EP0727550A1 - Barrière thermique et résistante au feu - Google Patents
Barrière thermique et résistante au feu Download PDFInfo
- Publication number
- EP0727550A1 EP0727550A1 EP96300930A EP96300930A EP0727550A1 EP 0727550 A1 EP0727550 A1 EP 0727550A1 EP 96300930 A EP96300930 A EP 96300930A EP 96300930 A EP96300930 A EP 96300930A EP 0727550 A1 EP0727550 A1 EP 0727550A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- panels
- barrier
- sheet metal
- adjacent
- mineral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000004888 barrier function Effects 0.000 title claims description 18
- 230000009970 fire resistant effect Effects 0.000 title claims description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 27
- 239000011707 mineral Substances 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 238000009413 insulation Methods 0.000 claims abstract description 12
- 229920005830 Polyurethane Foam Polymers 0.000 claims abstract description 7
- 239000000945 filler Substances 0.000 claims abstract description 7
- 239000011496 polyurethane foam Substances 0.000 claims abstract description 7
- IQYKECCCHDLEPX-UHFFFAOYSA-N chloro hypochlorite;magnesium Chemical compound [Mg].ClOCl IQYKECCCHDLEPX-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000004088 foaming agent Substances 0.000 claims description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 239000006260 foam Substances 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 1
- 238000010276 construction Methods 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000013521 mastic Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H5/00—Buildings or groups of buildings for industrial or agricultural purposes
- E04H5/10—Buildings forming part of cooling plants
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/74—Removable non-load-bearing partitions; Partitions with a free upper edge
- E04B2/7401—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using panels without a frame or supporting posts, with or without upper or lower edge locating rails
- E04B2/7403—Removable non-load-bearing partitions; Partitions with a free upper edge assembled using panels without a frame or supporting posts, with or without upper or lower edge locating rails with special measures for sound or thermal insulation including fire protection
Definitions
- the regulations applicable to the construction of cold-stores for foods do not call for fire resistance, perhaps because of the supposed unlikelihood of fire occurring, and/or because employees spend only minimal time in such stores.
- the possibility of a fire from an electric fault, coupled with the flammability of certain food stuffs e.g. those having a high fat content render fire protection desirable.
- the conventional construction method for mere thermo- insulation relies upon panels of insulant with only minor structural strength to extend as cladding over a skeleton framework and provide at least the walls of the store. The panels abut edge-to-edge.
- thermo-insulation requirements there is or may be at least similar thermo-insulation requirements, and fire resistance may be a legal requirements at least for a certain time, for example 30 minutes. It is found that the conventional panels, even when provided with a reinforcing panel notionally having a suitable fire resistance do not in fact meet the requirements when tested to destruction.
- the object of the invention is to resolve this problem.
- a thermally insulating and fire resistant barrier panel comprises a slab of polyurethane foam or like thermal insulation and a sheet metal layer, with a layer of mineral insulation comprising a cast foamed magnesium oxychloride material sandwiched between the thermal insulation and the sheet metal.
- a thermally insulating and fire resistant barrier comprises a series of panels having tongue and groove or like connections or otherwise arranged at adjacent and abutted edges so that there is no straightline path through the joint between the panels from one to the other face.
- FIG 1 shows adjacent edges of a pair of panels each comprising a slab of CFC free polyurethane foam, the two slabs having the reference numbers 10, 12 respectively.
- the slabs have edges 14 which are substantially perpendicular to the faces of the slabs, that is to say they are not tongue and grooved, but both have substantial recesses extending along their length as explained hereunder.
- they could have complementary edge formations as shown in Figure 5.
- Each slab may be of the order of 70mm thickness.
- Each slab is faced on both faces with magnesium oxycholoride applied by casting this material in a saline solution with a foaming agent and a curing agent and with perlite inert filler material, so that when cured this creates a generally cellular low density mineral board typically of the order of 15mm thick, which is a thickness capable of giving 1 hour five protection.
- the mineral material is shown by the references 16, 18 on the respective faces of the slab.
- Each panel is completely by a layer of steel which typically may be 0.55 mm thick and of 'food safe' sheet grade, that is to say provided on its outer surface when assembled to the panel with a polyvinyl chloride or other appropriate plastics layer.
- the sheet steel on one face enclosing the mineral boards 18 bears the reference numeral 20 and these sheets have inturned end edges 22 substantially containing the thickness of the mineral material.
- the sheet metal is joggled to provide spaced inturned portions 24 and flanges 26, 28 which are overlapped, so that a fixing screw 30 can be engaged through the overlapped portions to hold the panels together. Both faces may be so overlapped and fixed although the drawing shows only one face so arranged.
- the overlapping is one way of preventing the existence of a straightline path through the joint.
- the tongue and groove or like is another way.
- the slabs 10 and 12 are recessed adjacent one another as mentioned earlier, the joggled portions to create a cavity extending along the length of the edges which abut, to receive a mineral board strip 34 which extends across the joint and substantially fills the recess.
- a relatively thin space about the board is filled with a fire-resistant mastic material and preferably one which is intumescent, indicated in Figure 1 by the reference numeral 36.
- the channel defined between the joggled edges is by an (in the drawing inverted) U shaped strip 38 of the food safe steel which may be a push fit, and a further filling of intumescent material or a further strip of mineral board substantially Fills the cavity defined between the parts 24, 26, 28 and 38.
- the mineral board filler (not shown in Figure 1) in that cavity like the mineral board filler 34 may be magnesium oxychloride, but in cases high density material, that is to say not made with a foaming agent and possibly without any inert filler.
- the boards also span the joint and further ensure that there is no straightline path for flame between the panels.
- the intumescent strip 36 and the high density mineral component act to provide greater resistance to the flame to prevent it penetrating from one side of the barrier to the other.
- Figure 2 shows the mentioned modification where the channel formed between the adjacent sheet metal faces is filled with the mineral board strip, although in this case the flanges 40 corresponding to the ones 24 in Figure 1 have a slight shaping along their length as do the side limbs 42 of the channel member, so that this may be a snap-fit.
- Figure 3 shows a modified joint between a pair of ceiling panels each of which is generally similar to the panel of Figure 1 except that each panel is edged with a mineral board similar to the board 34 of Figure 1 and this is indicated by the reference numeral 44.
- the preferred method is to locate the core slab 10 in a mould in spaced relation to the pair of sheet metal panels 20, 21 and cast the foamed mineral material 16,18 to fill the spaces.
- the boards 44 may likewise be located within the mould so as to further define the cavities into which the mineral material is cast.
- the curing period recommended for boards of this kind is six hours oven curing plus a minimum of 14 days air curing.
- Figure 3 the two panels are joined together by a sheet steel coupling member having co-planar limbs 56 extending away from the edges of a channel section 48 and as seen in the Figure said co-planar limbs 46 are in face to face contact with the adjacent panels.
- This arrangement of Figure 3 is primarily intended as a suspended ceiling for a cold room where a screwed stud 50 depends into a space between the panels, and extends through the channel 48 being fixed thereto by a pair of nuts 54 one on each side of the base of the channel.
- the space between the two panels surrounding the stud and substantially filling the channel section may be packed with mineral wool thermal and fire resistant insulating material. The wool is kept in place and the joint further improved by a further board of high density mineral material 56.
- FIG 4 shows a modified joint similar to Figure 1 but in this case a pair of panels generally similar to those in Figure 1 are secured together by a tie-bolt 60 extending through the thickness of the panel instead of being a short screw extending merely through the overlapped flanges as in Figure 1.
- the end of the bolt where it is secured to nut 62 is enclosed by a mineral board 64 held in place by a sheet metal pressing 66 shown partly assembled in the figure.
- Figure 5 shows a fragmentary plan view of a cold room made of panels generally similar to those discussed in herein, but without showing any of the joints between adjacent panels except at corners of the room.
- the panels are shown with tongue and groove connections between the polyuretane foam core slabs these joints being indicated by the reference numerals 70.
- An angle section folding of the facing sheet metal material 72 is located in each corner to cover the joint and a board typically of the order of 12 mm thickness and made of the high density mineral material indicated by the reference numeral 74 is located outside each joint to extend across the abutted edges of the panels.
- Intumescent material 76 is sandwiched between the mating faces of the foamed mineral material e.g. by mastic injection.
- Figure 6 shows a typical door construction.
- the door is hinged adjacent one edge 80 and sealed at the opposite edge 82.
- Intumescent material 84 is trapped as a gasket between the door and the outer face of the wall around the perimeter of the door.
- the door panel comprises inner face 86 of the food safe sheet metal, a core slab 88 of the CFC polyurethane foam, an outer layer 90 of the foamed mineral material 80 and a further sheet metal layer 92 on the outer face of the door.
- the door may comprise a wooden frame 94 at a location where it does not provide a flammable bridge between interior and exterior.
- the adjacent panels are most desirably mechanically coupled together by members embedded in the slabs during manufacture , so as to give structural strength to the barrier. These conventional couplings are not shown in the drawings.
- the door frame with which the door is dissociated may be secured to similar panels to those used in the barrier elsewhere or in this relatively small area a heavier denser material (e.g. brickwork) may be used in the interests of structural rigidity.
- a heavier denser material e.g. brickwork
- Panels barriers and doors substantially as described and illustrated herein have been tested e.g. with respect to clause 6 of British Standard BS 476:Part 22: 1987.
- the door set mentioned provided 62 minutes integrity and insulation performance with respect to this performance.
- the partition wall assembly e.g. according to Figure 1 and Figure 4 was tested for a 67 minute period at which time tile test was discontinued with no loss of integrity. The tests were performed in the case of panels on 1 metre square sections of the partition panel. The unexposed surface did not exceed the rise allowable within BS 476: Part 20: 1987 during a 95 minutes test duration.
- constructions according to the invention are substantially better than the 30 minute fire test requirements of contemporary regulations.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Building Environments (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB9502906.2A GB9502906D0 (en) | 1995-02-15 | 1995-02-15 | Thermal and fire resistant barrier |
GB9502906 | 1995-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0727550A1 true EP0727550A1 (fr) | 1996-08-21 |
Family
ID=10769602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96300930A Withdrawn EP0727550A1 (fr) | 1995-02-15 | 1996-02-12 | Barrière thermique et résistante au feu |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0727550A1 (fr) |
GB (2) | GB9502906D0 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1207239A3 (fr) * | 2000-11-11 | 2003-09-03 | Refrigeration Construction Services Limited | Panneau pare-feu |
EP1752669A1 (fr) * | 2005-08-11 | 2007-02-14 | Korff Isolmatic Sp. z o.o. | Dispositif de connexion protégé contre le froid et résistant au feu |
WO2013113734A1 (fr) | 2012-02-02 | 2013-08-08 | Bayer Intellectual Property Gmbh | Procédé de production en continu d'un élément composite de type sandwich |
US10364185B2 (en) | 2017-04-03 | 2019-07-30 | Michael John Mabey | Light-weight, fire-resistant composition and assembly |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2377379B (en) | 2001-07-10 | 2004-05-19 | Environmental Seals Ltd | Fire resistant barrier |
DE102012010265A1 (de) * | 2012-05-25 | 2013-11-28 | Puren Gmbh | Hochleistungswärmedämmplatte |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2007423A1 (de) * | 1969-02-18 | 1970-09-24 | Isola-Hilversum N,V., Hilversum (Niederlande) | Verfahren zur Isolierung eines kalten Raumes oder einer Kühlanlage |
DE2533300A1 (de) * | 1975-07-25 | 1977-02-17 | Romakowski Kg | Kuehlhauswand |
JPH01314156A (ja) * | 1988-06-13 | 1989-12-19 | Shikoku Kaken Kogyo Co Ltd | リン酸硬化体からなる建材 |
WO1990002855A1 (fr) * | 1987-03-17 | 1990-03-22 | Combal & Co. A/S | Element de mur/toiture ignifuge |
EP0648905A1 (fr) * | 1993-10-14 | 1995-04-19 | Dagard S.A. | Panneau de cloisonnement muni d'un dispositif de fixation intégré |
DE4337878A1 (de) * | 1993-11-05 | 1995-05-11 | Bauelemente Gmbh Franz Josef L | Standardisierte Verbundplatte zum Brandschutz |
EP0684348A1 (fr) * | 1994-05-24 | 1995-11-29 | Isobouw Systems B.V. | Panneau |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4015386A (en) * | 1975-02-07 | 1977-04-05 | Clark Door Company, Inc. | Fire-retardant low temperature insulating building panel |
DE7914322U1 (de) * | 1979-05-17 | 1979-09-20 | Vki-Rheinhold & Mahla Ag, 6800 Mannheim | Feuerbestaendige plattenfoermige verbundkoerper |
-
1995
- 1995-02-15 GB GBGB9502906.2A patent/GB9502906D0/en active Pending
-
1996
- 1996-02-12 EP EP96300930A patent/EP0727550A1/fr not_active Withdrawn
- 1996-02-12 GB GB9602793A patent/GB2297985B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2007423A1 (de) * | 1969-02-18 | 1970-09-24 | Isola-Hilversum N,V., Hilversum (Niederlande) | Verfahren zur Isolierung eines kalten Raumes oder einer Kühlanlage |
DE2533300A1 (de) * | 1975-07-25 | 1977-02-17 | Romakowski Kg | Kuehlhauswand |
WO1990002855A1 (fr) * | 1987-03-17 | 1990-03-22 | Combal & Co. A/S | Element de mur/toiture ignifuge |
JPH01314156A (ja) * | 1988-06-13 | 1989-12-19 | Shikoku Kaken Kogyo Co Ltd | リン酸硬化体からなる建材 |
EP0648905A1 (fr) * | 1993-10-14 | 1995-04-19 | Dagard S.A. | Panneau de cloisonnement muni d'un dispositif de fixation intégré |
DE4337878A1 (de) * | 1993-11-05 | 1995-05-11 | Bauelemente Gmbh Franz Josef L | Standardisierte Verbundplatte zum Brandschutz |
EP0684348A1 (fr) * | 1994-05-24 | 1995-11-29 | Isobouw Systems B.V. | Panneau |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 014, no. 113 (M - 0944) 2 March 1990 (1990-03-02) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1207239A3 (fr) * | 2000-11-11 | 2003-09-03 | Refrigeration Construction Services Limited | Panneau pare-feu |
EP1752669A1 (fr) * | 2005-08-11 | 2007-02-14 | Korff Isolmatic Sp. z o.o. | Dispositif de connexion protégé contre le froid et résistant au feu |
WO2013113734A1 (fr) | 2012-02-02 | 2013-08-08 | Bayer Intellectual Property Gmbh | Procédé de production en continu d'un élément composite de type sandwich |
US10364185B2 (en) | 2017-04-03 | 2019-07-30 | Michael John Mabey | Light-weight, fire-resistant composition and assembly |
Also Published As
Publication number | Publication date |
---|---|
GB2297985B (en) | 1998-07-15 |
GB9602793D0 (en) | 1996-04-10 |
GB2297985A (en) | 1996-08-21 |
GB9502906D0 (en) | 1995-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4130972A (en) | Panel for soundproof and fireproof inner walls | |
CA1289720C (fr) | Protecteur d'angle affleurant resistant au feu | |
US4936069A (en) | Modular building panel having an improved offset thermal barrier joint | |
EP0890004B1 (fr) | Caisson insonorise pour confidentialite | |
EP0806539A1 (fr) | Articles résistants au feu en matière plastique utilisés dans des assemblages résistants au feu | |
EP3947888A1 (fr) | Bloc de construction résistant au feu | |
CA2972158A1 (fr) | Bande d'etancheite de jointure a geometrie predeterminee et dispositif d'etancheite comprenant une bande d'etancheite de jointure de ce type | |
US10392797B2 (en) | Single leaf separating wall | |
EP0727550A1 (fr) | Barrière thermique et résistante au feu | |
GB2085514A (en) | Fire resistant door | |
US3879911A (en) | Partitioning | |
EP0761896B1 (fr) | Systèmes de panneaux anti-feu | |
US3832812A (en) | Fire retardant insulated modular building panels | |
RU2270311C2 (ru) | Противопожарная дверь и ригель для противопожарной двери | |
JPS5818586B2 (ja) | 防火性低温断熱パネルおよびその製造方法 | |
KR200377961Y1 (ko) | 보강부재를 구비한 건축용 복합 판넬 | |
JPH04130608U (ja) | 耐火目地ガスケツト | |
JP2581637B2 (ja) | 建築物 | |
CN214330438U (zh) | 无焊点加强型防火门 | |
JP3032638B2 (ja) | 防火ドア | |
JPH084141A (ja) | 外断熱構造物及び外断熱工法 | |
JPH0960157A (ja) | 鉄骨架構用防火区画壁 | |
GB2071743A (en) | Panelled structures | |
GB2588522A (en) | A barrier for providing insulation and/ or preventing the spread of fire | |
GB2204531A (en) | Structural panel and method of making it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GR IE IT PT |
|
17P | Request for examination filed |
Effective date: 19970103 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980901 |