EP0724245B1 - Passiver Infrarot-Melder, der die von einem Objekt emittierte Wärmestrahlung spektral auswertet - Google Patents

Passiver Infrarot-Melder, der die von einem Objekt emittierte Wärmestrahlung spektral auswertet Download PDF

Info

Publication number
EP0724245B1
EP0724245B1 EP96100813A EP96100813A EP0724245B1 EP 0724245 B1 EP0724245 B1 EP 0724245B1 EP 96100813 A EP96100813 A EP 96100813A EP 96100813 A EP96100813 A EP 96100813A EP 0724245 B1 EP0724245 B1 EP 0724245B1
Authority
EP
European Patent Office
Prior art keywords
red detector
passive infra
radiation
spectral
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96100813A
Other languages
English (en)
French (fr)
Other versions
EP0724245A1 (de
Inventor
Günter Prof. Dr. Hofmann
Manfred Dr. Zimmerhackl
Volkmar Dr. Norkus
Jens-Olaf Lang
Rainer Dr. Rosch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Patent GmbH
Original Assignee
ABB Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Patent GmbH filed Critical ABB Patent GmbH
Publication of EP0724245A1 publication Critical patent/EP0724245A1/de
Application granted granted Critical
Publication of EP0724245B1 publication Critical patent/EP0724245B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/19Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using infrared-radiation detection systems

Definitions

  • the invention relates to a passive infrared detector according to the The preamble of claim 1.
  • a passive infrared detector is known for example from US-A-4,245,217.
  • Passive infrared detectors are generally used to cover a room area to monitor and a person entering here as a heat source capture. The reporting of such a heat source can depending on the type of task on switching on the lighting restrict a room or trigger an alarm.
  • Common passive infrared detectors do not allow differentiated spectral assessment of a heat source, but perform independently whether this is an intruder, the outbreak a fire, or a strong headlight, to a message as soon as the heat source reaches a minimum level Thermal radiation reached. However, a warning should appear on it restrict, e.g. B. only register intruders, so it is very annoying if it is also a strong one Headlights succeed in triggering an alarm.
  • a passive infrared detector which is the heat emission of an intruder from the would be able to distinguish between a strong headlight of great advantage.
  • the object of the invention is therefore a passive infrared detector to improve according to the preamble of claim 1 that it is possible to use different radiation objects with one device Kind of differentiating spectrally at the same time and thus on the one hand to reduce the false alarm rate and on the other hand to create an expanded functional area.
  • this has a memory in the basic pattern the emission characteristics of various types distinguishing radiation objects are stored. Usually it is sufficient to use the individual spectral channels To record voltage amplitudes. It is advantageous in everyone spectral channel to store an average of the voltage amplitude.
  • the basic pattern to be recorded depends on what discrete wavelength ranges the multispectral sensor is able to differentiate between them.
  • the central functional unit Evaluation circuit serves a logic unit
  • the z. B. as a microprocessor can be built, and the individual, from Multispectral sensor coming with wavelength-dependent signals compares the signal spectra coming from the memory. An identification can according to the size match between the Measured and stored values are done.
  • the logic unit is an output unit controls which in turn controls the identified radiation object characteristic message generated, this immediately can be spent, or by appropriate means is transmitted remotely.
  • the nature of a radiation object is essentially determined by this recognizable that in certain spectral channels with a relatively higher or lower voltage amplitude occurs than that is the case with other radiation objects.
  • the evaluation circuit is therefore provided with an amplitude evaluator, to record the respective mean value of the voltage amplitudes of the individual spectra.
  • the amplitude evaluator can be connected upstream of the logic unit or integrated into it become.
  • the base signal can be calculated from the remaining the signals representing the wavelength ranges used derive or analog directly to the other signals generate in the multispectral sensor by using one accordingly broadband channel that include everyone else can, provides.
  • the logic unit must be used ensure the correct relation by taking the mean the voltage amplitude of the total frequency range as Base value for comparison with a corresponding one from memory coming value used and the amplitude ratio of this both values taken into account in the overall evaluation.
  • the logic unit allows it other criteria for the one to be carried out Evaluation to take into account. It is therefore envisaged that in addition to the signals of the individual spectral channels at least a special signal is provided to the logic unit feeds at least one piece of special information. This can either be such that they identify the radiation object facilitated or the way of their output to the output unit influenced. With such special signals, the time of day, the ambient brightness and other factors are taken into account.
  • the multispectral sensor has an aperture possesses that approximately in the image plane of the focusing optics lies. It is advisable to set up the multispectral sensor so that the incident total radiation is initially spatial and then spectrally decomposed and then optoelectric Transducer elements arrives. For spatial separation you can in Suitable splitter optics behind the aperture arrange and between this and the transducer elements in each at least one of the partial beam paths thus formed is selective arrange the bandpass element.
  • the bandpass element must be for this ensure that only a relatively narrow wavelength range can happen. In principle, there are several options here on.
  • the transducer element could also be constructed in such a way that it only responds to a very specific wavelength range.
  • the optoelectric Electrical bandpass filters are arranged that only pass signals of a certain frequency spectrum to let.
  • a lens 1 behind a lens 1 is a passive infrared detector a multispectral sensor 3 in the area of Image plane of this optics 1 arranged. From an unspecified Radiation object 9, thermal radiation 2 is emitted and focused on the multispectral sensor 3 by the optics 1.
  • the housing 11 consists of a housing pot 12 whose end 14 has a central inlet opening 16 for the Entry of radiation 18 to be measured into the interior of the housing 11 is arranged.
  • the housing 11 is on its Front side 14 opposite side of a housing base 20 completed and has a broadband on the entry side infrared transparent window 15.
  • Pins 22 are perpendicular to the housing base 20 down from.
  • a wiring carrier 24 is on the housing base 20 arranged, on which in turn an approximately cubic cage 26 is mounted is.
  • the one facing the inlet opening 16 of the housing pot 12 Top of the cage 26 is designed as an aperture diaphragm 28, which has a central aperture 30.
  • a pyramid 34 On the bottom of the cage is a pyramid 34 with a square base arranged.
  • the lateral surfaces facing the aperture 30 of the pyramid 34 have a high degree of reflection for the through the total radiation 18 entering the aperture 30.
  • the total radiation 18 turns on after passing through the aperture 30 the surface of the pyramid 34 toward the side walls of the cage 26, which in turn is reflected by infrared bandpass filters 36 are formed.
  • These filters 36 each have mutually different transmission areas outside of them are highly reflective. Therefore, it arrives in the transmission area spectral part of the radiation 18 of the filter 36 through the filter 36 to a radiation sensitive Element 38, which is in the beam path behind the filter 36, i. H. on the outside of the cage 26 is arranged.
  • FIG. 3 is a schematic representation of the optical parts shown an evaluation circuit 4 to 8, with the help of which an evaluation of the multispectral sensor 3 coming signals.
  • From the connector pins 22 of the multispectral sensor 3 signals A1 to A4 via filter 4 and amplitude evaluators 5 fed to a logic unit 6.
  • the logic unit 6 is simultaneously connected to a memory 7, in the basic spectral pattern of the emission characteristic radiation objects of a different type but different from one another 9 are stored. So that the basic pattern for comparison are suitable with the help of a multispectral sensor of the type used and therefore contain an exact Image of the spectra selected by the multispectral sensor 3 become.
  • a summer 10 which consists of the signals A1 to A4 generates a base signal A0, which is used as a comparison signal can serve.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

Die Erfindung betrifft einen Passiv-Infrarot-Melder nach dem Oberbegriff des Anspruchs 1. Ein derartiger Melder ist beispielsweise aus der US-A-4 245 217 bekannt.
Pässiv-Infrarot-Melder dienen im allgemeinen dazu, einen Raumbereich zu überwachen und eine hier eindringende Person als Wärmequelle zu erfassen. Die Meldung einer solchen Wärmequelle kann je nach Art der Aufgabe sich auf das Einschalten der Beleuchtung eines Raumes beschränken, oder zu einer Alarmauslösung führen. Übliche Passiv-Infrarot-Melder ermöglichen keine differenzierte spektrale Beurteilung einer Wärmequelle, sondern führen unabhängig davon, ob es sich hierbei um einen Eindringling, um den Ausbruch eines Feuers, oder um einen starken Scheinwerfer handelt, zu einer Meldung, sobald die Wärmequelle einen Mindestpegel an Wärmestrahlung erreicht. Soll sich eine Warnmeldung jedoch darauf beschränken, z. B. ausschließlich Eindringlinge zu registrieren, so ist es sehr störend, wenn es auch einem starken Scheinwerfer gelingt, einen Alarm auszulösen. Ein Passiv-Infrarot-Melder, der die Wärmeemission eines Eindringlings von der eines starken Scheinwerfers zu unterscheiden vermag, wäre deshalb von großem Vorteil.
Nun ist es aber nicht nur interessant, einen Menschen von einer Störlichtquelle zu unterscheiden, sondern es gibt eine Reihe von Strahlungsquellen, zu denen insbesondere auch ein ungewollt ausgebrochenes Feuer zählt, die sehr unterschiedliche Reaktionen erfordern und deshalb unterschieden werden sollen. Bisher hat man auf Wärmestrahlung ansprechende Sensoren so aufgebaut, daß sie aus dem gesamten Frequenzbereich nur bestimmte, für ein derartiges Strahlungsobjekt spezifische Wellenlängenbereiche erfassen und auswerten. Diese Technik erfordert jedoch mehrere unterschiedliche Sensoren, um unterschiedliche Strahlungsobjekte, z. B. Personen einerseits und Feuer andererseits zu erfassen.
Aufgabe der Erfindung ist es deshalb, einen Passiv-Infrarot-Melder nach dem Oberbegriff des Anspruchs 1 dahingehend zu verbessern, daß es gelingt mit einem Gerät Strahlungsobjekte unterschiedlicher Art gleichzeitig spektral zu unterscheiden und damit einerseits die Fehlalarmrate zu vermindern und andererseits einen erweiterten Funktionsbereich zu schaffen.
Diese Aufgabe wird durch die im Anspruch 1 gekennzeichneten Merkmale gelöst. Zweckmäßige Ausgestaltungen und Weiterbildungen des Erfindungsgegenstandes sind in den Unteransprüchen genannt.
Dadurch, daß hinter der Optik eines Passiv-Infrarot-Melders an der Stelle, wo normalerweise ein optoelektrisches Wandlerelement angeordnet ist, nunmehr ein als Multispektralsensor wirkender Infrarotsensor liegt, gelingt es, die auftreffende Wärmestrahlung in mehrere diskrete Wellenlängenbereiche (spektrale Kanäle) zu zerlegen. Jeder dieser spektralen Kanäle ermöglicht die Erzeugung eines speziellen wellenlängenabhängigen elektrischen Signals, das seinerseits einer Bewertungsschaltung zugeführt wird, die in der Lage ist, die verschiedenen wellenlängenabhängigen elektrischen Signale in Abhängigkeit von der spezifischen Emissioncharakteristik der nachzuweisenden Strahlungsobjekte gleichzeitig zu bewerten. Nach der so erfolgten Identifikation ist es dem Passiv-Infrarot-Melder möglich, eine die Art des Strahlungsobjektes identifizierende Meldung abzugeben. Durch Aufspaltung des gesamten Spektrums eines Strahlungsobjektes in mehrere diskrete spektrale Kanäle gelingt eine relativ genaue Analyse zur Bestimmung der Art des Strahlungsobjektes. Störquellen, wie Scheinwerfer, können dadurch recht genau von einem unerwünschten Eindringling unterschieden werden, so daß sich die Zahl der Fehlalarme zwangsläufig vermindert. Aber auch die Art des Alarmes kann darüber Aufschluß geben, ob ggf. ein Feuer ausgebrochen ist, oder ein unerwünschter Eindringling den überwachten Raum betreten hat.
In einer zweckmäßigen Detailgestaltung der Bewertungsschaltung ist vorgesehen, daß diese einen Speicher besitzt, in dem Grundmuster der Emmisionscharakteristik verschieden gearteter, zu unterscheidender Strahlungsobjekte gespeichert sind. In der Regel genügt es, die einzelnen spektralen Kanäle mit deren Spannungsamplituden festzuhalten. Vorteilhaft ist es, in jedem spektralen Kanal einen Mittelwert der Spannungsamplitude abzuspeichern. Das festzuhaltende Grundmuster richtet sich danach, welche diskreten Wellenlängenbereiche der Multispektralsensor jeweils zu unterscheiden in der Lage ist.
Weiterhin ist vorgesehen, daß als zentrale Funktionseinheit der Bewertungsschaltung eine Logikeinheit dient, die z. B. als Mikroprozessor aufgebaut sein kann, und die die einzelnen, vom Multispektralsensor kommenden wellenlängenabhängigen Signale mit den vom Speicher kommenden Signalspektren vergleicht. Eine Identifikation kann nach der Größenübereinstimmung zwischen den Mess- und den Speicherwerten erfolgen.
Weiterhin ist vorgesehen, daß die Logikeinheit eine Ausgabeeinheit steuert, die ihrerseits eine das identifizierte Strahlungsobjekt kennzeichnende Meldung erzeugt, wobei diese unmittelbar ausgegeben werden kann, oder auch durch entsprechende Mittel fernübertragen wird.
Die Art eines Strahlungsobjektes wird im wesentlichen dadurch erkennbar, daß es in bestimmten spektralen Kanälen mit einer relativ höheren oder niedrigeren Spannungsamplitude auftritt als das bei anderen Strahlungsobjekten der Fall ist. Die Bewertungsschaltung ist deshalb mit einem Amplitudenauswerter versehen, der zur Erfassung des jeweiligen Mittelwertes der Spannungsamplituden der einzelnen Spektren dient. Der Amplitudenauswerter kann dabei der Logikeinheit vorgeschaltet, oder in diese integriert werden.
Damit eine möglichst genaue Amplitudenbewertung erreicht wird, ist es zweckmäßig, neben den durch die einzelnen spektralen Kanäle gebildeten Signalen ein Basissignal vorzusehen, das den gesamten Wellenlängenbereich erfassen kann und das der Logikeinheit als Vergleichgröße zugeführt ist. Hierdurch können Fehler vermieden werden, die anderenfalls durch sehr unterschiedlich starke Strahlungsquellen hervorgerufen werden könnten.
Das Basissignal kann man mit Hilfe eines Summierers aus den übrigen, die genutzten Wellenlängenbereiche repräsentierenden Signalen ableiten oder analog zu den übrigen Signalen bereits unmittelbar im Multispektralsensor erzeugen, in dem man einen entsprechend breitbandigen Kanal, der alle anderen einschließen kann, vorsieht.
Bei sehr unterschiedlich starken Strahlungsquellen muß die Logikeinheit für die richtige Relation sorgen, indem sie den Mittelwert der Spannungsamplitude des Gesamtfrequenzbereiches als Basiswert für den Vergleich mit einem entsprechenden vom Speicher kommenden Wert benutzt und das Amplitudenverhältnis dieser beiden Werte bei der Gesamtauswertung berücksichtigt.
Bisweilen kann es zweckmäßig sein, wenn es der Logikeinheit ermöglicht wird, noch weitere Kriterien für die von ihr vorzunehmende Auswertung zu berücksichtigen. Es ist deshalb vorgesehen, daß neben den Signalen der einzelnen spektralen Kanäle noch mindestens ein Sondersignal vorgesehen ist, das der Logikeinheit mindestens eine Sonderinformation zuführt. Diese kann entweder so geartet sein, daß sie eine Identifikation des Strahlungsobjektes erleichtert oder die Art ihrer Ausgabe an die Ausgabeeinheit beeinflußt. Mit solchen Sondersignalen könnte die Tageszeit, die Umgebungshelligkeit und anderes berücksichtigt werden.
Bezüglich des konstruktiven Aufbaues des Passiv-Infrarot-Melders ist vorgesehen, daß der Multispektralsensor eine Aperturöffnung besitzt, die annähernd in der Bildebene der fokussierenden Optik liegt. Es ist zweckmäßig, den Multispektralsensor dabei so aufzubauen, daß die einfallende Gesamtstrahlung zunächst räumlich und dann spektral zerlegt wird und danach auf optoelektrische Wandlerelemente gelangt. Zur räumlichen Trennung kann man im Strahlengang hinter der Aperturöffnung eine geeignete Teileroptik anordnen und zwischen dieser und den Wandlerelementen in jedem der so gebildeten Teilstrahlengänge mindestens ein selektiv wirkendes Bandpasselement anordnen. Das Bandpasselement muß dafür sorgen, daß nur ein relativ schmaler Wellenlängenbereich passieren kann. Im Prinzip bieten sich hier mehrere Möglichkeiten an. So könnten die bereits zur räumlichen Trennung benötigten reflektierenden Spiegel bezüglich ihrer Reflektion selektiv wirken, oder es könnte auch das Wandlerelement so aufgebaut sein, daß es nur auf einen-ganz bestimmten Wellenlängenbereich anspricht. In der Regel wird man jedoch mit einem optischen Filter arbeiten, das an geeigneter Stelle im Strahlenweg zwischen der Teileroptik und dem Wandlerelement angeordnet ist. Zur Erhöhung der Selektivwirkung können auch hinter den optoelektrischen Wandlerelementen elektrische Bandpassfilter angeordnet werden, die nur Signale eines bestimmten Frequenzspektrums passieren lassen.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen:
Fig. 1
einen Ausschnitt aus einem Passiv-Infrarot-Melder seitlich im Schnitt,
Fig. 2
einen Multispektralsensor,
Fig. 3
ein Blockschaltbild der zum Passiv-Infrarot-Melder gehörigen elektrischen Schaltung.
Wie Fig. 1 erkennen läßt, ist hinter einer Optik 1 eines Passiv-Infrarot-Melders ein Multispektralsensor 3 im Bereich der Bildebene dieser Optik 1 angeordnet. Von einem nicht näher definierten Strahlungsobjekt 9 wird eine Wärmestrahlung 2 emittiert und von der Optik 1 auf den Multispektralsensor 3 fokussiert.
Fig. 2 zeigt die wichtigsten Details eines Multispektralsensors, wie er in der DE 41 33 481 A1 beschrieben ist. Danach ist der Multispektralsensor 3 in einem handelsüblichen TO 8-Gehäuse 11 angeordnet. Das Gehäuse 11 besteht aus einem Gehäusetopf 12, an dessen Stirnseite 14 eine zentrale Eintrittsöffnung 16 für den Eintritt einer zu messenden Strahlung 18 in das Innere des Gehäuses 11 angeordnet ist. Das Gehäuse 11 wird auf seiner der Stirnseite 14 gegenüberliegenden Seite von einem Gehäuseboden 20 abgeschlossen und besitzt auf der Eintrittsseite ein breitbandig infrarotdurchlässiges Fenster 15.
Von dem Gehäuseboden 20 stehen Anschlußstifte 22 senkrecht nach unten ab. Auf dem Gehäuseboden 20 ist ein Verdrahtungsträger 24 angeordnet, auf dem wiederum ein in etwa kubischer Käfig 26 montiert ist. Die der Eintrittsöffnung 16 des Gehäusetopfes 12 zugewandte Oberseite des Käfigs 26 ist als Aperturblende 28 ausgebildet, die eine zentrale Apertur 30 aufweist.
Auf dem Käfigboden ist eine Pyramide 34 mit quadratischer Grundfläche angeordnet. Die der Apertur 30 zugewandten Mantelflächen der Pyramide 34 weisen einen hohen Reflektionsgrad für die durch die Apertur 30 eintretende Gesamtstrahlung 18 auf. Die Gesamtstrahlung 18 wird nach dem Durchtritt durch die Apertur 30 an der Oberfläche der Pyramide 34 in Richtung auf die Seitenwände des Käfigs 26 reflektiert, die ihrerseits durch Infrarot-Bandpassfilter 36 gebildet sind. Diese Filter 36 haben jeweils von einander abweichende Transmissionsbereiche außerhalb der sie stark reflektierend sind. Daher gelangt der im Transmissionsbereich des Filters 36 liegende spektrale Teil der Strahlung 18 durch den Filter 36 hindurch auf ein strahlungsempfindliches Element 38, das im Strahlengang hinter dem Filter 36, d. h. an der Außenseite des Käfigs 26 angeordnet ist.
In Fig. 3 ist im Anschluß an eine schematische Darstellung der optischen Teile eine Bewertungsschaltung 4 bis 8 dargestellt, mit deren Hilfe eine Auswertung der vom Multispektralsensor 3 kommenden Signale erfolgt. Von den Anschlußstiften 22 des Multispektralsensors 3 werden Signale A1 bis A4 über Filter 4 und Amplitudenauswerter 5 einer Logikeinheit 6 zugeführt. Die Logikeinheit 6 ist gleichzeitig mit einem Speicher 7 verbunden, in dem spektrale Grundmuster der Emissionscharakteristik verschieden gearteter, aber voneinander zu unterscheidender Strahlungsobjekte 9 gespeichert sind. Damit die Grundmuster zum Vergleich geeignet sind, werden sie mit Hilfe eines Multispektralsensors der eingesetzten Art hergestellt und enthalten deshalb ein genaues Abbild der Spektren, die vom Multispektralsensor 3 selektiert werden. Ein wesentliches Unterscheidungskriterium sind dabei die Amplituden in den verschiedenen spektralen Kanälen, die mit Hilfe der Amplitudenauswerter 5 erfaßt werden. Um bei unterschiedlich starken Strahlungsobjekten die Relation der vom Multispektralsensor in den verschiedenen Spektren erfaßten Signalstärken zu relativieren, ist ein Summierer 10 vorgesehen, der aus den Signalen A1 bis A4 ein Basissignal A0 erzeugt, das als Vergleichssignal dienen kann.
Liegt die von der Logikeinheit 6 ermittelte Übereinstimmung zwischen einem der im Speicher 7 abgelegten Grundmuster und einer über den Multispektralsensor ermöglichten Signalanalyse innerhalb zulässiger Grenzen, so wird eine Identifikation des Strahlungsobjektes 9 angenommen und an eine Ausgabeeinheit gemeldet. Diese kann nun ihrerseits unmittelbar für eine identifizierende Meldung sorgen, oder durch entsprechende Hilfsmittel die Meldung zur Fernübertragung aufbereiten.

Claims (16)

  1. Passiv-Infrarot-Melder mit einer Optik (1), die aus einem Raumbereich einfallende, von einem zu erfassenden Strahlungsobjekt (9) emittierte Wärmestrahlung (2) auf einen Infrarotsensor (3) fokussiert, der ein elektrisches Signal erzeugt, das zu einer Meldung genutzt wird, die das Auftreten eines Strahlungsobjektes (9) in einem überwachten Raum erkennbar macht, dadurch gekennzeichnet, daß als Infrarotsensor (3) ein Multispektralsensor dient, der die auftreffende Wärmestrahlung in mehrere diskrete Wellenlängenbereiche zerlegt und für diese entsprechende wellenlängenabhängige elektrische Signale (A1 bis A4) erzeugt, und daß eine Bewertungsschaltung (4 bis 8) die elektischen Signale (A1-A4) in Abhängigkeit von der spezifischen Emissionscharakteristik nachzuweisender Strahlungsobjekte (9) bewertet und eine die Art des Strahlungsobjektes (9) identifizierende Meldung abgibt.
  2. Passiv-Infrarot-Melder nach Anspruch 1, dadurch gekennzeichnet, daß die Bewertungsschaltung (4 bis 8) einen Speicher (7) besitzt, in dem Grundmuster der Emissionscharakteristik verschieden gearteter, zu unterscheidender Strahlungsobjekte (9) gespeichert sind.
  3. Passiv-Infrarot-Melder nach Anspruch 2, dadurch gekennzeichnet, daß das jeweilige Grundmuster die Signale in den einzelnen spektralen Kanälen und jeweils einen Mittelwert von deren Spannungsamplituden definiert und die Festlegung des jeweiligen Grundmusters entsprechend den vom Multispektralsensor (3) selektierbaren Wellenlängenspektren erfolgt.
  4. Passiv-Infrarot-Melder nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Bewertungsschaltung eine Logikeinheit (6) besitzt, die die einzelnen vom Multispektralsensor (3) kommenden Signalspektren mit den vom Speicher (7) kommenden Signalspektren vergleicht und das Strahlungsobjekt (9) mit der größten Übereinstimmung zwischen den Meß- und Speicherwerten ermittelt.
  5. Passiv-Infrarot-Melder nach Anspruch 4, dadurch gekennzeichnet, daß die Logikeinheit (6) eine Ausgabeeinheit (8) so steuert, daß diese eine das identifizierte Strahlungsobjekt (9) kennzeichnende Meldung erzeugt und diese unmittelbar oder über eine Fernübertragung ausgibt.
  6. Passiv-Infrarot-Melder nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Bewertungsschaltung (4-8) Amplitudenauswerter besitzt, die in die Logikeinheit (6) integriert oder_dieser vorgeschaltet sind und die zur Erfassung des jeweiligen Mittelwertes der Spannungsamplituden in den einzelnen spektralen Kanälen dienen.
  7. Passiv-Infrarot-Melder nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß neben den durch die einzelnen spektralen Kanäle gebildeten Signalen (A1 bis A4) ein Basissignal (A0) vorgesehen ist, das den gesamten Spektralbereich erfaßt und das der Logikeinheit (6) als Vergleichsgröße zugeführt ist.
  8. Passiv-Infrarot-Melder nach Anspruch 7, dadurch gekennzeichnet, daß zur Erzeugung des Basissignals (A0) ein Summierer (10) dient, der die übrigen, den gesamten Spektralbereich repräsentierenden Signale (A1 bis A0) summiert.
  9. Passiv-Infrarot-Melder nach Anspruch 7, dadurch gekennzeichnet, daß das Basissignal (A0) bereits vom Multispektralsensor (3) kommt, der es aus einem den Gesamtwellenlängenbereich repräsentierenden Infrarotsignal erzeugt.
  10. Passiv-Infrarot-Melder nach einem der vorhergehenden Ansprüche 7 bis 9, dadurch gekennzeichnet, daß die Logikeinheit (6) den Mittelwert der Spannungsamplitude des Gesamtwellenlängenbereiches als Basiswert für den Vergleich mit einem entsprechenden vom Speicher (8) kommenden Wert benutzt und das Amplitudenverhältnis dieser beiden Werte bei der Gesamtauswertung berücksichtigt.
  11. Passiv-Infrarot-Melder nach Anspruch 5, dadurch gekennzeichnet, daß neben den Signalen (A0-A4) für die einzelnen spektralen Kanäle noch mindestens ein Sondersignal (AS) vorgesehen ist, das der Logikeinheit (6) mindestens eine Sonderinformation zuführt, die eine Identifikation des Strahlungsobjektes (9) erleichtert oder die Art ihrer Ausgabe an die Ausgabeeinheit (8) beeinflußt.
  12. Passiv-Infrarot-Melder nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Multispektralsensor (3) eine Apertur (30) besitzt, die annähernd in der Bildebene der fokussierenden Optik (1) liegt.
  13. Passiv-Infrarot-Melder nach Anspruch 12, dadurch gekennzeichnet, daß die über die Apertur (30) in das Innere des Multispektralsensors (3) einfallende Gesamtstrahlung (14) zunächst räumlich und dann spektral zerlegt wird und danach auf optoelektische Wandlerelemente (38) gelangt.
  14. Passiv-Infrarot-Melder nach Anspruch 13, dadurch gekennzeichnet, daß im Strahlengang hinter der Apertur (30) eine zur räumlichen Trennung der Gesamtstrahlung (14) dienende Teileroptik (34) im Multispektralsensor (3) angeordnet ist, und zwischen dieser und den Wandlerelementen (38) in jedem der so gebildeten Teilstrahlengänge mindestens ein selektiv wirkendes Bandpaßelement angeordnet ist, das nur einen relativ schmalen Wellenlängenbereich passieren läßt.
  15. Passiv-Infrarot-Melder nach Anspruch 14, dadurch gekennzeichnet, daß das Bandpaßelement ein selektiv reflektierender Spiegel (34), ein optisches Filter (35) oder ein selektiv wirkendes Wandlerelement (38) ist.
  16. Passiv-Infrarot-Melder nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Bewertungsschaltung (4 bis 8) elektrische Bandpaßfilter (4) enthält, die nur Signale (A1 bis A4) eines bestimmten Spektrums passieren lassen.
EP96100813A 1995-01-27 1996-01-20 Passiver Infrarot-Melder, der die von einem Objekt emittierte Wärmestrahlung spektral auswertet Expired - Lifetime EP0724245B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19502521 1995-01-27
DE19502521A DE19502521A1 (de) 1995-01-27 1995-01-27 Passiv-Infrarot-Melder mit einer Optik, die von einem Strahlungsobjekt emittierte Wärmestrahlung auf einen Infrarotsensor fokussiert

Publications (2)

Publication Number Publication Date
EP0724245A1 EP0724245A1 (de) 1996-07-31
EP0724245B1 true EP0724245B1 (de) 2000-01-26

Family

ID=7752445

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96100813A Expired - Lifetime EP0724245B1 (de) 1995-01-27 1996-01-20 Passiver Infrarot-Melder, der die von einem Objekt emittierte Wärmestrahlung spektral auswertet

Country Status (3)

Country Link
EP (1) EP0724245B1 (de)
AT (1) ATE189330T1 (de)
DE (2) DE19502521A1 (de)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2734157A1 (de) * 1958-02-22 1979-02-01 Heimann Gmbh Passiver infrarot-alarmgeber
SE7604502L (sv) * 1976-04-15 1977-10-16 Ericsson Telefon Ab L M Optisk branddetektor
IL65906A (en) * 1982-05-27 1990-03-19 Spectronix Ltd Apparatus for detection and destruction of incoming objects
US4790654A (en) * 1987-07-17 1988-12-13 Trw Inc. Spectral filter
DE8908668U1 (de) * 1988-08-02 1989-10-12 Heimann Gmbh, 6200 Wiesbaden, De
EP0354067A3 (de) * 1988-08-04 1991-04-10 Gec Avionics, Inc. Infrarot-Spektraldifferenzdetektor
US5113076A (en) * 1989-12-19 1992-05-12 Santa Barbara Research Center Two terminal multi-band infrared radiation detector
FR2664382B1 (fr) * 1990-07-03 1992-10-09 Dilor Installation de spectrometrie dispersive a detection multicanale perfectionnee.
DE4133481C2 (de) * 1991-10-09 1994-08-11 Ultrakust Electronic Gmbh Multispektralsensor
US5371542A (en) * 1992-06-23 1994-12-06 The United States Of America As Represented By The Secretary Of The Navy Dual waveband signal processing system
DE4236618A1 (de) * 1992-10-29 1994-05-05 Hirschmann Richard Gmbh Co Anordnung zum Verhindern von Fehlalarmen bei Bewegungsmeldern mit einem Infrarot-Detektor
CH684717A5 (de) * 1993-03-26 1994-11-30 Cerberus Ag Infraroteindringdetektor.
DE4315183A1 (de) * 1993-05-07 1994-11-10 Merten Gmbh & Co Kg Geb Bewegungsmelder

Also Published As

Publication number Publication date
ATE189330T1 (de) 2000-02-15
EP0724245A1 (de) 1996-07-31
DE19502521A1 (de) 1996-08-01
DE59604261D1 (de) 2000-03-02

Similar Documents

Publication Publication Date Title
DE3129753C2 (de)
DE19628050C2 (de) Infrarotmeßgerät und Verfahren der Erfassung eines menschlichen Körpers durch dieses
EP0515635A1 (de) Richtungsempfindliche zähl- und schaltvorrichtung.
DE2754139A1 (de) Rauchdetektor
EP0821330B1 (de) Rauchmelder
EP1093100B1 (de) Passiv-Infrarotmelder
DE10033608A1 (de) Verfahren und Vorrichtung zum Absichern eines Gefahrenbereichs, insbesondere des Gefahrenbereichs einer automatisiert arbeitenden Maschine
EP1061489A1 (de) Intrusionsmelder mit einer Einrichtung zur Sabotageüberwachung
EP1071931B1 (de) Sensorvorrichtung und verfahren zum betreiben einer sensorvorrichtung
DE19517517B4 (de) Passiv Infrarot Eindringdetektor
DE4220508C2 (de) Vorrichtung zur Erfassung von Personen
EP0724245B1 (de) Passiver Infrarot-Melder, der die von einem Objekt emittierte Wärmestrahlung spektral auswertet
EP0897123B1 (de) Lichtschranke
EP0817145A1 (de) Bewegungsmelder zur Detektion von Wärmestrahlung abgebenden, beweglichen Objekten
DE4040812A1 (de) Miniaturisierter passiv-infrarot-bewegungsmelder
DE102006010990B4 (de) Sicherheitssystem
DE3518262C2 (de)
DE4333911C2 (de) Optischer Rauchmelder
DE3932681C2 (de) Hochfehlalarmsicheres Objektsicherungssystem mit einer Vielzahl von Passiv-Infrarot-(IR)-Sensoren
EP0050750B1 (de) Infrarot-Einbruchdetektor
EP0821331B1 (de) Rauchmelder
DE8609515U1 (de) Vorrichtung zur Sabotageüberwachung an einem IR-Bewegungsmelder
DE2609068A1 (de) Optisches geraet fuer schutz-lichtschranken
EP1818884B1 (de) Raucherkennungsvorrichtung
EP0821332A1 (de) Rauchmelder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB LI NL SE

17P Request for examination filed

Effective date: 19961221

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990713

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT DE NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE NL

REF Corresponds to:

Ref document number: 189330

Country of ref document: AT

Date of ref document: 20000215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59604261

Country of ref document: DE

Date of ref document: 20000302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011128

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20011212

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020926

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803