial 47 and focus grid 36.
  • fiducials 45 and 47 can be on each of the substrates of faceplate 12 and backplate 14 respectively and not part of black matrix 37. In any event, fiducials 45 and 47 provide optical alignment of faceplate 12 to backplate 14, and of field emitters 22 to corresponding phosphor pixels 32.
  • fiducials 45 and 47 are in optical alignment, e.g., when collimated light falls on faceplate 12 which is transparent to the light, the image of faceplate alignment fiducial 45 is projected onto and maps to backplate fiducial 47.
  • a shadow mask is provided to permit the passage of optical light through fiducials 45 and 47.
  • the mounted spacer walls 20 are physically strong and rigid enough to withstand atmospheric pressure, and maintain alignment of faceplate 12 and backplate 14 through the sealing and thermal processing of the display.
  • the shape of wall gripper 42 is designed to grip spacer wall 20 tightly and retard its movement.
  • black matrix 37 comprises column and row guard bands.
  • Wall gripper 42 is formed on black matrix 37.
  • wall gripper 42 is formed in a column or row guard band.
  • Wall gripper 42 has a height of about 25.4 ⁇ m (0.001 inches) or greater.
  • a second layer of black matrix 37(a) is formed to create wall gripper 42, which is essentially a pair of raised structures 42(a) and 42(b), creating a receiving trench 46 for spacer wall 20.
  • Wall gripper 42 is formed in a generally perpendicular direction in relation to a series of column guard bands 48. Wall gripper 42 is not visible or distinguishable from a row guard band 51 not containing a wall gripper.
  • wall gripper 42 When viewed at the exterior of faceplate 12, wall gripper 42 is not visible or distinguishable from row guard band 51, and thus has optical integrity. That is, the viewed footprint is the same for a row guard band 51 with a wall gripper 42 as that of a row guard band 51 without a wall gripper 42.
  • a first layer of black matrix 37 is formed. and then a second layer of black matrix 37(a) is created.
  • Second layer 40(a) creates wall gripper 42, with the corresponding raised structures 42(a) and 42(b) defining a receiving trench 46.
  • pluralities of phosphor pixels 32 are defined by black matrix 37 and second layer of black matrix 37(a).
  • Figure 12 illustrates the introduction of a spacer wall 20 into receiving trench 46.
  • Figure 13 illustrates spacer wall 20 positioned in receiving trench 46.
  • Figure 14 a perspective view of an interior side of faceplate 12 shows black matrix 37 and five spacer walls 20 positioned in wall grippers 42.
  • the material forming wall gripper 42 is vacuum-compatible at processing temperatures in that it does not decompose or create gas contaminants. Processing temperatures are in the range of about 300 to 450 degrees C.
  • Wall gripper 42 is sufficiently flexible (capable of local deformation) to permit spacer walls 20 to have greater thicknesses than receiving trench 46, and still be capable of insertion into receiving trench 46.
  • Wall gripper 42 also provides a straightening effect on spacer walls 20.
  • Wall gripper 42 is capable of sufficient local deformation to straighten spacer walls 20.
  • wall gripper 42 has a receiving trench 46 geometry with a narrower aperture at the point of receiving a spacer wall 20, than the bottom of receiving trench 46.
  • the depth of receiving trench 46 can be about 51 ⁇ m (0.002 inches).
  • a preferred material for wall gripper 42 is a photodefinable polyimide, such as OCG Probimide 7020, or other similar polymers from DuPont, Hitachi and the like.
  • Black matrix 37 is created from black chromium and photopattemed by conventional lithography on faceplate 12.
  • Faceplate 12 is then baked on a hot plate at 70 degrees C for 6 minutes, followed by 100 degrees C for twenty minutes, to drive off solvents.
  • the soft baked Probimide 56 is then photoexposed with an exposure dose of 250 mJ/sq cm at 405 nm through a mask 58 in proximity to Probimide layer 56.
  • Exposed Probimide layer 56 is then baked for 3 minutes at 100 degrees C, followed by a room temperature stabilization of 15 minutes.
  • Probimide layer 56 at this time has an exposure energy profile that creates the trapezoid shape, illustrated in Figure 15, that imparts the gripping function of wall gripper 42.
  • the Probimide is then developed in OCG QZ3501 by a puddle/spray cycle: [3 minutes puddle/1 minute, spray-repeat 1X] followed by a solvent rinse (OCG QZ 3512) for 1 minute.
  • the developed wall gripper 42 is then hard baked for 1 hour at 450 degrees C in a nitrogen atmosphere with a thermal ramp of 3 degrees C per minute.
  • Spacer walls 20 are then inserted into wall gripper 42 , as shown in Figure 13. As illustrated, the insertion axis is perpendicular to the plane of faceplate 12. Insertion can also be accomplished parallel to the plane of faceplate 12 (i.e. slide spacer wall 20 into receiving trench 46 from one end). Spacer wall 20 extends beyond black matrix 37 in an amount sufficient to secure one of its ends with solder glass 60 to substrate 12. Receiving trench 46 has one ore more flared ends to facilitate spacer wall 20 insertion.
  • Figure 13 shows spacer wall 20 in place with only one end secured by solder glass 60, or other high temperature adhesives.
  • suitable adhesives include but are not limited to polyimide, and the like.
  • Solder glass 60 can be, but is not limited to, OI CV 120.
  • the assembly shown in Figure 14 is then baked for one hour at 450 degrees C to devitrify solder glass 60.
  • a suitable oven ramp is 3 degrees C/minute.
  • Securing one end of spacer wall 20 provides mechanical stability of spacer wall 20 for subsequent processing. Additionally, since there is differential expansion and contraction during thermal processing, when spacer walls 20 are secured or pinned at both ends buckling of spacer wall 20 results. Securing spacer wall 20 at only one end enables the use of materials with substantially different coefficients of thermal expansion for spacer walls 20, faceplate 12 and backplate 14, because all differential movement of spacer wall 20 is along the axis of receiving trench 46.
  • spacer wall 20 is fixed and constrained by wall gripper 42 and locator 44, and then once faceplate 12 and backplate 14 are optically aligned, spacer wall 20 is fixed and constrained in locator 44.
  • Backplate 14 of display 10 is constructed to provide correspondence of features with faceplate 12 so that field emitters 22 communicate with the corresponding plurality of phosphor pixels 32, and wall gripper 42 is in optical alignment with locator 44.
  • Wall locator 44 is formed by phototooling compatible with the tooling set used to create wall gripper 42, black matrix 37 and focus grid 36. Focus grid 36 is self aligned to field emitters 22.
  • faceplate 12 with spacer walls 20 attached may be brought into proximity to backplate 14, and be manipulated in the (x,y,0) axes so as to bring spacer wall 20 into alignment with wall locator 44, and a respective plurality of phosphor pixels 32 into alignment with its corresponding sweet spot 36. Faceplate 12 may then be translated in the z axis to cause spacer wall 20 to insert into wall locator 44.
  • This assembly provides precision of alignment in the (x,y,0) axis and is held and maintained in position by the mechanically rigid structure formed by spacer walls 20, wall gripper 42 and locator 44. This structure may then be transported through a standard cycle of high temperature sealing and evacuation. Solder-glass may be used in the sealing process.
  • locator 44 on backplate 14 is illustrated beginning with backplate 14, row electrodes 50 and column electrode 49.
  • a first layer 64 of OCG Probimide 7020 polyimide is deposited on backplate 14 to a dry thickness of 45 microns by conventional spinning means for 10 seconds at a spin speed of 750 rpm.
  • First layer 64 is soft baked in a two-step process for 6 minutes at a temperature of 79 degrees C followed by 10 minutes at 100 degrees C. It is then exposed through a photomask 68 to define a column focus electrode 70.
  • the exposure parameters are: UV light at wavelength from 350 to 450 nm for an exposure dose of 250 mJ/sq cm.
  • the exposed pattern is then developed in OCG QZ 3501 developer for 3 minutes to form column focus electrode 70.
  • a second layer 72 of polyimide is deposited to a dry thickness of 20 microns and exposed through a second photomask 74 using the same exposure and development parameters as first layer 64, to form row focus electrode 76 and locator 44.
  • Locator 44 has a depth of about 10 ⁇ m.
  • the polyimide is imidized by baking at a temperature of 460 degrees C in a nitrogen atmosphere for 1 hour.
  • Backplate structure includes electrically insulating backplate, a base electrode, an electrically insulating layer, metallic gate electrodes, field emitters positioned in gate electrodes, and focusing ridges positioned adjacent to gate electrodes.
  • the gate electrode lies on the insulating layer.
  • the gate electrode is in the shape of a strip running perpendicular to the base electrode.
  • Field emitters contact the base electrode and extend through apertures in the insulating layer.
  • the tips, or upper ends, of field emitters are exposed through corresponding openings in the gate electrode.
  • Field emitters can have various shapes, including but not limited to cones, filament structures, and the like.
  • Focusing ridges generally extend to a considerably greater height above the insulating layer than the a gate electrode.
  • the average height of focusing ridges is at least ten times the average height of a gate electrode.
  • the height of focussing ridges is about 20 to 50 ⁇ m.
  • Field emitters emit electrons at off-normal emission angles when a gate electrode is provided with a suitably positive voltage relative to the field emitter voltage. Emitted electrons move towards phosphor pixels. When struck by these electrons, phosphor pixels emit light.
  • Focusing ridges influence trajectories in such a way that the one-to-one correspondence of phosphor pixels to field emitters is maintained.
  • the phosphors are struck by substantially all of the emitted electrons.
  • the height of scattering shields 38 is sufficient to reduce the number of scattered electrons which escape from a subpixel volume 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Claims (67)

  1. Feldemissionsanzeigevorrichtung, die folgendes umfasst:
    einen Frontplatte (12) mit einer Frontplatten-Innenseite mit einem aus einer Mehrzahl von Phosphorpixeln (32) hergestellten aktiven Bereich;
    eine hintere Platte (14) mit einer Innenseite der hinteren Platte, die eine Mehrzahl von Feldemittern (22) aufweist;
    Seitenwände (16), die zwischen der Frontplatte und der hinteren Platte angeordnet sind, so dass sie eine eingeschlossene, dicht verschlossene Hülle zwischen den Seitenwänden, der Innenseite der hinteren Platte und der Frontplatten-Innenseite bilden; wobei die Feldemissionsanzeigevorrichtung folgendes aufweist:
    mindestens eine interne Struktur (42, 20, 44) zur Aufrechterhaltung der relativen Positionen der Frontplatte und der hinteren Platte, um eine Mehrzahl von Phosphorpixeln mit entsprechenden Feldemittern auszurichten, wobei die interne Struktur einen elongierten Abstandshalter (20) in der Hülle zur Unterstützung der hinteren Platte und der Frontplatte gegen Kräfte umfasst, der in eine Richtung zu der Hülle hin wirken, wobei es sich bei dem genannten elongierten Abstandshalter um eine Wand, ein Wandsegment oder einen Pfosten handelt, dadurch gekennzeichnet, dass die interne Struktur ferner eine Abstandshalter-Greifeinrichtung (42) umfasst.
  2. Feldemissionsanzeigevorrichtung nach Anspruch 1, wobei die Abstandshalter-Greifeinrichtung einen Aufnahmegraben (46) aufweist, der an der Innenseite der Frontplatte ausgebildet ist.
  3. Feldemissionsanzeigevorrichtung nach Anspruch 2, wobei die interne Struktur eine Ausrichteinrichtung (44) aufweist, die an der Innenseite der hinteren Platte ausgebildet ist.
  4. Feldemissionsanzeigevorrichtung nach Anspruch 3, wobei ein erstes Teilstück des Abstandshalters (20) an der Innenseite der Frontplatte in dem Aufnahmegraben (42, 46) angebracht ist, und wobei ein entgegengesetztes Teilstück der Wand an der Innenseite der hinteren Platte3 in der Ausrichteinrichtung (44) gehalten wird.
  5. Feldemissionsanzeigevorrichtung nach Anspruch 1, wobei diese ein schwarzes Matrixraster (37) aufweist, das angrenzend an die Frontplatten-Innenseite angeordnet ist, wobei das schwarze Matrixraster die interne Struktur und einen Aufnahmegraben (42, 46) aufweist, welcher den Abstandshalter (20) aufnimmt und diesen im Verhältnis zu der Mehrzahl von Phosphorpixeln anbringt.
  6. Feldemissionsanzeigevorrichtung nach Anspruch 5, wobei die schwarze Matrix aus einem fotografisch abbildbaren Material hergestellt wird.
  7. Feldemissionsanzeigevorrichtung nach Anspruch 6, wobei es sich bei dem fotografisch abbildbaren Material um Polyamid handelt.
  8. Feldemissionsanzeigevorrichtung nach einem der vorstehenden Ansprüche, wobei ein Ende des Abstandshalters (20) fest an der Frontplatte angebracht ist.
  9. Feldemissionsanzeigevorrichtung nach Anspruch 5 oder einem Unteranspruch dieses Anspruchs, wobei der Aufnahmegraben (42, 46) so konfiguriert ist, dass er den Abstandshalter geraderichtet.
  10. Feldemissionsanzeigevorrichtung nach Anspruch 5 oder einem Unteranspruch dieses Anspruchs, wobei der Abstandshalter (20) für einen Betrachter bei einer Betrachtung der äußeren Oberfläche der Frontplatte optisch im Wesentlichen nicht sichtbar ist.
  11. Feldemissionsanzeigevorrichtung nach Anspruch 5 oder einem Unteranspruch dieses Anspruchs, wobei der Aufnahmegraben (42, 46) einwärts konisch erweiterte Wände umfasst, so dass ein verhältnismäßig schmaler Bereich mit Abstand zu der Basis des Grabens definiert wird.
  12. Feldemissionsanzeigevorrichtung nach Anspruch 11, wobei der Aufnahmegraben (42, 46) eine Breite aufweist, die kleiner oder gleich einer Breite des Abstandshalters (20) ist.
  13. Feldemissionsanzeigevorrichtung nach einem der vorstehenden Ansprüche, wobei der Abstandshalter (20) einen anderen Wärmeausdehnungskoeffizienten aufweist als die Frontplatte (12).
  14. Feldemissionsanzeigevorrichtung nach Anspruch 1, wobei die interne Struktur eine Abstandshalter-Greifeinrichtung aufweist, die an der Innenseite der hinteren Platte ausgebildet ist, sowie eine Ausrichteinrichtung an der Innenseite der Frontplatte.
  15. Feldemissionsanzeige nach einem der vorstehenden Ansprüche, wobei diese ferner einen Ausrichtungsbezug (45, 47) aufweist.
  16. Feldemissionsanzeige nach einem der vorstehenden Ansprüche, wobei der elongierte Abstandshalter (20) eine Abstandshalterwand oder ein Wandsegment umfasst.
  17. Verfahren zur Herstellung einer Struktur einer hinteren Platte für eine Feldemissionsvorrichtung, wobei das Verfahren folgendes umfasst:
    Vorsehen einer hinteren Platte (14) mit einer äußeren Oberfläche und einer inneren Oberfläche, wobei die hintere Platte ein transparentes Substrat, eine Mehrzahl lichtundurchlässiger Elektroden und einen aktiven Bereich aufweist, der durch eine Mehrzahl von Feldemittern (22) definiert ist, die an den lichtundurchlässigen Elektroden ausgebildet sind;
    Erzeugen einer verformbaren Wandausrichteinrichtung (44), eines Reihenfokusmusters (76) mit der Höhe h1 und eines Spaltenfokusmusters (64) mit der Höhe h2 durch Schritte, die folgendes umfassen: Auftragen eines fotografisch abbildbaren Materials (64, 72) auf im Wesentlichen die ganze innere Oberfläche, Exposition des Materials durch UV-Strahlung durch die äußere Oberfläche, Entwicklung des Materials und Aushärten des Materials;
    Beschichten des ausgehärteten, fotografisch abbildbaren Materials mit einer leitfähigen Schicht; und
    Erzeugen einer Fokussierelektrode, die elektrisch von den lichtundurchlässigen Elektroden isoliert ist.
  18. Verfahren nach Anspruch 17, wobei die Höhe h1 kleiner oder gleich h2 ist.
  19. Verfahren nach Anspruch 17, wobei die Höhe h1 größer oder gleich h2 ist.
  20. Frontplatte einer Feldemissionsanzeige, wobei die Frontplatte folgendes umfasst:
    ein Substrat (12), das eine Frontplatten-Innenseite definiert;
    eine Mehrzahl von Phosphorpixeln (32), die an der Frontplatten-Innenseite angeordnet sind;
    ein schwarzes Matrixraster (37), das aus einer Mehrzahl von Spalten- und Reihenschutzbändern an der Frontplatten-Innenseite gebildet wird; dadurch gekennzeichnet, dass die genannte Frontplatte folgendes umfasst:
    eine in einem Spalten- oder Reihenschutzband ausgebildete Greifeinrichtung (42, 42a, 42b), wobei die Greifeinrichtung so konfiguriert ist, dass sie einen elongierten Abstandshalter (20) greift und diesen im Verhältnis zu der Mehrzahl von Phosphorpixeln anbringt.
  21. Frontplatte nach Anspruch 20, wobei die Abstandshalter-Greifeinrichtung einen Aufnahmegraben (46) aufweist.
  22. Frontplatte nach Anspruch 21, wobei der Aufnahmegraben angrenzend an eine Mehrzahl von Verformungsanpassungs-Zwischenräumen (34) angeordnet ist.
  23. Frontplatte nach Anspruch 20, 21 oder 22, wobei der Aufnahmegraben ein erstes Teilstück aufweist, das näher an der Frontplatten-Innenseite angeordnet ist als ein zweites Teilstück, und wobei das zweite Teilstück im Verhältnis zu dem ersten Teilstück einwärts konisch erweitert ist.
  24. Frontplatte nach Anspruch 20, 21 oder 22, wobei der Aufnahmegraben ein konisch erweitertes erstes Ende aufweist.
  25. Frontplatte nach Anspruch 24, wobei der Aufnahmegraben ferner ein konisch erweitertes zweites Ende umfasst.
  26. Frontplatte nach einem der Ansprüche 20 bis 25, wobei ein Frontplattenbezug (45) in der schwarzen Matrix ausgebildet ist.
  27. Frontplatte nach einem der Ansprüche 20 bis 26, wobei die schwarze Matrix aus einem fotografisch abbildbaren Material hergestellt wird.
  28. Frontplatte nach einem der Ansprüche 20 bis 26, wobei die schwarze Matrix aus Polyamid hergestellt wird.
  29. Einheit, die eine Frontplatte gemäß den Ansprüchen 20 bis 28 und einen elongierten Abstandshalter (20) umfasst, der in der Abstandshalter-Greifeinrichtung aufgenommen wird, wobei es sich bei dem Abstandshalter um eine Wand, ein Wandsegment oder einen Pfosten handelt.
  30. Einheit nach Anspruch 29, wobei es sich bei dem Abstandshalter (20) um eine Wand oder um ein Wandsegment handelt.
  31. Einheit nach einem der Ansprüche 29 oder 30, wobei ein Ende des Abstandshalters fest an dem Frontplatten-Substrat (12) angebracht ist.
  32. Einheit nach Anspruch 29, 30 oder 31, wobei der Abstandshalter in der Greifeinrichtung geradegerichtet wird.
  33. Einheit nach Anspruch 29, 30, 31 oder 32, wobei der Abstandshalter in der Greifeinrichtung für einen Betrachter bei einer Betrachtung der äußeren Oberfläche der Frontplatte optisch im Wesentlichen nicht sichtbar ist.
  34. Einheit nach einem der Ansprüche 29 bis 33, wobei die Einheit ferner eine hintere Platte mit einer Innenseite der hinteren Platte (14) umfasst, wobei der Abstandshalter im Verhältnis zu einer entsprechenden Ausrichteinrichtung (44) angebracht ist, die an der Innenseite der hinteren Platte ausgebildet ist.
  35. Verfahren für den Zusammenbau einer Frontplatte (12) und einer hinteren Platte (14) einer Feldemissionsanzeigevorrichtung, wobei das Verfahren folgendes umfasst:
    (a) Einführen eines Endes oder einer Kante eines elongierten Abstandshalters (20) in Form einer Wand, eines Wandsegments oder eines Pfostens in eine Greifeinrichtung (42) an einer Innenseite entweder zuerst der Frontplatte oder der hinteren Platte;
    (b) Einführen eines entgegengesetzten Endes oder einer entgegengesetzten Kante des Abstandshalters (20) in eine Ausrichteinrichtung (44), die an einer Innenseite der verbleibenden Frontplatte oder hinteren Platte ausgebildet ist, so dass die Position der Frontplatte (12) im Verhältnis zu der hinteren Platte (14) ausgerichtet und aufrechterhalten wird, um dadurch eine Mehrzahl von Phosphorpixeln (32) der Frontplatte mit entsprechenden Feldemittern der hinteren Platte auszurichten.
  36. Verfahren nach Anspruch 35, wobei das Verfahren ferner den Schritt des Anordnens der Frontplatte und der hinteren Platte durch daran vorgesehene Ausrichtungsbezüge (45, 47) vor Schritt (b) umfasst.
  37. Verfahren zur Erzeugung einer Feldemissionsanzeigevorrichtung, welches das Verfahren nach Anspruch 17, 18, 19, 35 oder 36 umfasst.
  38. Struktur (14) der hinteren Platte für eine Feldemissionsanzeige, wobei die Struktur folgendes umfasst:
    ein transparentes Substrat für die hintere Platte;
    mindestens zwei lichtundurchlässige Elektroden;
    eine Mehrzahl transparenter Elektroden, die orthogonal zu den lichtundurchlässigen Elektroden angeordnet sind;
    eine Mehrzahl von an den lichtundurchlässigen Elektroden ausgebildeten Feldemittern (22);
    ein Fokussierraster (36), das eine äußere Oberfläche und eine elektrisch leitfähige Schicht aufweist, die im Wesentlichen über der äußeren Oberfläche angeordnet ist, wobei das Fokussierraster (36) mit den lichtundurchlässigen Elektroden und den transparenten Elektroden ausgerichtet und elektrisch von den transparenten Elektroden und den lichtundurchlässigen Elektroden isoliert ist, dadurch gekennzeichnet, dass das Fokussierraster (36) eine Abstandshalterwand-Greifeinrichtung (42) mit einem Aufnahmegraben (46) aufweist, der eine Abstandshalterwand (20) aufnehmen kann.
  39. Struktur nach Anspruch 38, wobei das Substrat der hinteren Platte transparent ist, wobei die Struktur ferner folgendes umfasst:
    eine Mehrzahl lichtundurchlässiger Elektroden;
    eine Mehrzahl transparenter Elektroden, die orthogonal zu den lichtundurchlässigen Elektroden angeordnet sind;
    eine Mehrzahl von Feldemittern (22), die an den transparenten Elektroden ausgebildet sind;
    eine Fokussierelektrode mit einer äußeren Oberfläche und einer elektrisch leitfähigen Schicht, die im Wesentlichen über der äußeren Oberfläche angeordnet ist, wobei die Fokussierelektrode mit den transparenten Elektroden ausgerichtet und von den transparenten Elektroden und den lichtundurchlässigen Elektroden elektrisch isoliert ist; und wobei eine Steuerschaltkreisanordnung die Anzeige mit Strom versorgt.
  40. Struktur nach Anspruch 39, wobei diese ferner folgendes umfasst:
    eine Mehrzahl von Abstandshalterwand-Ausrichteinrichtungen (44), die an der Innenseite der hinteren Platte (14) ausgebildet sind;
    eine Mehrzahl verformbarer Rippen, die in eine orthogonal zu den Wandausrichteinrichtungen (44) verlaufende Richtung in den Wandausrichteinrichtungen (44) angeordnet sind.
  41. Struktur nach Anspruch 39, wobei die transparenten Elektroden lichtundurchlässige Bereiche aufweisen.
  42. Struktur nach Anspruch 41, wobei die Mehrzahl von Feldemittern (22) an den lichtundurchlässigen Bereichen der transparenten Elektroden angeordnet sind.
  43. Vorrichtung nach Anspruch 1, wobei diese ferner folgendes umfasst:
    eine Mehrzahl von Phosphor-Subpixeln (32), die an der Innenseite der Frontplatte (12) angeordnet sind;
    eine Mehrzahl von Feldemittern (22), die Elektronen emittieren, die auf ein entsprechendes Subpixel (32) gerichtet sind; und
    eine Mehrzahl von Streuabschirmungen (38), welche jedes Subpixel (32) umgeben und einen Subpixelbereich definieren, wobei die Streuabschirmungen die Anzahl von gestreuten Elektronen in dem Subpixelbereich reduziert, die aus dem Subpixelbereich austreten, wobei die Höhe der Streuabschirmungen (38), welche ein Subpixel (32) umgeben, ausreichend ist, um die Anzahl der Streuelektronen zu reduzieren, die aus ihrem entsprechenden Subpixelbereich austreten und auf ein falsches Subpixel (32) treffen.
  44. Anzeige nach Anspruch 43, wobei die Höhe der Streuabschirmungen (38), welche ein Subpixel (32) umgeben, ausreicht, um die Anzahl der Streuelektronen zu reduzieren, die aus ihrem entsprechenden Subpixelbereich austreten und eine isolierende Oberfläche in der Hülle (18) laden.
  45. Vorrichtung nach Anspruch 1, wobei die Vorrichtung ferner folgendes umfasst:
    eine Mehrzahl von Phosphor-Subpixeln, die an der Frontplatten-Innenseite angeordnet sind;
    eine Mehrzahl von Feldemittern (22), die Elektronen emittieren, die auf ein entsprechendes Subpixel (32) gerichtet sind;
    eine Mehrzahl von Streuabschirmungen (38), die jedes Subpixel (32) umgeben und einen Subpixelbereich definieren, wobei die Streuabschirmungen (38) eine Anzahl von Streuelektronen in dem Subpixelbereich reduziert, die aus dem Subpixelbereich austreten, wobei die Höhe der ein Subpixel (32) umgebenden Streuabschirmungen ausreichend ist, um die Anzahl der aus ihrem entsprechenden Subpixelbereich austretenden Streuelektronen zu reduzieren und eine innere isolierende Oberfläche in der Hülle (18) zu laden; und
    eine Ausrichtrille, die in einem Spalten- oder Reihenschutzband ausgebildet ist, wobei die Ausrichtrille in der Lage ist, einen inneren Träger der Trägerstruktur aufzunehmen und diesen im Verhältnis zu den Phosphor-Subpixeln (32) anzubringen.
  46. Vorrichtung nach Anspruch 45, wobei die Höhe der ein Subpixel (32) umgebenden Streuabschirmungen (38) ausreicht, um die Anzahl der aus ihrem entsprechenden Subpixelbereich austretenden und auf nicht entsprechendes Pixel (32) auftreffenden Streuelektronen zu reduzieren.
  47. Vorrichtung nach Anspruch 45, wobei die Höhe der Streuabschirmungen (38) um etwa 20 bis 200 µm über einer Höhe der Phosphor-Subpixel (32) liegt.
  48. Vorrichtung nach Anspruch 45, wobei die Höhe der Streuabschirmungen (38) um etwa 20 bis 100 µm über einer Höhe der Phosphor-Subpixel (32) liegt.
  49. Vorrichtung nach Anspruch 45, wobei die Phosphor-Subpixel (32) eine Höhe aufweisen, die sich um etwa 1 bis 30 µm von der Innenseite der Frontplatte (12) in die Hülle (18) erstreckt.
  50. Vorrichtung nach Anspruch 49, wobei die Streuabschirmungen (38) eine Höhe aufweisen, die sich um etwa 12 um über die Phosphor-Subpixel (32) erstreckt.
  51. Vorrichtung nach Anspruch 49, wobei die Streuabschirmungen (38) eine Höhe aufweisen, die sich um etwa 25 um über die Phosphor-Subpixel (32) erstreckt.
  52. Vorrichtung nach Anspruch 49, wobei die Streuabschirmungen (38) eine Höhe aufweisen, die sich um etwa 50 um über die Phosphor-Subpixel (32) erstreckt.
  53. Vorrichtung nach Anspruch 49, wobei die Streuabschirmungen (38) eine Höhe aufweisen, die sich um etwa 75 um über die Phosphor-Subpixel (32) erstreckt.
  54. Vorrichtung nach Anspruch 49, wobei die Streuabschirmungen (38) eine Höhe aufweisen, die sich um etwa 100 um über die Phosphor-Subpixel (32) erstreckt.
  55. Vorrichtung nach Anspruch 45, wobei die Streuabschirmungen (38), welche ein Subpixel (32) umgeben, eine ausreichende Höhe aufweisen, um die Anzahl der aus ihrem entsprechenden Subpixelbereich austretenden Streuelektronen zu reduzieren und den internen Träger zu laden.
  56. Vorrichtung nach Anspruch 45, wobei die Streuabschirmungen (38) aus einem Material hergestellt werden, das aus der Gruppe ausgewählt wird, die Polyamid, Metall, Glas und Keramik umfasst.
  57. Vorrichtung nach Anspruch 45, wobei diese eine Glasschnittstelle der Streuabschirmung (38) umfasst, die aus einem lichtabsorbierenden Material hergestellt wird.
  58. Vorrichtung nach Anspruch 45, wobei eine Spannung von größer oder gleich 1 kV zwischen der hinteren Platte (14) und der Frontplatte (12) angelegt wird.
  59. Vorrichtung nach Anspruch 45, wobei eine Spannung von größer oder gleich 3 kV zwischen der hinteren Platte (14) und der Frontplatte (12) angelegt wird.
  60. Vorrichtung nach Anspruch 43 oder 45, wobei eine Spannung von größer oder gleich 5 kV zwischen der hinteren Platte (14) und der Frontplatte (12) angelegt wird.
  61. Vorrichtung nach Anspruch 43 oder 45, wobei eine Spannung von größer oder gleich 7 kV zwischen der hinteren Platte (14) und der Frontplatte (12) angelegt wird.
  62. Vorrichtung nach Anspruch 43 oder 45, wobei eine Spannung von etwa 10 kV zwischen der hinteren Platte (14) und der Frontplatte (12) angelegt wird.
  63. Verfahren nach Anspruch 17, wobei das Verfahren ferner folgendes umfasst:
    Exposition der inneren Oberfläche durch UV-Strahlung durch eine Maske auf eine innere Seite eines Substrats der hinteren Platte (14).
  64. Verfahren nach Anspruch 17, wobei es sich bei der leitfähigen Schicht um eine Metallschicht handelt.
  65. Verfahren nach Anspruch 17, wobei die Fokussierelektrode durch Brennen der hinteren Platte (14) erzeugt wird.
  66. Verfahren nach Anspruch 17, wobei die Fokussierelektrode durch Hinterfüllung der hinteren Platte (14) erzeugt wird.
  67. Verfahren nach Anspruch 17, 63, 64 oder 66, wobei die Fokussierelektrode eine Rastermuster aufweist.
EP95940804A 1994-11-21 1995-11-20 Feldemissionsvorrichtung mit innerem struktur zum ausrichten von phosphor-pixeln auf entsprechenden feldemittern Expired - Lifetime EP0740846B1 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US08/343,074 US5650690A (en) 1994-11-21 1994-11-21 Backplate of field emission device with self aligned focus structure and spacer wall locators
US343075 1994-11-21
US08/343,075 US5578899A (en) 1994-11-21 1994-11-21 Field emission device with internal structure for aligning phosphor pixels with corresponding field emitters
US343803 1994-11-21
US08/343,803 US5543683A (en) 1994-11-21 1994-11-21 Faceplate for field emission display including wall gripper structures
US343074 1994-11-21
PCT/US1995/015226 WO1996016429A2 (en) 1994-11-21 1995-11-20 Field emission device with internal structure for aligning phosphor pixels with corresponding field emitters

Publications (2)

Publication Number Publication Date
EP0740846A1 EP0740846A1 (de) 1996-11-06
EP0740846B1 true EP0740846B1 (de) 2003-04-16

Family

ID=27407547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95940804A Expired - Lifetime EP0740846B1 (de) 1994-11-21 1995-11-20 Feldemissionsvorrichtung mit innerem struktur zum ausrichten von phosphor-pixeln auf entsprechenden feldemittern

Country Status (6)

Country Link
EP (1) EP0740846B1 (de)
JP (1) JP3270054B2 (de)
AT (1) ATE237869T1 (de)
AU (1) AU4243596A (de)
DE (1) DE69530373T2 (de)
WO (1) WO1996016429A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384527B1 (en) * 1994-11-21 2002-05-07 Candescent Technologies Corporation Flat panel display with reduced electron scattering effects
US6022652A (en) * 1994-11-21 2000-02-08 Candescent Technologies Corporation High resolution flat panel phosphor screen with tall barriers
US5859502A (en) * 1996-07-17 1999-01-12 Candescent Technologies Corporation Spacer locator design for three-dimensional focusing structures in a flat panel display
US5912056A (en) * 1997-03-31 1999-06-15 Candescent Technologies Corporation Black matrix with conductive coating
WO1998054745A1 (en) * 1997-05-30 1998-12-03 Candescent Technologies Corporation Structure and fabrication of electron-emitting device having specially configured focus coating
US5920151A (en) * 1997-05-30 1999-07-06 Candescent Technologies Corporation Structure and fabrication of electron-emitting device having focus coating contacted through underlying access conductor
FR2764109A1 (fr) * 1997-05-30 1998-12-04 Commissariat Energie Atomique Espaceurs pour ecran plat de visualisation
US6013974A (en) * 1997-05-30 2000-01-11 Candescent Technologies Corporation Electron-emitting device having focus coating that extends partway into focus openings
US6002199A (en) * 1997-05-30 1999-12-14 Candescent Technologies Corporation Structure and fabrication of electron-emitting device having ladder-like emitter electrode
FR2764729A1 (fr) * 1997-06-13 1998-12-18 Commissariat Energie Atomique Procede de fabrication d'espaceurs pour ecran plat de visualisation
US6215241B1 (en) * 1998-05-29 2001-04-10 Candescent Technologies Corporation Flat panel display with encapsulated matrix structure
US7002287B1 (en) 1998-05-29 2006-02-21 Candescent Intellectual Property Services, Inc. Protected substrate structure for a field emission display device
US6149483A (en) * 1998-07-30 2000-11-21 Candescent Technologies Corporation Cleaning of components of flat panel display
JP3639785B2 (ja) * 1998-09-08 2005-04-20 キヤノン株式会社 電子線装置及び画像形成装置
US6853129B1 (en) 2000-07-28 2005-02-08 Candescent Technologies Corporation Protected substrate structure for a field emission display device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061674B2 (ja) * 1984-12-04 1994-01-05 ソニー株式会社 螢光表示管
JPS6222362A (ja) * 1985-07-22 1987-01-30 Matsushita Electric Ind Co Ltd 真空容器
US4857799A (en) * 1986-07-30 1989-08-15 Sri International Matrix-addressed flat panel display
US4923421A (en) * 1988-07-06 1990-05-08 Innovative Display Development Partners Method for providing polyimide spacers in a field emission panel display
US5160871A (en) * 1989-06-19 1992-11-03 Matsushita Electric Industrial Co., Ltd. Flat configuration image display apparatus and manufacturing method thereof
US5216324A (en) * 1990-06-28 1993-06-01 Coloray Display Corporation Matrix-addressed flat panel display having a transparent base plate
NL9100122A (nl) * 1991-01-25 1992-08-17 Philips Nv Weergeefinrichting.
US5229691A (en) * 1991-02-25 1993-07-20 Panocorp Display Systems Electronic fluorescent display
US5449970A (en) * 1992-03-16 1995-09-12 Microelectronics And Computer Technology Corporation Diode structure flat panel display
DE69430568T3 (de) * 1993-02-01 2007-04-26 Candescent Intellectual Property Services, Inc., San Jose Flacher bildschirm mit innerer tragstruktur
DE69404000T2 (de) * 1993-05-05 1998-01-29 At & T Corp Flache Bildwiedergabeanordnung und Herstellungsverfahren

Also Published As

Publication number Publication date
DE69530373D1 (de) 2003-05-22
DE69530373T2 (de) 2004-02-12
JP3270054B2 (ja) 2002-04-02
WO1996016429A2 (en) 1996-05-30
WO1996016429A3 (en) 1996-08-08
JPH10509834A (ja) 1998-09-22
AU4243596A (en) 1996-06-17
EP0740846A1 (de) 1996-11-06
ATE237869T1 (de) 2003-05-15

Similar Documents

Publication Publication Date Title
US5543683A (en) Faceplate for field emission display including wall gripper structures
US5578899A (en) Field emission device with internal structure for aligning phosphor pixels with corresponding field emitters
US5650690A (en) Backplate of field emission device with self aligned focus structure and spacer wall locators
EP0740846B1 (de) Feldemissionsvorrichtung mit innerem struktur zum ausrichten von phosphor-pixeln auf entsprechenden feldemittern
US5576596A (en) Optical devices such as flat-panel cathode ray tube, having raised black matrix
EP0683920B2 (de) Flacher bildschirm mit innerer tragstruktur
US6703791B2 (en) Image display device
EP0992061B1 (de) Wandanordnung und verfahren zum befestigen von wänden für eine flache anzeigevorrichtung
US7095169B2 (en) Flat panel display device
EP1696465B1 (de) Elektronenemitter und Herstellungsverfahren
US6828722B2 (en) Electron beam apparatus and image display apparatus using the electron beam apparatus
JP3347648B2 (ja) 表示装置
US6384527B1 (en) Flat panel display with reduced electron scattering effects
KR20040061657A (ko) 전계방출소자
EP0987732A2 (de) Flache Anzeigevorrichtung mit verbesserter Elektrodenstruktur
KR20050096536A (ko) 그리드 전극을 갖는 전자 방출 표시장치
JP3264964B2 (ja) 陰極線管の製造方法
KR19980041210A (ko) 타원구형 스페이서를 채용한 전계 효과 전자 방출 소자 및 그 조립 방법
KR20020057328A (ko) T자형의 스페이서를 갖춘 전계 방출형 표시 소자 및 그제조 방법
US20050110391A1 (en) Flat panel display device
US6239544B1 (en) Flat-type image display apparatus with insulating positioning members
KR20010056988A (ko) 전계 방출 디스플레이의 스페이서 부착 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19961021

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CANDESCENT TECHNOLOGIES CORPORATION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030416

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030416

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030416

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030416

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030416

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69530373

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031130

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: CANON KABUSHIKI KAISHA

Effective date: 20070424

Owner name: CANDESCENT INTELLECTUAL PROPERTY SERVICES, INC.

Effective date: 20070424

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121130

Year of fee payment: 18

Ref country code: IE

Payment date: 20121002

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121128

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121214

Year of fee payment: 18

Ref country code: NL

Payment date: 20121115

Year of fee payment: 18

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131120

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69530373

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131120