EP0720720B1 - Kanalwärmetauscher - Google Patents

Kanalwärmetauscher Download PDF

Info

Publication number
EP0720720B1
EP0720720B1 EP94928255A EP94928255A EP0720720B1 EP 0720720 B1 EP0720720 B1 EP 0720720B1 EP 94928255 A EP94928255 A EP 94928255A EP 94928255 A EP94928255 A EP 94928255A EP 0720720 B1 EP0720720 B1 EP 0720720B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
flow
channels
fact
described under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94928255A
Other languages
English (en)
French (fr)
Other versions
EP0720720A1 (de
Inventor
Eberhard Dipl.-Ing. Paul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19934333164 external-priority patent/DE4333164C2/de
Priority claimed from DE19934333904 external-priority patent/DE4333904C2/de
Application filed by Individual filed Critical Individual
Publication of EP0720720A1 publication Critical patent/EP0720720A1/de
Application granted granted Critical
Publication of EP0720720B1 publication Critical patent/EP0720720B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/02Non-rotary, e.g. reciprocated, appliances having brushes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/08Fastening; Joining by clamping or clipping
    • F28F2275/085Fastening; Joining by clamping or clipping with snap connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/02Removable elements

Definitions

  • the invention relates to a heat exchanger for, in particular two flowing fluids with parallel flow channels, the cross section of layers lying on top of each other Sheets with a meandering profile is formed, one the flow channels of the underlying one Covering the panel and being adjacent to each side Different fluids can flow through flow channels are.
  • Such a heat exchanger has become known from DD 243 088 A1.
  • the heat exchanger that became known from DD 243 088 Al is made up of individual ones in an S-shape Profile sheet metal strips built up, the profile of which is meandering Has cross section.
  • the inside angle of the meandering Profile-formed open trapezoids are, however greater than 90 °, so that an overlying panel in the can intervene underneath and slide in.
  • the flow cross sections, flow velocities, effective Heat exchange surfaces and the static controllability of the overall structure in an uncontrolled manner are also be made up of individual ones in an S-shape Profile sheet metal strips built up, the profile of which is meandering Has cross section.
  • the inside angle of the meandering Profile-formed open trapezoids are, however greater than 90 °, so that an overlying panel in the can intervene underneath and slide in.
  • the invention is based on the object, one To further develop heat exchangers of the type mentioned in the introduction, that the superimposed panels no longer interlock slide, but that the boards without stabilizing Intermediate sheets can lie on top of each other and become one stable overall structure results, with economical use of materials a maximum heat exchange surface with thin sheets is achieved in a confined space.
  • Heat exchanger is therefore a compact heat exchanger with a high specific heat exchange surface, for the most diverse Heat exchange tasks between gaseous and / or liquid Media as well as an evaporator, condenser and flow reactor applicable with exothermic and endothermic processes is.
  • a heat exchanger between gaseous media the heat exchanger can be used for waste heat, for example from exhaust air in buildings, factories and warehouses as well use in combination with extractor hoods.
  • the heat exchanger can be used to preheat dry air in drying systems, for preheating combustion air such as in Bakeries, for drying processes or forced air cooling, for Condensation in tumble dryers for ventilation in livestock farming in stables and for heat exchange purposes in power plants and use exhaust gas treatment systems.
  • combustion air such as in Bakeries
  • forced air cooling for Condensation in tumble dryers for ventilation in livestock farming in stables and for heat exchange purposes in power plants and use exhaust gas treatment systems.
  • the heat exchanger can be used in car washes or in household appliances such as washing machines, dishwashers used will.
  • Other areas of application are in air conditioning, in cooling processes such as control cabinet cooling or evaporative cooling, condensation, in evaporation technology such as as a film evaporator, in refrigeration systems, Continuous gas heaters and in boilers, forming stations for hot water and steam as well as in the automotive industry, for example for waste heat use and heating of the passenger compartment.
  • the heat exchanger in the automotive industry due to its high compactness and small size can be used excellently for preheating wash water for windscreen and headlight washer systems and for charge air cooling in the turbocharger engine.
  • the heat exchanger can be made of aluminum, steel, stainless steel, etc. Metals and alloys, or of plastics or Paper or other materials.
  • the inner angles of the meandering profile are preferred formed open trapezoids larger than 70 ° so that Relationship between material expenditure and heat exchange area of the flow channel is as optimal as possible and the ratio from heat transfer coefficient to weight or price of the heat exchanger is kept as large as possible.
  • the walls of the flow channels are the heat exchanger roughened and / or with the flow of the flowing Structures influencing fluids.
  • a channel flow especially in larger dimensions smooth channels, the risk of deterioration in heat transfer through a laminar boundary layer of the flowing
  • fluid on the walls which leads to the invention roughened and / or structured duct wall as flow-specific baffles within the flow channel e.g. to create turbulence or spiral flows or double spiral flows, which increases the heat exchange between the fluids is increased or optimized.
  • the fluid is into the individual flow channels via inclined surfaces and / or deflectable so that the fluids in selected flow channels for example a flow channel level or only one end half of the heat exchanger initiated can be.
  • About the number of closed shut-off elements can also the residence time of the fluids in the Set the heat exchanger and thus the heat transfer coefficient and influence the flow direction of the fluids. Consequently hydraulic cleaning is also possible.
  • Especially adjustable flaps can control the flow and heat exchange performance vary. These flaps can be driven or move magnets.
  • Flow control elements via the the fluids can be introduced into the flow channels from the outside or are redirectable within the heat exchanger, so the inlet and outlet of each fluid at any angle lead into and out of the heat exchanger or within redirect the heat exchanger, the flow pressure losses be minimized.
  • a flow distributor and a are particularly preferred Flow combiner for a fluid as one in the flow direction over the entire cross-section of the flow level (s) extending flat channel section without flow channels trained and the flow channels of the other Fluids in this (n) flow plane (s) at their respective Ends, especially with an inclined surface, closed are. Then it flows into the heat exchanger e.g. about its total cross-sectional area introduced fluid into all open Flow channels without entering the flow channels of the other fluids. So one can only have an opening cross-section fluid flowing into the heat exchanger to all desired flow channels in the heat exchanger into one Checkerboard-like flow cross-section can be distributed and so with low flow pressure loss, since none 90 ° deflection, maximum heat exchange can be achieved.
  • this is the profile forming the flow channels compressed into a plane at its respective ends.
  • Profile sheets manufactured using the deep-drawing process with an acute-angled trapezoidal shape Cross section can be easily compressed, so that with a meandering basic profile also structures closing certain flow channels easy to manufacture.
  • channel sections are each only open to a fluid Have front half and this entry and exit side Face halves of a fluid preferably diagonally opposite in the direction of flow, so the Flows through the heat exchanger according to the invention diagonally and with respect a flow short-circuit of the heat exchanger is prevented.
  • Those forming the flow channels are particularly preferred Panels can be arranged in a housing, which can preferably also be dismantled, what the assembly and disassembly as well as the Cleaning of the individual parts forming the heat exchanger facilitated.
  • a housing which can preferably also be dismantled, what the assembly and disassembly as well as the Cleaning of the individual parts forming the heat exchanger facilitated.
  • the heat exchanger package is also a V-shaped sealing element easily removable from a one-piece housing.
  • a fin heat exchanger also falls within the scope of the invention, in which a fluid, e.g. Air, parallel flow channels with rectangular profile, trapezoidal profile or excessive trapezoidal profile or similar parts of profile pieces.
  • a fluid e.g. Air
  • parallel flow channels with rectangular profile, trapezoidal profile or excessive trapezoidal profile or similar parts of profile pieces.
  • another fluid e.g. with a liquid
  • the heat exchanger designated by 1 in FIG. 1a has a housing 2, in which by means of a continuous sheet metal strip 3 flow channels 4 for two fluids, for example A, B are formed. Inscribed in the drawing a filled arrow the fluid A, an unfilled Arrow the fluid B.
  • the metal strip 3 has a meandering shape Profile whose open inside angle ⁇ is less than Are 90 °. Inside the housing 2 is the meandering Sheet metal strip 3 itself arranged in a serpentine or S-shape, that parallel flow channel planes are formed. The sheet profile lies on a flow level the underlying sheet metal profile, as shown schematically at 5 is indicated.
  • the two longitudinal edges 6a, b of the Sheet metal strip 3 are either with each other or with the housing 2 connected leakage-free, so that laterally adjacent Flow channels 4 each completely from a different fluid and flows hermetically separated from one another by sheet metal will. As shown in Fig. 1b, mixing takes place of the fluids flowing through the flow channels 4 A, B does not take place. Due to the almost square structure of the Flow channels 4 are used for heat exchange between the two Fluids A, B each on four sides of a channel 4, such as it is indicated by the double arrows 7. The heat exchange surface can only be compared to one of parallel Double plates of existing heat exchangers.
  • FIG. 2a To further increase the heat exchange, flow through the two fluids A, B according to FIG. 2a, the flow channels 4 in opposite flow direction.
  • a channel flow especially in larger flow channels with smooth walls, as shown in Fig. 2a the risk of deterioration in heat transfer between the two fluids A, B through the training each a laminar boundary layer of the flowing fluid the smooth wall.
  • the figures 2b to e show across and formed obliquely to the flow direction of the flow channels 4 Flow baffles in the form of furrows 8a to 8d, over which the flow behavior of the flowing Influences fluids.
  • FIG. 3a shows an exploded view of the otherwise superimposed ones Profile sheets.
  • the illustration shows how the profile of the quasi-flat flat plates (see Fig. 3c) merges into the meandering profile structure, the Transition e.g. from level 9 to the "trapezoidal roof” 10 over the oblique discharge surfaces 10a; analogously, the Transition to the "Trapez Valley”.
  • the flow course in this Transition area (channel distributor) is from the sectional view 3b can be seen, it being clearly recognizable that the entry of the medium A from a flat, flat Gap (first flow level) in the channels of two flow levels (Partial streams A 'and A "according to FIG. 4), whereby the checkerboard-like flow profile well shown in FIG. 4 arises.
  • the flow channels 4 shown in FIG. 4 differ from those of FIG. 1a in that on the outside diagonally adjacent flow channels 4a, b of a fluid are connected to one another via openings 11. This is shown in the rear view of FIG. 4 for the outer flow channels 4a, b.
  • the front part of Fig. 4 shows the separate inflow of the two fluids A, B in adjacent flow levels in the countercurrent process.
  • the introduction of a fluid into the flow channels 4a, 4b is achieved in that elevations 10 are provided with closed inclined surfaces 10a.
  • the fluid flow A is split up via the inclined surface 10a into a first partial flow A 'and a second partial flow A ".
  • the lateral sealing of the flow channels open to the outside 4 takes place either through a smooth side wall 15a or by profiling according to the flow levels Sidewall 15b (Fig. 6a).
  • the introduction of the fluids A, B in This embodiment is carried out through side openings 16 in the side walls 15a, b. Because the flow planes of the other Fluids with an S-shaped overlay of the sheet metal strip resulting from the bending edge closed the fluid can be open over the entire Cross section 16 of the side walls 15 are fed.
  • the derivative the fluid takes place according to FIG. 6a via the end face of the flow channels 4, so that the introduction and discharge of the both fluids A, B are each perpendicular to each other.
  • Fig. 6b In the case of an overlapping S-shape in the direction of flow Profile sheet strips, as shown in Fig. 6b, are the profiled side parts 15b with corresponding recesses Mistake.
  • Fig. 6c again illustrates each Entry and exit directions running at right angles to one another the fluids A, B in the heat exchanger 1.
  • FIG. 7a shows a heat exchanger 101 which can be dismantled and which consists of two housing halves 102a, b which can be connected to one another, a profiled sheet 103 which forms flow channels 104 and a cover 117 with flow deflection elements 117a.
  • the identically designed housing halves 102a, b have two preferably square openings 118a, b and two side openings 119a, b, into which the covers 117 (with and without flow control elements 117a) can be inserted.
  • the housing 102, 602, the cover 117, 617, the gap 627 and the connecting rib 6 are preferably made of plastic and can be connected to one another in a detachable and simple manner.
  • the end faces 103 'of the profiled sheet 103 are V-shaped and, when the two housing halves 102a, b are connected, are in a form-fitting manner against likewise V-shaped stops 102' within the respective housing half 102a, b, a seal preferably being inserted for sealing purposes, which is adapted to the sealing surface 102.
  • the flow directing elements 117a consist of parallel baffles 117a 'spaced apart from one another and one or two cover surface (s) 117b.
  • both the end angle ⁇ of the V-shaped end face of the profiled plate 103 and the deflection angle of the flow deflecting elements 117 are 45 °, so that the fluids between the guide plates 117a can be introduced or discharged parallel to the flow direction via the end sides of the heat exchanger 101, as in the fig. 7a, b is shown. If the covers with flow guide elements 117a are inserted into the front openings, the laterally entering fluids A, B can also be introduced into the heat exchanger 101 parallel to the flow direction.
  • FIG. 7c shows the flow planes 4 A , 4 B which are each open for a fluid and closed by end strips, which correspond to those of FIG. 4 with the exception of the V-shaped end face.
  • the two housing halves 102a, b can be easily connected or detached to one another by means of fastening means in the form of locking brackets 121 which engage with projections 120 on the heat exchanger 101.
  • the covers 117 can also be easily attached or detached using a similar locking mechanism between projections 117c on the covers 117 and locking brackets 121 '.
  • 7d shows the longitudinal section of the assembled heat exchanger 101, a flexible intermediate piece 121 being installed here for improved expansion absorption and assembly. This adapter can also be attached to the end of the heat exchanger.
  • FIG. 8 is another embodiment of a heat exchanger 201 shown, in which the one-piece housing halves in FIG. 7a 102a, b in turn through two housing quarters 202a ', a ", b', b" are formed.
  • the individual housing quarters 202 and the front cover 222 and die die side covers 223 covering side openings 219 are attached with locking brackets 221, which in turn with Projections 220 and 217c on the housing quarters 202a, b and cooperate on the end parts 217c.
  • the one assembled State of the heat exchanger 201 to the heat exchanger package pressed housing parts are each with sealant 224 sealed.
  • the profiled sheet 203 is on the ends of rectangular end faces 203 '.
  • the front Covers 222 with protrusions 217c are made by means of Seal 224 and clamping means tightly connected to the housing.
  • FIG. 9 shows a heat exchanger designed analogously to FIG. 7a 103 in a housing 602, which, however, in one piece is.
  • the exploded view shows that the housing 602 consists of a continuous, rectangular channel 602, which is easy to produce as a drawn part.
  • the seal on the V-shaped end face 103 ' takes place via a removable V-shaped sealing element 623, the front and side preferably square and identically shaped openings 618 ', the inflow and outflow both at the end as well as sideways.
  • the locking of the V-shaped Sealing elements in the housing are made by inserting them a cover 617 or other connecting element 626, 627 through the side housing opening 619 into the lateral opening 619 'of the V-shaped sealing element 623 into where the plug-in element snaps away.
  • a cover 617 or other connecting element 626, 627 through the side housing opening 619 into the lateral opening 619 'of the V-shaped sealing element 623 into where the plug-in element snaps away.
  • an 8-shaped frame seal 624 is provided for sealing.
  • This seal 624 can 625 over the entire surface be so that an incoming medium is filtered at the same time becomes.
  • connection between housings (modular form) and between Housing with V-shaped connecting element 625 and connecting elements is preferably a removable Snap connection realized, preferably from Plug part 628 and receptacle (socket) part 628 'there.
  • the figures 10 and 11 show a fin heat exchanger 701, where the ribs are turned back and forth and a rectangle-like Own profile structure.
  • the flow channels 704 are made of a, in particular gaseous, fluid A flows through like air, the heat exchange with a in particular liquid fluid B takes place in pipes 705, 705 'perpendicular to the flow channels 704 the profiled sheet 703 flows through.
  • the tubes 705, 705 ' have either a round (Fig. 10) or an elongated cross section (Fig. 11).
  • the advantages of the finned heat exchanger 701 can be seen in that the heat transfer is intensified on the air side. This is due to the fact that with liquid-air heat exchangers on the Air side due to media only a significantly lower heat transfer is possible, the heat exchange surface on the Air side (heat exchange fins) are designed so that on The largest possible heat exchange surface accommodated in a confined space is, which in the best case at the same time in itself should be structured to match the heat transfer coefficient on the Increase air side. This goal can be achieved with the profiled Generate metal strips 703, with its profile shape no parallel ribs are created, but by the and turning and stacking a checkerboard-like Structure arises.
  • the channel wall is corrugated or structured differently, so Turbulence or spiral flows arise.
  • Rib profiling is the one actively involved in the heat exchange Rib area increased by approx. 60%. It can be used for the same outer dimensions of a finned heat exchanger the heat exchange surface and thus the compactness and heat exchange performance be increased significantly, or while maintaining one required heat exchange surface is the entire fin heat exchanger in its outer dimensions much smaller.
  • Fig. 12 is another embodiment of a fin heat exchanger 701 'shown by two gaseous fluids A, B at right angles and in separate flow channels is flowed through. Due to the large profile surface of the Fluid A the heat exchange with the fluid B can also be increased here.
  • fig. 13a to 13c show the rib profile Rectangular profile, a trapezoidal profile, an elevated trapezoidal profile, the trapezoidal cones are acute-angled, or the like Profiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Defrosting Systems (AREA)

Description

Die Erfindung betrifft einen Wärmetauscher für, insbesondere zwei, durchströmende Fluide mit parallelen Strömungskanälen, der im Querschnitt aus schichtenweise aufeinanderliegenden Tafeln mit mäanderförmigem Profil ausgebildet ist, wobei eine aufliegende Tafel die Strömungskanäle der darunterliegenden Tafel abdeckt und wobei jeweils seitlich benachbarte Strömungskanäle von unterschiedlichen Fluiden durchströmbar sind.
Ein derartiger Wärmetauscher ist aus der DD 243 088 A1 bekanntgeworden.
Bei Wärmetauschern der üblichen Serienfertigung wie Plattenwärmetauschern oder Spiralwärmetauschern bestehen häufig Abdichtprobleme der aneinander gepreßten Platten bzw. des Deckels am Spiralwärmetauscher, wodurch die Anwendbarkeit und der Gebrauchswert stark verringert sind. Daher wird bei Plattenwärmetauschern mit erheblichem Aufwand eine Verklebung, Verschweißung oder Verlötung der Platten vorgenommen, wodurch dann allerdings eine mechanische Reinigung der Strömungsquerschnitte nicht oder nur bedingt möglich ist.
Auch der aus der DD 243 088 Al bekanntgewordene Wärmetauscher ist aus einzelnen einem s-förmig übereinandergelegten Profilblechstreifen aufgebaut, dessen Profil einen mäanderförmigen Querschnitt aufweist. Die Innenwinkel der vom mäanderförmigen Profil gebildeten offenen Trapeze sind allerdings größer als 90°, so daß eine aufliegende Tafel in die darunterliegende Tafel eingreifen und hineinrutschen kann. Bei höheren Druckdifferenzen zwischen den beiden Wärmetausch-Fluiden besteht eine erhöhte Gefahr, daß die TAfeln in ungewolltem Maße tiefer ineinanderrutschen. Dabei werden die Strömungsquerschnitte, Strömungsgeschwindigkeiten, effektiven Wärmetauschflächen und die statische Beherrschbarkeit des Gesamtgefüges in unkontrollierter Weise beeinflußt.
Jedoch erhöht sich bei dem aus der DD 243 088 A1 bekannten Wärmetauscher durch das Ineinanderrutschen benachbarter Tafeln die Anzahl der für einen Wärmetauscher einer bestimmten effektiven Wärmetauschfläche erforderlichen Tafeln und damit das Gewicht des Wärmeaustauschers pro Raumeinheit.
Der Erfindung liegt demgegenüber die Aufgabe zugrunde, einen Wärmetauscher der eingangs genannten Art derart weiterzubilden, daß die übereinanderliegenden Tafeln nicht mehr ineinander rutschen, sondern daß die Tafeln ohne stabilisierende Zwischenbleche übereinander liegen können und sich dabei ein stabiles Gesamtgefüge ergibt, wobei unter sparsamem Materialeinsatz mit dünnen Blechen eine maximale Wärmetauschfläche auf engem Raum erzielt wird.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Innenwinkel der vom mäanderförmigen Profil gebildeten offenen Trapeze kleiner als 90° sind.
Durch die erfindungsgemäß kleinen Innenwinkel liegt eine Tafel jeweils auf der benachbarten darunterliegenden Tafel auf, so daß ein Ineinandergreifen benachbarter Tafeln gerade verhindert wird. Dies trägt zu einer Erhöhung der Stabilität bei größeren Druckunterschieden bei und führt zu einer Gewichtsreduzierung des Wärmetauschers. Der erfindungsgemäße Wärmetauscher ist somit ein kompakter Wärmetauscher mit hoher spezifischer Wärmetauschfläche, der für die verschiedensten Wärmetauschaufgaben zwischen gasförmigen und/oder flüssigen Medien sowie als Verdampfer, Kondensator und Strömungsreaktor mit exothermen und endothermen Prozessen anwendbar ist. Als Wärmetauscher zwischen gasförmigen Medien läßt sich der Wärmetauscher beispielsweise zur Abwärmenutzung aus Fortluft in Gebäuden, Werks- und Lagerhallen sowie in Kombination mit Dunstabzugshauben einsetzen. Den Wärmetauscher kann man zur Vorwärmung von Trockenluft in Trocknungsanlagen, für Vorheizen von Verbrennungsluft wie z.B. in Bäckereien, für Trocknungsvorgänge oder Umluftkühlung, für Kondensation in Wäschetrocknern, für Belüftung bei der Viehhaltung in Ställen sowie zu Wärmetauschzwecken in Kraftwerken und Abgasbehandlungsanlagen einsetzen. Für flüssige Medien kann der Wärmetauscher in Waschanlagen oder in Haushaltsgeräten wie Waschmaschinen, Geschirrspülautomaten verwendet werden. Weitere Anwendungsgebiete sind in der Klimatisierung, bei Kühlprozesse wie beispielsweise Steuerschrankkühlung oder Verdunstungskühlung, Kondensation, in der Verdampfungstechnik wie z.B. als Filmverdampfer, in Kälteanlagen, Gas-Durchlauferhitzern und in Heizkesseln, Umformstationen für Warmwasser und Dampf sowie in der Fahrzeugindustrie, beispielsweise für die Abwärmenutzung und Aufheizung des Fahrgastraumes. Desweiteren kann der Wärmetauscher in der Fahrzeugindustrie aufgrund seiner hohen Kompaktheit und geringen Größe hervorragend eingesetzt werden zur Waschwasservorwärmung für Scheiben- und Scheinwerferwaschanlagen und zur Ladeluftkühlung beim Turbolader-Motor. Der Wärmetauscher kann aus Aluminium, Stahl, Edelstahl, sonstigen Metallen und Legierungen, oder aus Kunststoffen oder Papier oder sonstigen Materialien bestehen.
Bevorzugt sind die Innenwinkel der vom mäanderförmigen Profil gebildeten offenen Trapeze größer als 70°, damit das Verhältnis zwischen Materialaufwand und Wärmeaustauschfläche des Strömungskanals möglichst optimal ist und das Verhältnis von Wärmeübergangszahl zu Gewicht bzw. Preis des Wärmetauschers möglichst groß gehalten wird.
In einer weiteren vorteilhaften Weiterentwicklung sind alle Tafeln des Wärmetauschers aus einem einzigen fortlaufenden Streifen derart ausgebildet, daß die Strömungskanäle beider Fluide vollständig voneinander getrennt sind. Der fortlaufende Profilstreifen verläuft dazu beispielsweise schlangenoder S-förmig in oder rechtwinklig zur Durchströmrichtung.
In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Wärmetauschers sind die Wandungen der Strömungskanäle angerauht und/oder mit die Strömung des durchströmenden Fluids beeinflußenden Strukturen versehen. Da bei einer Kanalströmung, insbesondere in größer dimensionierten glatten Kanälen, die Gefahr einer Verschlechterung des Wärmeübergangs durch eine laminare Grenzschicht des durchströmenden Fluids an den Wandungen besteht, führt die erfindungsgemäß angerauhte und/oder strukturierte Kanalwandung als strömungsspezifische Schikanen innerhalb des Strömungskanals z.B. zur Erzeugung von Turbulenzen oder Spiralströmungen oder Doppelspiral-strömungen, wodurch der Wärmeaustausch zwischen den Fluiden erhöht bzw. optimiert wird.
Ganz besonders bevorzugt ist es, wenn immmer wiederkehrende Anströmvorgänge innerhalb der Strömungskanäle dadurch erzeugbar sind, daß eine Tefel in Strömungsrichtung in bestimmten Abständen auf einer kurzen Länge in einen flachen Abschnitt, insbesondere mit einer Turbulenz erzeugenden Verprägung, übergeht.
In einer weiteren vorteilhaften Weiterbildung ist das Fluid über schrägflächen in die einzelnen Strömungskanäle ein- und/oder auslenkbar, so daß die Fluide in ausgewählte Strömungskanäle beispielsweise einer Strömungskanalebene oder nur einer Stirnseitenhälfte des Wärmetauschers eingeleitet werden können. Über die Anzahl der verschlossenen Absperrelemente läßt sich auch die Verweilzeit der Fluide in dem Wärmetauscher und damit die Wärmeübergangszahl einstellen und die Durchströmrichtung der Fluide beeinflussen. Somit ist auch eine hydraulische Reinigung möglich. Insbesondere können verstellbare Klappen die Strömungsführung und Wärmetauschleistung variieren. Diese Klappen lassen sich über Antriebe oder Magnete bewegen.
Wenn im Bereich der Ein- und Austrittsöffnungen der Strömungskanäle Strömungsleitelemente vorgesehen sind, über die die Fluide in die Strömungskanäle von außen einleitbar oder innerhalb des Wärmetauschers umleitbar sind, so lassen sich die Zu- und Ableitungen jedes Fluids unter beliebigen Winkeln in den Wärmetauscher ein- und ausleiten bzw. innerhalb des Wärmetauschers umleiten, wobei die Strömungs-Druckverluste minimiert werden.
Durch die spitzwinklige Stirnseiten-Bauform läßt sich aber auch ohne diese Strömungsleitelemente die Ein- bzw. Ableitung des Fluids stirnseitig und auch seitlich, also im 90° -Winkel realisieren. Dazu sind erfindungsgemäß im Gehäuse und an den stirnseitigen, V-förmigen Abdichtelementöffnungen Dichtungen und Filter vorgesehen.
Besonders bevorzugt sind ein Strömungsverteiler und ein Strömungsvereiniger für ein Fluid jeweils als ein in Durchströmrichtung über den gesamten Querschnitt der Strömungsebene(n) sich erstreckender ebener Kanalabschnitt ohne Strömungskanäle ausgebildet und die Strömungskanäle des anderen Fluids in dieser(n) Strömungsebene(n) an ihren jeweiligen Enden, insbesondere mit einer Schrägfläche, verschlossen sind. Dann strömt das in den Wärmetauscher z.B. über dessen gesamte Querschnittsfläche eingeleitete Fluid in alle geöffneten Strömungskanäle ein, ohne in die Strömungskanäle des anderen Fluids zu gelangen. So kann ein nur über einen Öffnungsquerschnitt in den Wärmetauscher einströmendes Fluid auf alle gewünschten Strömungskanäle im Wärmetauscher zu einem Schachbrett ähnlichen Strömungsquerschnitt verteilt werden und so bei geringem Strömungs-Druckverlust, da keine 90°-Umlenkung, ein maximaler Wärmeaustausch erzielt werden.
Erfindungsgemäß ist das die Strömungskanäle bildende Profil an seinen jeweiligen Enden zu einer Ebene zusammengedrückt. Im Tiefziehverfahren hergestellte Profilbleche mit spitzwinkligtrapezförmigem Querschnitt lassen sich leicht zusammendrücken, so daß sich mit einem mäanderförmigen Grundprofil auch bestimmte Strömungskanäle verschließende Strukturen leicht herstellen lassen.
Ganz besonders vorteilhaft ist es, wenn zwei benachbarte, jeweils zu einer Ebene zusammengedrückte Profile aus ihrer jeweiligen Ebene zu einer die Strömungsebene verschließenden Stirnwand abknickbar sind.
Wenn die Kanalabschnitte jeweils eine nur für ein Fluid offene Stirnseitenhälfte aufweisen und diese ein- und austrittsseitigen Stirnseitenhälften eines Fluids vorzugsweise diagonal in Durchströmrichtung gegenüberliegen, so wird der erfindungsgemäße Wärmetauscher diagonal durchströmt und hinsichtlich des Wärmetauschers ein Strömungskurzschluß unterbunden. Außerdem wird mit dieser strömungstechnisch günstigen, fast geradlinigen Durchströmung der Druckverlust gegenüber bekannten Gegenstrom-Bauformen gesenkt.
Besonders bevorzugt sind die die Strömungskanäle bildenden Tafeln in einem, vorzugsweise auch zerlegbaren, Gehäuse anordenbar, was den Zusammen- und Auseinanderbau sowie die Reinigung der einzelnen den Wärmetauscher bildenden Teile erleichtert. Bei dem Einsatz eines stirnseitig abnehmbaren V-förmigen Abdichtelementes ist das Wärmetauscherpaket auch aus einem einteiligen Gehäuse sehr leicht herausnehmbar.
Ganz besonders bevorzugt sind mehrere Wärmetauscher seitlich und/oder in Form eines Baukastensystems und/oder über Eck aneinander koppelbar, so daß Anpassungen an vorgegebene Geometrien, z.B. Volumenströme und Wärmetauschleistungen, möglich sind.
In den Rahmen der Erfindung fällt auch ein Rippenwärmetauscher, bei dem ein Fluid, z.B. Luft, parallele Strömungskanäle mit Rechteckprofil, Trapezprofil bzw. überhöhten Trapezprofil oder ähnlichen Profilstückteilen durchströmt. Der Wärmeaustausch mit einem anderen Fluid, z.B. mit einer Flüssigkeit, erfolgt, indem die Flüssigkeit über Rohre etc. durch den Rippenwärmetauscher hindurch oder an seinen Außenflächen entlang geführt wird.
Weitere Vorteile ergeben sich aus der Beschreibung und der beigefügten Zeichnung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale erfindungsgemäß jeweils einzeln für sich oder in beliebiger Reihenfolge miteinander verwendet werden. Die erwähnten Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter.
Die Erfindung ist in der Zeichnung dargestellt und wird anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
Fig. 1a
schematisch den Querschnitt des erfindungsgemäßen Wärmetauschers mit parallelen, spitzwinkligtrapezförmigen Strömungskanälen, umgeben von einem Gehäuse;
Fig. 1b
schematisch die Verteilung zweier Fluide A und B in den Strömungskanälen der Fig. 1a, sowie den angedeuteten zwei-dimensionalen Wärmetransport;
Fig. 2a
in perspektivischer Ansicht die Strömungskanäle der Fig. 1b mit zwei im Gegenstromverfahren durchströmenden Fluiden A und B;
Fign. 2b-e
in einer der Fig. 2a entsprechender Ansicht die Strömungskanäle des Wärmetauschers jeweils mit in Durchströmrichtung verschieden strukturierten Kanalwandungen;
Fig. 3a
zwei Strömungsebenen zweier Fluide in Explosionsdarstellung mit für das andere Fluid verschlossenen Strömungsteilern;
Fig. 3b
den Strömungsverlauf der beiden Fluide entlang der Ebene IIIb-IIIb der Fig. 3a;
Fig. 3c
den aus dem spitzwinkligen Trapezprofil erzeugten quasi-ebenen Einströmbereich entlang der Ebene IIIc-III3c der Fig. 3a;
Fig. 4
in perspektivischer Ansicht Strömungskanäle mit zwei im Gegenstrom und in abwechselnde Strömungsebenen eingeleiteten Fluiden;
Fig.
5 in perspektivischer Ansicht Strömungskanäle mit unterbrochenen Strömungskanälen und seitlicher Ausleitung eines Fluids;
Fign. 6a,b
in perspektivischer Ansicht einen Wärmetauscher mit die äußeren Strömungskanäle seitlich teilweise abschließenden Seitenwänden und mit seitlicher Einleitung eines Fluids;
Fig. 6c
schematisch die Ein- und Ausflußrichtungen der beiden Fluide gemäß den Fign. 6a und b;
Fign. 7a-d
einen Wärmetauscher mit zerlegbarem Gehäuse und mit V-förmigen Stirnseiten des Wärmetauscherpakets sowie die Durchströmrichtungen der Fluide und desweiteren ein flexibles Verbindungselement;
Fig. 8
einen Wärmetauscher mit zerlegbarem Gehäuse, mit rechtwinkligen Stirnseiten des Wärmetauscherpakets und mit seitlichen Öffnungen;
Fig. 9
einen analog zu dem der Fig. 7a gestalteten Wärmetauscher in einem einteiligen Gehäuse;
Fig. 10
in perspektivischer Teilansicht Strömungskanäle eines Rippen-Wärmetauschers mit rechtwinklig zur Luft-Durchströmrichtung hindurchtretenden Rohren runden Querschnitts;
Fig. 11
die Strömungskanäle der Fig. 27 mit Rohren länglichen Querschnitts.
Fig. 12
einen Rippenwärmetauscher für zwei in verschiedenen Ebenen getrennt und rechtwinklig zueinander strömende Fluide; und
Fig. 13a-c
verschiedene mögliche Profilformen des Strömungskanalquerschnitts für Wärmetauscher, Raumheizkörper und Rippenwärmetauscher.
Der in Fig. 1a mit 1 bezeichnete Wärmetauscher weist ein Gehäuse 2 auf, in welchem mittels eines fortlaufenden Blechstreifens 3 Strömungskanäle 4 für beispielsweise zwei Fluide A, B ausgebildet sind. In der Zeichnung bezeichnet jeweils ein ausgefüllter Pfeil das Fluid A, ein nicht-ausgefüllter Pfeil das Fluid B. Der Blechstreifen 3 weist ein mäanderförmiges Profil auf, dessen offene Innenwinkel  kleiner als 90° sind. Innerhalb des Gehäuses 2 ist der mäanderförmige Blechstreifen 3 selbst derart schlangen- oder S-förmig angeordnet, daß parallele Strömungskanalebenen ausgebildet werden. Dabei liegt das Blechprofil einer Strömungsebene auf dem darunterliegenden Blechprofil auf, wie es bei 5 schematisch angedeutet ist. Die beiden Längskanten 6a, b des Blechstreifens 3 sind entweder miteinander oder mit dem Gehäuse 2 leckagefrei verbunden, so daß seitlich benachbarte Strömungskanäle 4 jeweils von einem anderen Fluid vollständig und hermetisch durch Blech voneinander getrennt durchströmt werden. Wie in Fig. 1b gezeigt ist, findet eine Durchmischung der die Strömungskanäle 4 durchströmenden Fluide A, B nicht statt. Durch die nahezu quadratische Struktur der Strömungskanäle 4 erfolgt der Wärmetausch zwischen den beiden Fluiden A, B jeweils an vier Seiten eines Kanals 4, wie es durch die Doppelpfeile 7 angedeutet ist. Die Wärmeaustauschfläche läßt sich gegenüber einem lediglich aus parallelen Platten bestehenden Wärmetauscher verdoppeln.
Um den Wärmeaustausch weiter zu erhöhen, durchströmen die beiden Fluide A, B nach Fig. 2a die Strömungskanäle 4 in entgegengesetzter Strömungsrichtung. Bei einer Kanalströmung, vor allem in größer dimensionierten Strömungskanälen mit glatten Wandungen, wie es in Fig. 2a gezeigt ist, besteht die Gefahr einer Verschlechterung des Wärmeübergangs zwischen den beiden Fluide A, B durch die Ausbildung jeweils einer laminaren Grenzschicht des durchströmenden Fluids an der glatten Wandung. Die Fign. 2b bis e zeigen quer und schräg zur Durchströmrichtung der Strömungskanäle 4 ausgebildete Strömungsschikanen in Form von Furchen 8a bis 8d, über die sich das Strömungsverhalten der durchströmenden Fluide beeinflussen läßt. So führen die rechtwinklig zur Durchströmrichtung der Fluide verlaufenden Furchen 8a, d zu Turbulenzen, während die schräg zur Durchströmrichtung verlaufenden Furchen 8b zu einer einfachen Spiralströmung 8b'und die V-förmigen oder fischgräten-ähnlichen Furchen 8c zu einer doppelten Spiralströmung 8c' führen. Diese strukturierten Kanalwandungen verhindern eine laminare Grenzschicht und verbessern den Wärmeaustausch zwischen beiden Fluiden A, B.
Fig. 3a zeigt eine Explosionsdarstellung der ansonsten übereinanderliegenden Profilbleche. Die Darstellung zeigt, wie das Profil von der quasi-ebenen flachen Platten (siehe Fig. 3c) in die mäanderförmige Profilstruktur übergeht, wobei der Übergang z.B. von der Ebene 9 zum "Trapez-Dach" 10 über die schräge Auströmflächen 10a erfolgt; analog dazu erfolgt der Übergang zum "Trapez-Tal". Der Strömungsverlauf in diesem Übergangsbereich (Kanalverteiler) ist aus der Schnittdarstellung Fig. 3b ersichtlich, wobei deutlich erkennbar ist, daß der Eintritt des Mediums A von einem ebenen, flachen Spalt (erste Strömungsebene) in die Kanäle zweier Strömungsebenen (Teilströme A' und A" gemäß Fig. 4) erfolgt, wodurch das in Fig. 4 gut dargestellte schachbrettartige Strömungsprofil entsteht. Eintritts- und austrittsseitig der Strömungskanäle sind die Erhebungen 10 mit einer Abschlußfläche, im Ausführungsbeispiel mit einer gewölbten Anströmfläche 10a abgeschlossen, um den Eintritt des anderen Fluids in Durchströmrichtung zu verhindern. Auf diese Weise läßt sich der bei glatten Wärmetauschern erreichbare Wärmeaustausch steigern. Wie Fig. 3b zeigt, werden durch die Erhebungen 10 die Fluidströme A, B jeweils in zwei Teilströme A', A" bzw. B', B" geteilt und parallel zueinander im Strömungskanal zwischen bzw. auf den Erhebungen 10 geführt.
Die in Fig. 4 gezeigten Strömungskanäle 4 unterscheiden sich von denen der Fig. 1a dadurch, daß an der Außenseite diagonal benachbarte Strömungskanäle 4a, b eines Fluids miteinander über Öffnungen 11 verbunden sind. Dies ist in der hinteren Ansicht der Fig. 4 für die äußeren Strömungskanäle 4a, b dargestellt. Der vordere Teil der Fig. 4 zeigt das getrennte Einströmen der beiden Fluide A, B in benachbarten Strömungsebenen im Gegenstromverfahren. Wie in den Fign. 3a und b gezeigt, wird das Einleiten eines Fluids in die Strömungskanäle 4a, 4b dadurch erreicht, daß Erhebungen 10 mit verschlossenen Schrägeflächen 10a vorgesehen sind. Der Fluidstrom A wird über die Schrägfläche 10a in einen ersten Teilstrom A' und einen zweiten Teilstrom A" aufgespalten. In der für das eine Fluid offenen Strömungsebene sind die Querschnitte der Strömungskanäle des anderen Fluids über Schrägflächen 12 ganz verschlossen. Auf diese Weise können die beiden Fluide A, B getrennt voneinander in für sie jeweils offene Strömungsebenen 4A, 4B eingeleitet und in die vorgesehenen Strömungskanäle des jeweiligen Fluids verteilt werden.
Da sich der Wärmeaustausch im laminaren Bereich in der Anströmphase erhöht, ist eine immer wieder unterbrochene Strömung von Vorteil. Dieses kann durch immer wiederkehrende Anlaufvorgänge im Strömungskanal 4 oder, wie Fig. 5 zeigt, in einer Strömungsebene dadurch erreicht werden, daß in bestimmten Abständen die Strömungskanäle 4 auf einer kurzen Länge in einen flachen Kanal 13 zwischen zwei Schrägflächen 12a, b wie bei einem Plattenwärmetauscher übergehen und von dort die Strömung erneut in die Strömungskanäle 4 verteilt wird. Fig. 5 zeigt außerdem, daß die beiden im Gegenstromverfahren die Strömungskanäle 4 durchströmenden Fluide A, B entweder stirnseitig (Fluid A) oder von der Seite (Fluid B) in verschiedene Strömungsebenen eingeleitet werden können. Durch den allen Strömungskanälen 4 einer Strömungsebene voran gestellten gemeinsamen Kanalabschnitt 14 sind alle Strömungskanäle 4 eines Fluids in dieser Strömungsebene miteinander verbunden. Das in diese Strömungsebene eingeleitete Fluid verteilt sich gleichmäßig auf die einzelnen Strömungskanäle 4.
Das seitliche Abdichten der nach außen offenen Strömungskanäle 4 erfolgt entweder durch eine glatte Seitenwand 15a oder durch eine entsprechend den Strömungsebenen profilierte Seitenwand 15b (Fig. 6a). Die Einleitung der Fluide A, B in dieser Ausführungsform erfolgt durch seitliche Öffnungen 16 in den Seitenwänden 15a, b. Da die Strömungsebenen des anderen Fluids mit einer aus der S-förmigen Übereinanderlegung des Profilblechstreifens resultierenden Biegekante verschlossen sind, kann das Fluid über den gesamten offenen Querschnitt 16 der Seitenwände 15 zugeleitet werden. Die Ableitung der Fluide erfolgt gemäß Fig. 6a über die Stirnseite der Strömungskanäle 4, so daß die Ein- und Ausleitung der beiden Fluide A, B jeweils rechtwinklig zueinander verlaufen. Bei einem in Strömungsrichtung S-förmig übereinandergelegten Profilblechstreifen, wie in Fig. 6b dargestellt, sind die profilierten Seitenteile 15b mit entsprechenden Aussparungen versehen. Fig. 6c verdeutlicht nochmals die jeweils rechtwinklig zueinander verlaufenden Ein- und Austrittsrichtungen der Fluide A, B im Wärmetauscher 1.
In Fig. 7a ist ein zerlegbarer Wärmetauscher 101 gezeigt, der aus zwei miteinander verbindbaren Gehäusehälften 102a, b, einem Strömungskanäle 104 bildenden Profilblech 103 sowie Deckel 117 mit Strömungslenkelementen 117a besteht. An ihren ein- bzw. austrittsseitigen Enden weisen die identisch ausgebildeten Gehäusehälften 102a, b zwei vorzugsweise quadratische Öffnung 118a, b sowie zwei Seitenöffnungen 119a, b auf, in die die Deckel 117 (mit und ohne Strömungslenkelemente 117a) einsetzbar sind. Vorzugsweise sind das Gehäuse 102, 602, die Deckel 117, 617, die Lücke 627 sowie Verbindungsrippe 6 aus Kunststoff und über eine Schnappverbindung lösbar und einfach miteinander zu verbinden. Die Stirnseiten 103' des Profilbleches 103 sind V-förmig ausgebildet und liegen im verbundenen Zustand der beiden Gehäusehälften 102a, b formschlüssig an ebenfalls V-förmigen Anschlägen 102' innerhalb der jeweiligen Gehäusehälfte 102a, b an, wobei zur Abdichtung vorzugsweise eine Dichtung eingelegt wird, die der Abdichtfläche 102 angepaßt ist. Die Strömungslenkelemente 117a bestehen aus im Abstand voneinander angeordneten parallelen Leitblechen 117a' und einer oder zwei Abdeckfläche(n) 117b. Vorzugsweise betragen sowohl der Stirnwinkel ß der V-förmigen Stirnseite des Profilbleches 103 und der Ablenkwinkel der Strömungslenkelemente 117 45°, so daß die Fluide zwischen den Leitblechen 117a über die Stirnseiten des Wärmetauschers 101 parallel zur Durchströmrichtung ein- bzw. herausgeleitet werden können, wie in den Fign. 7a, b gezeigt ist. Werden die Deckel mit Strömungsleitelementen 117a in die stirnseitigen Öffnungen eingesetzt, können die seitlich eintretenden Fluide A, B ebenfalls parallel zur Durchströmrichtung in den Wärmetauscher 101 eingeleitet werden. Fig. 7c zeigt die für ein Fluid jeweils geöffneten und durch Stirnseitenstreifen verschlossenen Strömungsebenen 4A, 4B, die denen der Fig. 4 mit Ausnahme der V-förmigen Stirnseite entsprechen. Über Befestigungsmittel in Form von mit Vorsprüngen 120 am Wärmetauscher 101 angreifenden Feststellbügeln 121 können die beiden Gehäusehälften 102a, b leicht miteinander verbunden bzw. gelöst werden. Über einen ähnlichen Feststellmechanismus zwischen Vorsprüngen 117c an den Deckeln 117 und Feststellbügel 121' lassen sich auch die Deckel 117 leicht befestigen bzw. lösen. Den Längsschnitt des zusammengebauten Wärmetauschers 101 zeigt Fig. 7d, wobei hier ein flexibles Zwischenstück 121 zur verbesserten Dehnungsaufnahme und Montage eingebaut ist. Dieses Zwischenstück kann ebenso am Wärmetauscher-Ende angebracht werden.
In Fig. 8 ist eine weitere Ausführungsform eines Wärmetauschers 201 gezeigt, bei der die in Fig. 7a einteiligen Gehäusehälften 102a, b ihrerseits durch zwei Gehäuseviertel 202a', a", b', b" ausgebildet sind. Die einzelnen Gehäuseviertel 202 sowie die stirnseitige Abdeckung 222 und die die seitlichen Öffnungen 219 abdeckenden Seitenabdeckungen 223 werden mit Feststellbügeln 221 befestigt, die ihrerseits mit Vorsprüngen 220 bzw. 217c an den Gehäusevierteln 202a, b und an den Stirnseitenteilen 217c zusammenwirken. Die im zusammengebauten Zustand des Wärmetauschers 201 an das Wärmetauscherpaket gepreßten Gehäuseteile sind jeweils mit Dichtungsmitteln 224 abgedichtet. Das Profilblech 203 besteht an den Enden aus rechtwinkligen Stirnseiten 203'. Die stirnseitigen Abdeckungen 222 mit Vorsprüngen 217c werden mittels Dichtung 224 und Spannmitteln dicht mit dem Gehäuse verbunden.
Fig. 9 zeigt einen analog zu Fig. 7a gestalteten Wärmetauscher 103 in einem Gehäuse 602, welches allerdings einteilig ist. Die Explosionsdarstellung zeigt, daß das Gehäuse 602 aus einem durchgängigen, rechteckigen Kanal 602 besteht, der einfach als Ziehteil herstellbar ist. Die Abdichtung an der V-förmigen Stirnseite 103' erfolgt über ein herausnehmbares V-förmiges Abdichtelement 623, das stirnseitig und seitlich vorzugsweise quadratische und gleichgestaltete Öffnungen 618' aufweist, die das Ein- bzw. Ausströmen sowohl stirnseitig als auch seitlich ermöglicht. Die Arretierung der V-förmigen Abdichtelemente im Gehäuse erfolgt durch das Einstecken eines Deckels 617 oder sonstigen Verbindungselementes 626, 627 durch die seitliche Gehäuseöffnung 619 in die seitliche Öffnung 619' des V-förmigen Abdichtelementes 623 hinein, wo das Einsteckelement lösbar einschnappt. Auf diese Weise ist im Bauteilsystems mit einfachen Mitteln ein wartungsfreundlicher, multivalenter Einsatz des Wärmetauschers möglich.
Zwischen der Dichtfläche 602' des V-förmigen Abdichtelements 623 und der V-förmigen Stirnseite 103' des Wärmetauschers ist zur Abdichtung eine 8-förmige Rahmendichtung 624 vorgesehen. Diese Dichtung 624 kann einseitig vollflächig 625 sein, so daß ein eintretendes Medium gleichzeitig gefiltert wird.
Um zwei unterschiedliche Wirkweisen (Dichten und Filtern) mit einem Material realisieren zu können, wird dieses material 624, 625 an der aktiven Abdichtfläche an der Oberfläche oder/und inwandig derart behandelt, daß eine Undurchlässigkeit für das vorbeiströmende Medium und damit eine gute Abdichtwirkung erreicht wird.
Die Verbindung zwischen Gehäusen (Baukastenform) und zwischen Gehäuse mit V-förmigem Verbindungselement 625 und Verbindungselementen (wie beispielsweise Verbindungsnippel, flexible Verbindungselemente 651, Bogenstücke 626, Übergangsstücke 627 von rund auf eckig-symmetrisch oder asymmetrisch), Lüftungsgitter an den Öffnungen, Kondensat-Abführelemente, Decke (617 usw.) wird vorzugsweise über eine lösbare Schnappverbindung realisiert, die vorzugsweise aus Steck-Teil 628 und Aufnahme-(Buchsen-)Teil 628' besteht.
Die Fign. 10 und 11 zeigen einen Rippenwärmetauscher 701, bei dem die Rippen hin- und hergewendet sind und eine rechteckähnliche Profilstruktur besitzen. Beim Hin- und Herwenden und somit beim Übereinanderlegen des profilierten Blechstreifens 703 entsteht eine schachbrettähnliche Struktur mit sehr hoher Wärmetauschfläche pro Raumeinheit. Die Strömungskanäle 704 werden von einem, insbesondere gasförmigen, Fluid A wie Luft durchströmt, wobei der Wärmeaustausch mit einem, insbesondere flüssigen Fluid B stattfindet, das in Rohren 705, 705' rechtwinklig zu den Strömungskanälen 704 das Profilblech 703 hindurchströmt. Die Rohre 705, 705' haben entweder einen runden (Fig. 10) oder einen länglichen Querschnitt (Fig. 11).
Die Vorzüge des Rippenwärmetauscher 701 sind darin zu sehen, daß auf der Luftseite der Wärmeübergang intensiviert wird. Bedingt dadurch, daß bei Flüssig-Luft-Wärmetauschern auf der Luftseite medienbedingt nur ein wesentlich geringerer Wärmeübergang möglich ist, sollte die Wärmetauschfläche auf der Luftseite (Wärmetauschrippen) so gestaltet werden, daß auf engem Raum eine möglichst große Wärmetauschfläche untergebracht wird, die im günstigsten Fall gleichzeitig in sich strukturiert sein sollte, um die Wärmeübergangszahl auf der Luftseite zu erhöhen. Dieses Ziel läßt sich mit dem profilierten Blechstreifen 703 erzeugen, bei dessen Profilform keine parallelen Rippen entstehen, sondern durch das Hin- und Herwenden und Übereinanderlegen eine schachbrettähnliche Struktur entsteht. Durch eine zusätzliche Strukturierung ist die Kanalwandung gewellt oder andersartig strukturiert, damit Turbulenzen oder Spiralströmungen entstehen. Durch die Rippenprofilierung wird die am Wärmetausch aktiv beteiligte Rippenfläche um ca. 60% erhöht. Damit kann bei gleichen äußeren Abmessungen eines Rippenwärmetauschers die Wärmetauschfläche und damit die Kompaktheit und Wärmetauschleistung wesentlich erhöht werden, oder bei Beibehaltung einer geforderten Wärmetauschfläche wird der gesamte Rippenwärmetauscher in seinen äußeren Abmessungen wesentlich kleiner.
In Fig. 12 ist eine andere Ausführung eines Rippenwärmetauschers 701' gezeigt, der von zwei gasförmigen Fluiden A, B rechtwinklig und in voneinander getrennten Strömungskanälen durchströmt wird. Durch die große Profilfläche des Fluid A läßt sich auch hier der Wärmeaustausch mit dem Fluid B steigern.
Wie die Fign. 13a bis 13c zeigen, kann das Rippenprofil ein Rechteckprofil, ein Trapezprofil, ein überhöhtes Trapezprofil, wobei die Trapezkegel spitzwinklig sind, oder ähnliche Profile sein.

Claims (13)

  1. Wärmetauscher (1) für, insbesondere zwei, durchströmende Fluide (A, B) mit parallelen Strömungskanälen (4), der im Querschnitt aus schichtenweise aufeinanderliegenden Tafeln mit mäanderförmigem Profil ausgebildet ist, wobei eine aufliegende Tafel die Strömungskanäle (4) der darunterliegenden Tafel abdeckt und wobei jeweils seitlich benachbarte Strömungskanäle (4) von unterschiedlichen Fluiden durchströmbar sind,
    dadurch gekennzeichnet,
    daß die Innenwinkel  der vom mäanderförmigen Profil gebildeten offenen Trapeze kleiner als 90° sind.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, daß die Innenwinkel  größer als 70° sind.
  3. Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß alle Tafeln des Wärmetauschers (1) aus einem einzigen fortlaufenden Streifen (3) derart ausgebildet sind, daß die Strömungskanäle (4) beider Fluide (A, B) vollständig voneinander getrennt sind.
  4. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Wandungen der Strömungskanäle (4) angerauht sind und/oder mit die Strömung des durchströmenden Fluids (A, B) beeinflußenden Strukturen (8a, 8b, 8c, 8d) versehen sind.
  5. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß immer wiederkehrende Anströmvorgänge innerhalb der Strömungskanäle (4) dadurch erzeugbar sind, daß eine Tafel in Strömungsrichtung in bestimmten Abständen auf einer kurzen Länge in einen flachen Abschnitt (13), insbesondere mit einer Turbulenz erzeugenden Verprägung, übergeht.
  6. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Fluid über Schrägflächen (12a, b) in die einzelnen Strömungskanäle (4) ein- und/oder auslenkbar ist.
  7. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Bereich der Ein- und Austrittsöffnungen der Strömungskanäle (4) Strömungsleitelemente (117a) vorgesehen sind, über die die Fluide (A, B) in die Strömungskanäle (4) von außen einleitbar oder innerhalb des Wärmetauschers (101) umleitbar sind.
  8. Wärmetauscher nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß ein Strömungsverteiler und ein Strömungsvereiniger für ein Fluid jeweils als ein in Durchströmrichtung über den gesamten Querschnitt der Strömungsebene(n) sich erstreckender ebener Kanalabschnitt (14; 114)) ohne Strömungskanäle ausgebildet sind und daß die Strömungskanäle (4; 104) des anderen Fluids in dieser(n) Strömungsebene(n) an ihren jeweiligen Enden, insbesondere mit einer Schrägfläche (12a), verschlossen sind.
  9. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das die Strömungskanäle (4) bildende Profil an seinen jeweiligen Enden zu einer Ebene (9) zusammengedrückt ist.
  10. Wärmetauscher nach Anspruch 9, dadurch gekennzeichnet, daß zwei benachbarte, jeweils zu einer Ebene (9) zusammengedrückte Profile aus ihrer jeweiligen Ebene zu einer die Strömungsebene verschließenden Stirnwand (16b) abknickbar sind.
  11. Wärmetauscher nach Anspruch 8, dadurch gekennzeichnet, daß die Kanalabschnitte (114) jeweils eine nur für ein Fluid offene, vorzugsweise V-förmige, Stirnseitenhälfte (103') aufweisen und daß diese ein- und austrittseitigen Stirnseitenhälten (103') vorzugsweise diagonal in Durchströmrichtung gegenüberliegen.
  12. Wärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die die Strömungskanäle (4) bildenden Tafeln in einem, vorzugsweise zerlegbaren, Gehäuse (2; 102; 602) anordnenbar sind.
  13. Bausatz aus Wärmetauschern nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß mehrere Wärmetauscher seitlich und/oder hintereinander und/oder über Eck aneinander koppelbar sind.
EP94928255A 1993-09-27 1994-09-27 Kanalwärmetauscher Expired - Lifetime EP0720720B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19934333164 DE4333164C2 (de) 1993-09-27 1993-09-27 Rippenwärmetauscher mit profilierter Rippenform
DE19934333904 DE4333904C2 (de) 1993-09-27 1993-09-27 Kanalwärmetauscher
DE4333164 1993-09-27
DE4333904 1993-09-27
PCT/DE1994/001118 WO1995009338A1 (de) 1993-09-27 1994-09-27 Kanalwärmetauscher

Publications (2)

Publication Number Publication Date
EP0720720A1 EP0720720A1 (de) 1996-07-10
EP0720720B1 true EP0720720B1 (de) 1998-01-21

Family

ID=25930013

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94928255A Expired - Lifetime EP0720720B1 (de) 1993-09-27 1994-09-27 Kanalwärmetauscher

Country Status (6)

Country Link
EP (1) EP0720720B1 (de)
AT (1) ATE162616T1 (de)
AU (1) AU7738494A (de)
DE (1) DE9490288U1 (de)
DK (1) DK0720720T3 (de)
WO (1) WO1995009338A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004011489U1 (de) * 2004-07-20 2005-12-08 Autokühler GmbH & Co. KG Wärmeaustauscher für Hochtemperatur-Anwendungen, insbesondere Ladeluftkühler
DE102004025640A1 (de) * 2004-05-25 2005-12-22 Hella Kgaa Hueck & Co. Scheinwerfer mit am Leuchtmittel angeordnetem Wärmetauscher
US7746634B2 (en) 2007-08-07 2010-06-29 Cooligy Inc. Internal access mechanism for a server rack
US7836597B2 (en) 2002-11-01 2010-11-23 Cooligy Inc. Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system
US8157001B2 (en) 2006-03-30 2012-04-17 Cooligy Inc. Integrated liquid to air conduction module
US8250877B2 (en) 2008-03-10 2012-08-28 Cooligy Inc. Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door
US8254422B2 (en) 2008-08-05 2012-08-28 Cooligy Inc. Microheat exchanger for laser diode cooling
US8464781B2 (en) 2002-11-01 2013-06-18 Cooligy Inc. Cooling systems incorporating heat exchangers and thermoelectric layers
US8602092B2 (en) 2003-07-23 2013-12-10 Cooligy, Inc. Pump and fan control concepts in a cooling system
US10012450B2 (en) 2012-01-20 2018-07-03 Westwind Limited Heat exchanger element and method for the production
WO2022069587A1 (en) 2020-09-30 2022-04-07 Zehnder Group International Ag Channel heat exchanger

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3362611B2 (ja) * 1996-09-12 2003-01-07 三菱電機株式会社 熱交換器および該熱交換器の熱交換部材の製造方法
DE19654364B4 (de) * 1996-12-24 2007-05-16 Behr Gmbh & Co Kg Strömungskanal, insbesondere für einen Gas-Flüssigkeit-Wärmeübertrager
ITVR20020051U1 (it) * 2002-08-26 2004-02-27 Benetton Bruno Ora Onda Spa Scambiatore di calore a piastre.
WO2006029761A1 (de) * 2004-09-13 2006-03-23 Behr Gmbh & Co. Kg Ladeluftkühler, insbesondere für kraftfahrzeuge
PT2591303E (pt) * 2010-07-08 2015-11-16 Swep Int Ab Permutador de calor de placas
US10415900B2 (en) 2013-07-19 2019-09-17 Westwind Limited Heat / enthalpy exchanger element and method for the production
FI3271676T3 (en) 2015-03-17 2023-01-13 Exchange element for passenger cabin and passenger cabin equipped with such an exchange element
EP3671097B1 (de) * 2018-12-19 2022-07-20 Valeo Autosystemy SP. Z.O.O. Feststellsystem
IT201900025471A1 (it) 2019-12-24 2021-06-24 Novamont Spa Composizione polimerica per film con migliorate proprieta' meccaniche e disintegrabilita'

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB655470A (en) * 1948-03-08 1951-07-25 Raymond Ernest Wigg Improvements in or relating to heat exchangers
DE2513505A1 (de) * 1975-03-26 1976-10-14 Thermal Waerme Kaelte Klima Waermerueckgewinnungsgeraet
DE7925318U1 (de) * 1979-09-06 1981-01-29 Bremshey Ag, 5650 Solingen Mit einem sitz- oder liegemoebel kombinierbarer tisch
WO1981002060A1 (en) * 1980-01-14 1981-07-23 Caterpillar Tractor Co Low stress heat exchanger and method of making the same
JPS57500945A (de) * 1980-07-07 1982-05-27
NZ233192A (en) * 1989-04-19 1992-05-26 John Francis Urch Counterflow heat exchanger with a serpentine flow path

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7836597B2 (en) 2002-11-01 2010-11-23 Cooligy Inc. Method of fabricating high surface to volume ratio structures and their integration in microheat exchangers for liquid cooling system
US8464781B2 (en) 2002-11-01 2013-06-18 Cooligy Inc. Cooling systems incorporating heat exchangers and thermoelectric layers
US8602092B2 (en) 2003-07-23 2013-12-10 Cooligy, Inc. Pump and fan control concepts in a cooling system
DE102004025640A1 (de) * 2004-05-25 2005-12-22 Hella Kgaa Hueck & Co. Scheinwerfer mit am Leuchtmittel angeordnetem Wärmetauscher
DE202004011489U1 (de) * 2004-07-20 2005-12-08 Autokühler GmbH & Co. KG Wärmeaustauscher für Hochtemperatur-Anwendungen, insbesondere Ladeluftkühler
US8157001B2 (en) 2006-03-30 2012-04-17 Cooligy Inc. Integrated liquid to air conduction module
US7746634B2 (en) 2007-08-07 2010-06-29 Cooligy Inc. Internal access mechanism for a server rack
US8250877B2 (en) 2008-03-10 2012-08-28 Cooligy Inc. Device and methodology for the removal of heat from an equipment rack by means of heat exchangers mounted to a door
US8254422B2 (en) 2008-08-05 2012-08-28 Cooligy Inc. Microheat exchanger for laser diode cooling
US8299604B2 (en) 2008-08-05 2012-10-30 Cooligy Inc. Bonded metal and ceramic plates for thermal management of optical and electronic devices
US10012450B2 (en) 2012-01-20 2018-07-03 Westwind Limited Heat exchanger element and method for the production
WO2022069587A1 (en) 2020-09-30 2022-04-07 Zehnder Group International Ag Channel heat exchanger

Also Published As

Publication number Publication date
DK0720720T3 (da) 1998-09-21
AU7738494A (en) 1995-04-18
WO1995009338A1 (de) 1995-04-06
ATE162616T1 (de) 1998-02-15
EP0720720A1 (de) 1996-07-10
DE9490288U1 (de) 1996-07-04

Similar Documents

Publication Publication Date Title
EP0720720B1 (de) Kanalwärmetauscher
DE4333904C2 (de) Kanalwärmetauscher
EP0974804B1 (de) Wärmetauscher, insbesondere Abgaswärmetauscher
DE102006048305B4 (de) Plattenwärmetauscher
DE3220774C2 (de) Plattenverdampfer oder -kondensator
EP0677715B1 (de) Wärmetauscher zum Kühlen von Abgas eines Kraftfahrzeugmotors
EP2267393B1 (de) Strömungskanal für einen wärmeübertrager
EP1682840B1 (de) Wärmeübertrager, insbesondere für kraftfahrzeuge
DE102007049665A1 (de) Wärmeaustauscher
EP2962056B1 (de) Wärmeübertrager
EP1792135B1 (de) Wärmetauscher für kraftfahrzeuge
DE19515526C1 (de) Flachrohrwärmetauscher mit mindestens zwei Fluten für Kraftfahrzeuge
DE2657307B2 (de) Wärmetauscher
DE69837557T2 (de) Plattenwärmetauscher
DD243088A1 (de) Kanalwaermetauscher mit variierbarer waermetauschflaeche
DE19635552C1 (de) Wärmetauscher
DE3318722A1 (de) Waermetauscher
EP1662223B1 (de) Wärmeübertrager und Herstellungsverfahren
DE3339932A1 (de) Spaltwaermetauscher mit stegen
EP0177904A2 (de) Vorrichtung zum Austausch der Wärme zwischen zwei im Kreuzstrom zueinander geführten Gasen
EP0283718B1 (de) Gegenstromwärmetauscher
EP1788320B1 (de) Wärmetauschereinsatz
EP1748271A1 (de) Rippen/Rohrblock für einen Wärmeübertrager
DE19743427B4 (de) Wärmeübertrager
DE3328229A1 (de) Waermetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DK FR GB LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961031

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DK FR GB LI NL SE

REF Corresponds to:

Ref document number: 162616

Country of ref document: AT

Date of ref document: 19980215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980602

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 14.05.2004 REAKTIVIERT WORDEN.

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: DAS PATENT IST AUFGRUND DES WEITERBEHANDLUNGSANTRAGS VOM 10.05.2007 REAKTIVIERT WORDEN.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20130919

Year of fee payment: 20

Ref country code: SE

Payment date: 20130920

Year of fee payment: 20

Ref country code: NL

Payment date: 20130920

Year of fee payment: 20

Ref country code: DK

Payment date: 20130924

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130920

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20131223

Year of fee payment: 20

Ref country code: FR

Payment date: 20130918

Year of fee payment: 20

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20140927

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140927

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140926

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 162616

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140926