EP0722616B1 - Metallhalogenidentladungslampe - Google Patents

Metallhalogenidentladungslampe Download PDF

Info

Publication number
EP0722616B1
EP0722616B1 EP94919552A EP94919552A EP0722616B1 EP 0722616 B1 EP0722616 B1 EP 0722616B1 EP 94919552 A EP94919552 A EP 94919552A EP 94919552 A EP94919552 A EP 94919552A EP 0722616 B1 EP0722616 B1 EP 0722616B1
Authority
EP
European Patent Office
Prior art keywords
discharge lamp
metal halide
outer bulb
metal
lamp according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94919552A
Other languages
English (en)
French (fr)
Other versions
EP0722616A1 (de
Inventor
Clemens Barthelmes
Andreas Dr. Hohlfeld
Jürgen Dr. VOM SCHEIDT
Dietrich Dr. Fromm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0722616A1 publication Critical patent/EP0722616A1/de
Application granted granted Critical
Publication of EP0722616B1 publication Critical patent/EP0722616B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/12Selection of substances for gas fillings; Specified operating pressure or temperature
    • H01J61/125Selection of substances for gas fillings; Specified operating pressure or temperature having an halogenide as principal component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/34Double-wall vessels or containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
    • H01J61/827Metal halide arc lamps

Definitions

  • the invention is based on a metal halide discharge lamp according to the preamble of the claim 1.
  • metal halide lamps primarily low power, especially about 50-250 W.
  • a rough guideline can be that the total amount (in mg) of metal halides can be limited to a maximum of three times the volume of the discharge vessel (in cm 3 ).
  • the condition for the filling quantity can be specified in such a way that the pure proportion of metals with a small ion radius (especially sodium) - which therefore tend to diffuse and are hereinafter referred to as "diff.
  • Metals - expressed in Micromol ( ⁇ mol) in the filling is less than six times the discharge volume, expressed in cubic centimeters (cm 3 ). Expressed as a formula, the following applies: specific diff. Metal content ⁇ 6 ⁇ mol / cm 3 .
  • Metal content is considered to be a value of the simple discharge volume (in cm 3 ), ie specific diff. Metal content ⁇ 1 ⁇ mol / cm 3 . Preferred values of the diff. Metal content are in the range of four times the discharge volume.
  • a small ion radius is understood to be a maximum of about 0.1 nm, such as that of Na + or Li + .
  • the invention is particularly for sodium rare earth filling systems suitable. Similar good results are achieved with Na Sc fillings.
  • the main area of application is lamps with Color temperatures in the order of 4000 K. (Light color neutral white), where the sodium content less than with warm white light colors (approx. 3000 K color temperature) can be selected.
  • the high-pressure discharge lamp 1 shown schematically in FIG. 1 with a power consumption of 70 W consists of an essentially cylindrical discharge vessel 2 made of quartz glass, which is bulged in the middle. It is closed at both ends with a pinch 3, through which the two current leads 4, 5 are inserted in a vacuum-tight manner by means of foils 6 and thereby establish an electrical connection to the electrodes 7 (made of thoriated tungsten) attached in the discharge vessel.
  • the ends of the discharge vessel are provided with a heat-reflecting coating 8.
  • the filling with the light color neutral white consists of the metals Hg and Na with additions of other rare earth metals and the halogens Br and / or I.
  • a preferred metal halide filling is 0.45 mg NaI, in each case 0.27 mg of the rare earth metal halides DyI 3 , HoI 3 and TmI 3 and 0.13 mg T1I.
  • the discharge volume is 0.7 cm 3 .
  • the discharge vessel 2 is located in a coaxially arranged cylindrical outer bulb 9 made of quartz glass, the smallest wall distance being only about 2-3 mm.
  • a getter 10 is arranged potential-free in this outer bulb and runs parallel to one of the current leads 4.
  • the outer bulb 9 is likewise closed at its two ends with a pinch, the electrical connection of the axially arranged power supply lines 4, 5 to the outside being effected in each case via a vacuum-tight foil pinch 11 and ceramic base parts 12 (with plate contacts).
  • the current leads 4, 5 hold the discharge vessel 2 in the outer bulb 9, one of the current leads 5 being provided with an expansion loop 13 to compensate for length tolerances.
  • the need for an expansion loop 13 depends on the dimensions of the lamp.
  • the two current leads 4, 5 are enclosed over their entire length in the outer bulb 9 by a stocking-like sleeve 14 made of quartz silk.
  • This material is temperature resistant up to 1200 ° C.
  • One example is the type SR 05 silicate hose from Lippmann (Schire / Germany).
  • This sleeve has 0.3 mm wall thickness and an inner diameter of 0.4 mm. It consists of more than 95% Si0 2 .
  • a ceramic fiber hose is also suitable for this or quartz fiber hose.
  • a tempered glass or quartz glass tube or a rigid ceramic sleeve In the case of straight power supplies, one can do less flexible material, e.g. a tempered glass or quartz glass tube or a rigid ceramic sleeve, be used.
  • a high temperature resistance is essential as well as sufficient UV absorption.
  • the invention is closed on all sides Discharge vessels that are closed on both sides Outer pistons are attached approximately axially, applicable.
  • the discharge vessel can in particular a quartz glass burner squeezed on both sides or be a ceramic tube closed on both sides.
  • the outer bulb is in particular a pinched on both sides Tempered glass or quartz glass pistons.
  • a ceramic suspension, for example ZrO 2, applied directly as a coating to the power supply is also particularly suitable as the sheathing.
  • This technology also has manufacturing advantages over separate sleeves and is also suitable for flexible power supplies.
  • the layer thickness is approximately 0.15 mm. To improve the adhesion, up to 15%, in particular 10% by weight of boron oxide is added.

Abstract

Eine Metallhalogenidentladungslampe (1) mit koaxialem Entladungsgefäß (2) und Außenkolben (9) enthält eine Füllung mit zur Diffusion neigenden Metallen. Ihr spezifischer Gehalt ist kleiner 6 νmol/cm3. Die Stromzuführungen (4, 5) sind über einen Großteil ihrer Länge von einer Hülse (14) umgeben, die UV-abschirmend ist.

Description

Die Erfindung geht aus von einer Metallhalogenidentladungslampe gemäß dem Oberbegriff des Anspruchs 1.
Es handelt sich dabei um Metallhalogenidlampen vornehmlich kleiner Leistung, insbesondere etwa 50-250 W.
Aus der DE-A 36 19 068 sind Metallhalogenidlampen bekannt, die ein zweiseitig gequetschtes Entladungsgefäß in einem zweiseitig gequetschten Kolben aufweisen. Zur Erhöhung der Betriebssicherheit, insbesondere am Lebensdauerende, ist die Stromzuführung von einer elektrisch-isolierenden Ummantelung umgeben. Dafür sind insbesondere Hülsen aus Keramik, Glas oder Quarzglas geeignet. Gleichzeitig wird darauf hingewiesen, daß sich die Bildung von Photoelektronen (s. z.B. DE-U 900 29 59) dadurch ausschließen läßt, daß Entladungsgefäß und Außenkolben so angeordnet werden, daß keine parallel zum Entladungsgefäß verlaufenden Gestellteile benötigt werden.
Bei Metallhalogenidlampen mit alkalimetallhaltiger Füllung, bei denen ein Leiter am Entladungsgefäß entlang geführt ist, wie dies bei einem zweiseitig gequetschten Entladungsgefäß in einem einseitig gequetschten Außenkolben der Fall ist, ist es bekannt, den am Entladungsgefäß entlanglaufenden Teil der Stromzuführung mit einer elektrisch-isolierenden und UV-undurchlässigen Abschirmung, insbesondere einem Röhrchen aus Glas, Keramik oder Quarzglas zu versehen (DE-A 16 39 084).
Es ist Aufgabe der Erfindung, das Betriebsverhalten von Metallhalogenidentladungslampen zu verbessern.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen.
Überraschenderweise hat sich herausgestellt, daß die gezielte Verwendung einer Ummantelung, die für UV-Strahlung undurchlässig ist, für im Außenkolben befindliche Stromzuführungen unter bestimmten Umständen auch bei Metallhalogenidentladungslampen Vorteile bringt, die ein zweiseitig gequetschtes Entladungsgefäß in einem zweiseitig gequetschten Außenkolben besitzen, und die von daher nach bisher vorherrschender Meinung keine Probleme mit der Photoionisation aufweisen. Es handelt sich dabei um Metallhalogenidentladungslampen vornehmlich kleiner Leistung (typisch 50-250 W), die eine natrium-haltige Füllung besitzen. Es hat sich herausgestellt, daß hier die Verwendung einer UV-abschirmenden Ummantelung, die die Stromzuführungen im Außenkolben möglichst vollständig abdeckt, es gestattet, die Füllmengen an Metallhalogeniden, speziell der natriumhaltigen Komponente (z.B. NaI), sehr niedrig zu halten und trotzdem sehr lange Lebensdauern zu erzielen sind (ca. 6000 Betriebsstunden). Als grobe Richtschnur kann dienen, daß die Gesamtfüllmenge (in mg) an Metallhalogeniden maximal auf das Dreifache des Volumens des Entladungsgefäßes (in cm3) begrenzt werden kann.
Vorteilhaft ist, als Untergrenze eine Gesamtfüllmenge (in mg) an Metallhalogeniden anzusehen, die dem Einfachen des Entladungsvolumens (in cm3) entspricht. Der Grund ist, daß - vor allem bei Natrium-Seltenerd-Füllsystemen - der Restsauerstoff auf diese Weise zuverlässig absorbiert wird infolge der Getterwirkung der Füllkomponenten.
Bisherige Versuche mit Lampen derart geringer Dosierung haben jedoch eine vergleichsweise schlechte Maintenance ausgewiesen, weil nicht erkannt wurde, daß auch bei diesem Lampentyp eine geringfügige, jedoch über die Lampenlebensdauer durchaus merkliche Photoionisation auftritt, die zur Verarmung von Füllungskomponenten, insbesondere des Natriums, im Entladungsgefäß führt. Die Konsequenz war eine Absenkung des Partialdrucks dieser Füllungskomponente, insbesondere des Natriums, und eine Erhöhung der Brennspannung sowie eine unerwünschte Drift zu höheren Farbtemperaturen. Erfindungsgemäße Lampen zeigen jedoch eine sehr gute Maintenance ihres Lichtstroms über die Lebensdauer. Ähnliches gilt auch für die Farbtemperatur.
Da die eigentliche Ursache der schlechten Maintenance in der Diffusion von Natriumionen oder auch anderer Metallionen mit geringem Ionenradius (z.B. Lithium) durch das Entladungsgefäß (im allgemeinen aus Quarzglas gefertigt; u.U. kann auch ein keramisches Entladungsgefäß verwendet werden, wie z.B. in der EP-A 536 609 beschrieben) liegt, läßt sich die Bedingung für die Füllmenge dahingehend spezifizieren, daß der reine Anteil an Metallen mit geringem Ionenradius (vor allem Natrium) - die daher zur Diffusion neigen und im folgenden als "Diff.-Metalle" bezeichnet werden - ausgedrückt in Mikromol (µmol) in der Füllung kleiner ist als das Sechsfache des Entladungsvolumens, ausgedrückt in Kubikzentimeter (cm3). Als Formel ausgedrückt gilt also: spezifischer Diff.-Metallgehalt ≤ 6 µmol/cm3.
Als Untergrenze des Diff.-Metallgehalts wird ein Wert vom Einfachen des Entladungsvolumens (in cm3) angesehen, d.h. spezifischer Diff.-Metallgehalt ≥ 1 µmol/cm3. Bevorzugte Werte des Diff.-Metallgehalts liegen im Bereich des Vierfachen des Entladungsvolumens.
Unter geringem Ionenradius werden Werte von maximal etwa 0,1 nm verstanden, wie sie z.B. Na+ oder Li+ aufweisen.
Die Erfindung ist insbesondere für Natrium-Seltenerd-Füllungssysteme geeignet. Ähnlich gute Ergebnisse werden bei Na Sc-Füllungen erzielt.
Hauptsächliches Anwendungsgebiet sind Lampen mit Farbtemperaturen in der Größenordnung von 4000 K (Lichtfarbe neutralweiß), bei denen der Natriumgehalt geringer als bei warmweißen Lichtfarben (ca. 3000 K Farbtemperatur) gewählt werden kann.
Es bleibt anzumerken, daß die eingangs diskutierte Erhöhung der Betriebssicherheit nur bei den Lampen eine Rolle spielt, die einen evakuierten Außenkolben aufweisen, und bei denen Elektrode (aus Wolfram) und Stromzuführung (aus Molybdän) aus verschiedenen Materialien bestehen. Nur hier führt die Verwendung korrosionsfördernder Füllungen (damit sind vornehmlich Natrium-Zinn-Füllungen gemeint) zur Elektrodenkorrosion und damit zur Undichtigkeit des Entladungsgefäßes und schließlich zum letalen Gleichstrombetrieb. Dagegen können die erfindungsgemäßen Lampen sowohl einen evakuierten als auch mit Inertgas gefüllten Außenkolben (z.B. Stickstoff) aufweisen. Außerdem spielt die Materialfrage von Elektrode und Stromzuführung keine Rolle.
Die Erfindung wird im folgenden anhand eines Ausführungsbeispiels näher erläutert. Es zeigt
Fig. 1
eine Lampe gemäß der Erfindung
Fig. 2
die Mortalitätskurve einer Gruppe erfindungsgemäßer Lampen sowie einer Vergleichsgruppe
Die in Fig. 1 schematisch dargestellte Hochdruckentladungslampe 1 mit einer Leistungsaufnahme von 70 W besteht aus einem im wesentlichen zylindrischen Entladungsgefäß 2 aus Quarzglas, das in der Mitte bauchig ausgeweitet ist. Es ist an beiden Enden jeweils mit einer Quetschung 3 verschlossen, durch die die beiden Stromzuführungen 4,5 mittels Folien 6 vakuumdicht eingeführt sind und dabei eine elektrische Verbindung zu den im Entladungsgefäß angebrachten Elektroden 7 (aus thoriertem Wolfram) herstellen. Die Enden des Entladungsgefäßes sind mit einem wärmereflektierenden Belag 8 versehen. Die Füllung mit der Lichtfarbe Neutralweiß besteht aus den Metallen Hg und Na mit Zusätzen weiterer Metalle der Seltenen Erden und aus den Halogenen Br und/oder I. Eine bevorzugte Metallhalogenidfüllung ist 0,45 mg NaI, jeweils 0,27 mg der Seltenen Erdmetall-Halogenide DyI3, HoI3 und TmI3 sowie 0,13 mg T1I. Das Entladungsvolumen beträgt 0,7 cm3.
Das Entladungsgefäß 2 befindet sich in einem koaxial angeordneten zylindrischen Außenkolben 9 aus Quarzglas, wobei der kleinste Wandabstand nur etwa 2-3 mm beträgt. In diesem Außenkolben ist in bekannter Weise ein Getter 10 potentialfrei angeordnet, das parallel zu einer der Stromzuführungen 4 verläuft. Der Außenkolben 9 ist ebenfalls an seinen beiden Enden mit einer Quetschung verschlossen, wobei die elektrische Verbindung der axial angeordneten Stromzuführungen 4, 5 nach außen jeweils über eine vakuumdichte Folieneinquetschung 11 und keramische Sockelteile 12 (mit Plättchenkontakten) erfolgt. Die Stromzuführungen 4, 5 haltern das Entladungsgefäß 2 im Außenkolben 9, wobei zum Ausgleich von Längentoleranzen eine der Stromzuführungen 5 mit einer Dehnungsschleife 13 versehen ist. Die Notwendigkeit einer Dehnungsschleife 13 hängt von den Abmessungen der Lampe ab. Die beiden Stromzuführungen 4, 5 sind auf ihrer gesamten, im Außenkolben 9 verlaufenden Länge von einer strumpfartigen Hülse 14 aus Quarzseide umschlossen. Dieses Material ist temperaturbeständig bis 1200 °C. Ein Beispiel ist der Silikatschlauch Typ S-R 05 der Firma Lippmann (Schwerte/Deutschland). Diese Hülse hat 0,3 mm Wandstärke und einen Innendurchmesser von 0,4 mm. Sie besteht zu mehr als 95 % aus Si02.
Dieses Material ist so flexibel, daß es auch problemlos die Biegung der Dehnungsschleife mitmacht. Hierfür eignet sich auch ein Keramikfaserschlauch oder Quarzfaserschlauch.
Bei geraden Stromzuführungen kann auch ein weniger flexibles Material, z.B. ein Hartglas- oder Quarzglasröhrchen oder eine starre keramische Hülse, verwendet werden. Wesentlich ist eine hohe Temperaturbeständigkeit sowie eine ausreichende UV-Absorption.
In Fig. 2 ist ein Vergleich zwischen der Lebensdauer der anhand von Fig. 1 beschriebenen Lampen ohne (kreuzförmige Meßpunkte) und mit (dreieckige Meßpunkte) Ummantelung der Stromzuführung gezeigt. Die Dosierung der Füllung war für beide Meßgruppen gleich. Wegen der niedrigen Dosierung der Füllung sinkt die Zahl der überlebenden Lampen, die keine Ummantelung aufweisen (Kurve a) nach 6000 Std. Betriebsdauer auf 39 %, während sie bei der Gruppe mit erfindungsgemäßer Ummantelung (Kurve b) in etwa noch doppelt so groß ist (ca. 75 %). Bis 3000 Betriebsstunden ist bei dieser Gruppe überhaupt kein Ausfall zu verzeichnen; eine 50 %-Ausfallrate wird erst nach 7500 Std. erreicht.
Die Erfindung ist auf alle zweiseitig verschlossenen Entladungsgefäße, die im zweiseitig verschlossenen Außenkolben in etwa axial angebracht sind, anwendbar. Das Entladungsgefäß kann insbesondere ein zweiseitig gequetschter Quarzglasbrenner oder ein zweiseitig verschlossenes Keramikrohr sein. Der Außenkolben ist insbesondere ein zweiseitig gequetschter Hartglas- oder Quarzglaskolben.
Als Ummantelung eignet sich insbesondere auch eine direkt als Beschichtung auf die Stromzuführung aufgetragene Keramiksuspension, beispielsweise ZrO2. Diese Technik hat insbesondere auch fertigungstechnische Vorteile gegenüber separaten Hülsen und ist ebenfalls für flexible Stromzuführungen geeignet. Die Schichtdicke beträgt etwa 0,15 mm. Um die Haftung zu verbessern, wird bis zu 15 %, insbesondere 10 Gew.-% Boroxid zugesetzt.

Claims (9)

  1. Metallhalogenidentladungslampe mit einem zweiseitig verschlossenen Entladungsgefäß (2), das zwei Elektroden und eine Füllung mit zur Diffusion in Quarzglas oder Keramik neigenden Metallen bei Temperaturen bis 1200 °C enthält, die im Betrieb Ionen mit kleinem Ionenradius bilden, wobei der Ionenradius maximal dem des Ions Na+ entspricht, und das von einem zweiseitig verschlossenen zylindrische Außenkolben (9) umgeben ist, der eine Achse definiert, wobei das Entladungsgefäß (2) in etwa axial im Außenkolben (9) angeordnet ist und dort durch zwei im Außenkolben (9) angeordnete Stromzuführungen (4,5) gehaltert ist, wobei die im Außenkolben (9) angeordneten Stromzuführungen (4,5) über einen Großteil ihrer Länge von einer UV-abschirmenden Ummantelung (14) umgeben sind, dadurch gekennzeichnet, daß der spezifische Gehalt an den zur Diffusion neigenden Metallen im Entladungsvolumen kleiner als 6 µmol/cm3 ist.
  2. Metallhalogenidentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß das zur Diffusion neigende Metall Natrium und/oder Lithium ist.
  3. Metallhalogenidentladungslampe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der spezifische Gehalt an zur Diffusion neigendem Metall mindestens 1 µmol/cm3 beträgt.
  4. Metallhalogenidentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Ummantelung (14) aus einem der Materialien Keramik, Hartglas oder Quarzglas gefertigt ist.
  5. Metallhalogenidentladungslampe nach Anspruch 4, dadurch gekennzeichnet, daß die Ummantelung (14) flexibel ist.
  6. Metallhalogenidentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Gesamtfüllmenge an Metallhalogeniden (in mg) maximal dem Dreifachen des Volumens (in cm3) des Entladungsgefäßes entspricht.
  7. Metallhalogenidentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Lampenleistung maximal 250 W beträgt.
  8. Metallhalogenidentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Ummantelung eine Beschichtung aus einer Keramiksuspension ist, insbesondere aus ZrO2, das bis zu 15 Gew.-% Boroxid enthält.
  9. Verwendung einer Ummantelung (14), insbesondere einer Hülse aus Quarzglas, Hartglas oder Keramikmaterial, für die Stromzuführungen (4,5) im Außenkolben einer Metallhalogenidentladungslampe, bei der ein zweiseitig gequetschtes Entladungsgefäß (2) in einem zylindrischen zweiseitig verschlossenen Außenkolben (9), der eine Achse definiert, in etwa axial angeordnet ist, zur Vermeidung der Photoionisation bei Verwendung geringer Mengen an Metallfüllungen der Metalle Natrium und/oder Lithium, dadurch gekennzeichnet, daß die reine Menge dieser Metalle kleiner als 6 µmol/cm3, bezogen auf das Entladungsvolumen, ist.
EP94919552A 1993-10-06 1994-06-30 Metallhalogenidentladungslampe Expired - Lifetime EP0722616B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4334074 1993-10-06
DE4334074A DE4334074A1 (de) 1993-10-06 1993-10-06 Metallhalogenidentladungslampe
PCT/DE1994/000753 WO1995010120A1 (de) 1993-10-06 1994-06-30 Metallhalogenidentladungslampe

Publications (2)

Publication Number Publication Date
EP0722616A1 EP0722616A1 (de) 1996-07-24
EP0722616B1 true EP0722616B1 (de) 1999-09-08

Family

ID=6499548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94919552A Expired - Lifetime EP0722616B1 (de) 1993-10-06 1994-06-30 Metallhalogenidentladungslampe

Country Status (7)

Country Link
US (1) US5729091A (de)
EP (1) EP0722616B1 (de)
JP (1) JP3176631B2 (de)
CN (1) CN1066853C (de)
DE (2) DE4334074A1 (de)
HU (1) HU216672B (de)
WO (1) WO1995010120A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19731168A1 (de) * 1997-07-21 1999-01-28 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungssystem
US6147440A (en) * 1997-09-11 2000-11-14 Osram Sylvania Inc. Low wattage lamp having formed arc tube in aluminosilicate outer jacket
JP3657461B2 (ja) * 1999-06-15 2005-06-08 株式会社小糸製作所 放電バルブ
JP4050062B2 (ja) * 2001-04-02 2008-02-20 サムスン エレクトロニクス カンパニー リミテッド 光源装置、これを有するバックライトアセンブリ及び液晶表示装置
US6861808B2 (en) * 2002-03-27 2005-03-01 Matsushita Electric Industrial Co., Ltd. Metal vapor discharge lamp
DE10234758B4 (de) * 2002-07-30 2006-02-16 Sli Lichtsysteme Gmbh Metall-Halogendampflampe niedriger Leistung
SE0701251L (sv) * 2007-05-24 2008-09-09 Auralight Int Ab Högtrycksnatriumlampa
CN102205136B (zh) * 2010-03-31 2014-02-05 海尔集团公司 宽频光波杀菌灯

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6703447A (de) * 1967-03-03 1968-09-04
DE3619068C2 (de) * 1986-06-06 1996-08-22 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Kompakte Metallhalogenidentladungslampe
HU205485B (en) * 1986-10-20 1992-04-28 Tungsram Reszvenytarsasag Metal halogen discharge lamp containing alkali-halogenide additive
DE9002959U1 (de) * 1990-03-15 1990-05-17 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen, De
US5064395A (en) * 1990-10-01 1991-11-12 Gte Products Corporation Compact outer jacket for low wattage discharge lamp
CA2062889A1 (en) * 1991-04-22 1992-10-23 John M. Washick Silicon nitride coatings in metal halide lamps to reduce sodium loss
DE9112690U1 (de) * 1991-10-11 1991-12-05 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh, 8000 Muenchen, De
JPH0631029U (ja) * 1992-09-22 1994-04-22 住友電装株式会社 シールド電線の端末部分の保護構造

Also Published As

Publication number Publication date
DE4334074A1 (de) 1995-04-13
HU216672B (hu) 1999-08-30
DE59408733D1 (en) 1999-10-14
CN1066853C (zh) 2001-06-06
US5729091A (en) 1998-03-17
CN1132569A (zh) 1996-10-02
EP0722616A1 (de) 1996-07-24
HUT73122A (en) 1996-06-28
JPH08511127A (ja) 1996-11-19
WO1995010120A1 (de) 1995-04-13
HU9503684D0 (en) 1996-02-28
JP3176631B2 (ja) 2001-06-18

Similar Documents

Publication Publication Date Title
DE10354868B4 (de) Quecksilber-freie Bogenentladungsröhre für eine Entladungslampeneinheit
DE69817140T2 (de) Quecksilberfreie metallhalogenidlampe
EP0588284B1 (de) Metallhalogenid-Entladungslampe
EP0535311B1 (de) Hochdruckentladungslampe kleiner Leistung
DE69817493T2 (de) Hochdruck metallhalogenidlampe
EP0841686B1 (de) Metallhalogenid-Hochdruckentladungslampe
EP0453893B1 (de) Hochdruckentladungslampe
DE69825700T2 (de) Metallhalogenidlampe
DE3329280A1 (de) Metallhalogenid-bogenentladungslampe und verfahren zu ihrer herstellung und zu ihrem betrieb
EP0714551B1 (de) Metallhalogenidentladungslampe für fotooptische zwecke
EP0637056B1 (de) Hochdruckentladungslampe
DE10245000B4 (de) Quecksilberfreie Lichtbogenröhre für Entladungslampeneinheit
EP0722616B1 (de) Metallhalogenidentladungslampe
DE3008518C2 (de) Elektrode für eine Entladungslampe
DE2707204C2 (de) Hochdruck-Entladungslampe mit Metallhalogenid-Zusatz
DE69816390T2 (de) Metallhalogenid Lampe
DE3038993C2 (de) Metalldampfentladungslampe
DE60128417T2 (de) Hochdruckentladungslampe
DE2346132A1 (de) Keramik-entladungslampe
DE10245228B4 (de) Quecksilberfreie Bogenentladungsröhre für Entladungsleuchteneinheit
DE2627380C3 (de) Metalldampf-Hochdruckentladungslampe für horizontalen Betrieb
EP0702394B1 (de) Metallhalogenid-Hochdruckentladungslampe
EP1032022B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
DE10356762B4 (de) Entladungslampe vom Kurzbogentyp
DE2422576C3 (de) Quecksilberdampflampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19960828

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59408733

Country of ref document: DE

Date of ref document: 19991014

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050615

Year of fee payment: 12

Ref country code: BE

Payment date: 20050615

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050617

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

BERE Be: lapsed

Owner name: *PATENT-TREUHAND-G.- FUR ELEKTRISCHE GLUHLAMPEN M.

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080818

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080616

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101