EP0719938B1 - Piezo-Wanderwellenmotor für Spaltrohrpumpen mit magnetischer Kupplung - Google Patents

Piezo-Wanderwellenmotor für Spaltrohrpumpen mit magnetischer Kupplung Download PDF

Info

Publication number
EP0719938B1
EP0719938B1 EP95119281A EP95119281A EP0719938B1 EP 0719938 B1 EP0719938 B1 EP 0719938B1 EP 95119281 A EP95119281 A EP 95119281A EP 95119281 A EP95119281 A EP 95119281A EP 0719938 B1 EP0719938 B1 EP 0719938B1
Authority
EP
European Patent Office
Prior art keywords
rotor
pump drive
drive according
magnetic
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95119281A
Other languages
English (en)
French (fr)
Other versions
EP0719938A1 (de
Inventor
Hans-Jürgen Kech
Wolfram Gerber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wilo GmbH
Original Assignee
Wilo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilo GmbH filed Critical Wilo GmbH
Publication of EP0719938A1 publication Critical patent/EP0719938A1/de
Application granted granted Critical
Publication of EP0719938B1 publication Critical patent/EP0719938B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/021Units comprising pumps and their driving means containing a coupling
    • F04D13/024Units comprising pumps and their driving means containing a coupling a magnetic coupling
    • F04D13/027Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0666Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type

Definitions

  • the invention relates to a magnetic pump drive with an outer rotor driven by a motor, the drives an inner rotor via a magnetic coupling, with a gap between the outer and inner rotor exists, in which a partition lies, which the Media-carrying side from the dry side of the Motors separates.
  • Such magnetic pump drives are sufficient known and are especially for centrifugal pumps used. A can separates them Media-carrying side from the drive side of the Pump.
  • EP 0 279 220 includes a centrifugal pump Magnetic coupling between the magnets arranged and sealing against the medium to be conveyed Can of two nested canisters consists.
  • the motors used today to drive pumps are mainly based on the electromagnetic Principle.
  • Electric motors are known to have the big disadvantage that complicated to manufacture and relatively large stator and rotor windings are necessary, to generate high torques and develop conditionally high electrical and magnetic losses Operating temperatures. Due to the large dimensions of a such an electric motor, based on the conventional one electromagnetic principle, fall today Centrifugal pump drives are relatively large.
  • Piezo traveling wave motors Drives with smaller dimensions based on a Piezo traveling wave motors are e.g. from US 5,099,166 known.
  • This document discloses one Piezo traveling wave motor consisting of a vibrating Element for generating a traveling wave and a with the vibrating element in contact with the element which is driven by the traveling wave.
  • the object of the invention is therefore a novel To provide drive system for centrifugal pumps, which is a compact design and high Functional reliability with small dimensions guaranteed.
  • the object is achieved in that the outer rotor of a piezo traveling wave motor is driven, the outer rotor of the pump with one attached to this contact layer close to one Vibration stator of the traveling wave motor is present.
  • the outer rotor can also generate speeds via a gearbox is connected to the piezo traveling wave motor be.
  • the piezo elements of the Piezo traveling wave motor on the inside of a den outer rotor comprising part are attached. It is also structurally advantageous if the Piezo elements are attached to a disc, the Washer on the side of the medium carrying the medium Partition separating the dry side of the motor rests against rotation.
  • the piezo elements can also be arranged directly on the pump housing. This leads to a particularly small design of the pump drive under Use fewer components.
  • the partition should advantageously between the Pump housing and the support carrying the piezo elements lie sealingly, the partition in particular is a flat part.
  • the partition can also be double-walled, so that between the walls the dividing wall is arranged a display medium that with is in contact with an external indicator, which means that any Damage to the partition can be detected early.
  • a structurally simple design of the pump drive arises when on the formed as a flat part Partition attached a bearing bearing part or is integrally formed, wherein the bearing rotates the pump impeller holds.
  • the arranged on the side carrying the medium Magnets of the magnetic coupling are advantageous the side of the pump impeller facing the partition attached. This eliminates the current one Centrifugal pumps necessary rotors carrying the magnets, which is not just a weight reduction, but also results in a higher functional reliability of the pump.
  • the magnets on the drive side are then due to the construction on the partition facing Side of the rotor advantageously designed as a disc attached.
  • FIG Housing 1 A centrifugal pump is shown in FIG Housing 1 a pump impeller 2 on a shaft 3, the shaft 3 is at one end by means of designed as a roller bearing 13 on the inside supports the containment shell.
  • the one on wave 3 arranged inner rotor 4 carries on its cylindrical Surface magnets 5, which with the on the outer rotor 6th arranged magnets 7 form a magnetic coupling.
  • the containment can 10 separates the side 22 carrying the medium the pump from the dry side 21, in which the Piezo traveling wave drive is located.
  • the housing 1 of the pump has a cover 14 closed, the cover 14 by means of screws 15 on Housing is attached. Between the lid 14 and the Housing 1 and the containment shell 10 is a sealing part 17th on.
  • the containment can 10 can be double-walled, so that between the two walls of the can 10 Display medium 16 is, which with a not shown, located on the outside of the pump housing 1.14 Indicator is connected. In the can 10 located display medium 16 and the indicator Damage to the containment shell 10 indicated early.
  • the outer rotor 6 becomes nuts 19 and disc springs 20 with its contact surface against that as a disc trained vibration stator 9 pressed, the Vibration stator 9 with its other side to the Piezo elements 8 is applied, and the piezo elements 8 are applied the inside of the housing cover 14 are attached.
  • FIG. 2 shows a further embodiment of a centrifugal pump with a piezo traveling shaft drive.
  • the outer rotor 6 is now ring-shaped, with the housing cover 1 pressurizing the rotor 6 in the direction of the vibrating stator 9 and piezo elements 8.
  • Between the housing cover 14 and the rotor 6 is a slide bearing, consisting of a rubber washer 11 and a plate spring 11a.
  • the piezo elements 8 are arranged on a disk 23, which rests against rotation between the housing cover 1 and the separating body 10 designed as a containment shell, and deform in the axial direction due to the voltage applied to them and generate the required traveling wave in the oscillating stator 9.
  • FIG. 3 shows a further embodiment of a centrifugal pump with a piezo traveling shaft drive, the piezo elements 8 being arranged on a disk 23 which is fastened in the housing cover 14 by means of screws 24 and the disk 23 by means of a tensioning screw 18 and the associated nuts 19 with their Piezo elements 8 and the vibration stator 9 is pressed firmly against the rotor 6 in the axial direction.
  • the can 10 is designed such that it is a has an annular recess in which the rotor 6 with engages his magnet 7 and another centric, open to the medium side 22 Recess in which the shaft 3 carrying the impeller 2 is stored on the bearing 13.
  • the one with the magnets 7 corresponding magnets 5 are directly on the Can 10 facing side of impeller 2 attached.
  • FIG. 4 shows a centrifugal pump with a Piezo traveling wave drive, in which the with the Vibration stator 9 corresponding adhesive layer of the rotor 6 and the magnets 7 of the magnetic coupling 5.7 on the pump-facing side of the rotor 6 are attached.
  • the Housing cover 14 presses over a slide bearing, in particular consisting of a rubber washer 11 and a plate spring lla, the rotor 6 by means of the screws 15 against the Vibration stator 9.
  • the piezo elements 8 are on one Washer 23 arranged between the housing 1 and the vibrating stator 9.
  • the partition demonstrates 3 shows only one recess which holds the bearing 13, in which the rotatably connected to the pump impeller 2 Shaft 3 is mounted.
  • FIG. 5 shows a centrifugal pump in which the separating body 10 a flat disc, in particular a double-walled one Washer is on the side on the conveying medium a sleeve 12 is molded or attached to her Inside a bearing 13, in particular a roller bearing in which the shaft 3 carrying the pump impeller 2 rotatable.
  • FIG. 6 a centrifugal pump is shown in which the Housing cover 14 is a flat disc, which by means of Screws 15 over the slide bearing 11, 11a against the rotor 6 presses the vibration stator 9 and the piezo elements 8, being between the piezo elements 8 and the housing 1 the separating body 10 lies sealingly and on the Separating body 10 is a body 3 is formed, the is particularly cylindrical and on its outer surface has a bearing 13 on which the pump impeller 2 is rotatable is stored.
  • Figure 7 shows a centrifugal pump with a Piezo traveling wave drive, in which the piezo elements 8 on a cylindrical inner surface of the housing cover 14 lie in, the piezo elements 8 in radial Extend the direction by applying an external voltage or contract, and thereby the vibration stator 9 in Give resonance.
  • the rotor 6 is a, wherein the rotor 6 with its cylindrical surface located adhesive layer in the vibration stator 9.
  • Figures 8 and 9 show a centrifugal pump of a piezo traveling wave motor, in which the Magnetic coupling 5,7 in the axial direction by a Separating body 10 acts.
  • the magnets 5 are on the Separating body 10 facing side of the impeller 2 attached.
  • the magnets 7 are on the pump impeller 2 facing side of the disc or ring-shaped rotor 6 arranged.
  • the rotor 6 lies entirely or in sections with its cylindrical surface on the as a sleeve trained vibration stator 9 with its contact layer on.
  • the piezo elements 8 lie in a ring in the Housing cover 14 or the pump housing 1.
  • the Surface of the rotor 6 and the sleeve-shaped Vibration stators 9 are curved, in particular concave or executed convex, which makes the rotor 6 in axial Direction is held by the vibrating stator 9. It can either the surface of the rotor 6 or the Surface shape of the vibration stator 9 at least partially be concave or convex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

Die Erfindung betrifft einen magnetischen Pumpenantrieb mit einem von einem Motor angetriebenen äußeren Rotor, der über eine Magnetkupplung einen inneren Rotor antreibt, wobei zwischen äußerem und innerem Rotor ein Spalt besteht, in dem eine Trennwand einliegt, die die fördermediumsführende Seite von der Trockenseite des Motors trennt.
Derartige magnetische Pumpenantriebe sind hinlänglich bekannt und werden insbesondere für Kreiselpumpen verwendet. Dabei trennt ein Spalttopf die fördermediumsführende Seite von der Antriebsseite der Pumpe.
So offenbart z.B. die EP 0 279 220 eine Kreiselpumpe mit Magnetkupplung bei der der zwischen den Magneten angeordnete und gegen das zu fördernde Medium dichtende Spalttopf aus zwei ineinander gesteckten Spalttöpfen besteht.
Die heute verwendeten Motoren zum Antrieb von Pumpen basieren dabei überwiegend auf dem elektromagnetischen Prinzip. Elektromotoren haben jedoch bekanntlich den großen Nachteil, daß kompliziert herzustellende und relativ große Stator- und Rotorwicklungen notwendig sind, um hohe Drehmomente zu erzeugen und entwickeln bedingt durch die elektrischen und magnetischen Verluste hohe Betriebstemperaturen. Durch die großen Abmessungen eines solchen Elektromotors, basierend auf dem herkömmlichen elektromagnetischen Prinzip, fallen heutige Kreiselpumpenantriebe relativ groß aus.
Antriebe mit geringeren Abmessungen auf der Basis eines Piezo-Wanderwellenmotors sind z.B. aus der US 5 099 166 bekannt. Dieses Dokument offenbart einen Piezo-Wanderwellenmotor bestehend aus einem schwingenden Element zur Erzeugung einer Wanderwelle und einem mit dem schwingenden Element in Kontakt stehenden Element, welches durch die Wanderwelle angetrieben wird.
Aufgabe der Erfindung ist es daher, ein neuartiges Antriebssystem für Kreiselpumpen bereitszustellen, welches eine kompakte Bauweise und hohe Funktionssicherheit bei kleinen Abmessungen gewährleistet.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß der äußere Rotor von einem Piezo-Wanderwellenmotor angetrieben wird, wobei der äußere Rotor der Pumpe mit einer an diesem angebrachten Kontaktschicht eng an einem Schwingstator des Wanderwellenmotors anliegt.
Der große Vorteil eines Piezo-Wanderwellenmotors gegenüber herkömmlichen, auf dem elektromagnetischen Prinzip basierenden Elektromotoren ist dabei ein vergleichsweise größeres Drehmoment bei gleichem Bauvolumen.
Durch die direkte Verbindung von äußerem Rotor und Schwingstator wird eine äußerst kompakte Bauweise und hohe Funktionssicherheit des Pumpenantriebs erreicht.
Um die für Kreiselpumpen charakteristischen hohen Drehzahlen zu erzeugen, kann der äußere Rotor auch über ein Getriebe mit dem Piezo-Wanderwellenmotor verbunden sein.
Ebenfalls vorteilhaft ist es, wenn die Piezo-Elemente des Piezo-Wanderwellenmotors an der Innenseite eines den äußeren Rotor umfassenden Teils befestigt sind. Auch ist es konstruktiv vorteilhaft, wenn die Piezo-Elemente an einer Scheibe befestigt sind, wobei die Scheibe an der die fördermediumsführende Seite von der Trockenseite des Motors trennenden Trennwand verdrehsicher anliegt. Auch können die Piezo-Elemente direkt am Pumpengehäuse angeordnet sein. Dies führt zu einer besonders kleinen Bauweise des Pumpenantriebs unter Verwendung weniger Bauteile.
Die Trennwand sollte vorteilsmäßig zwischen dem Pumpengehäuse und dem die Piezo-Elemente tragenden Träger abdichtend einliegen, wobei die Trennwand insbesondere ein flaches Teil ist. Auch kann die Trennwand doppelwandig ausgebildet sein, so daß zwischen den Wänden der Trennwand ein Anzeigemedium angeordnet ist, das mit einem Außenanzeiger in Kontakt steht, wodurch eventuelle Beschädigungen der Trennwand frühzeitig erkannt werden.
Eine konstruktiv einfache Ausführung des Pumpenantriebs ergibt sich, wenn an der als flaches Teil ausgebildeten Trennwand ein ein Lager tragendes Teil befestigt oder angeformt ist, wobei das Lager das Pumpenlaufrad drehbar hält.
Die auf der fördermediumsführenden Seite angeordneten Magnete der Magnetkupplung sind dabei vorteilsmäßig an der der Trennwand zugewandten Seite des Pumpenlaufrades befestigt. Hierdurch entfällt der bei heutigen Kreiselpumpen notwendige, die Magnete tragende Läufer, wodurch sich nicht nur eine Gewichtsreduzierung, sondern auch eine höhere Funktionssicherheit der Pumpe ergibt. Die Magnete auf der Antriebsseite sind dann konstruktionsbedingt an der der Trennwand zugewandten Seite des vorteilsmäßig als Scheibe ausgebildeten Rotors befestigt.
Eine ebenfalls konstruktiv einfache Ausführung des magnetischen Pumpenantriebs ergibt sich, wenn der Rotor von dem das Pumpengehäuse abschließenden Teil in Richtung der Piezo-Elemente druckbeaufschlagt wird, wobei zwischen dem Rotor und dem das Pumpengehäuse abschließenden Teils ein Gleit- oder Wälzlager, insbesondere in Form einer Tellerfeder und/oder einer Gummischeibe einliegt. Vorteilhaft ist es, wenn der äußere Rotor mittels einer Spannschraube, welche durch eine axiale Bohrung des äußeren Rotors greift, mit seiner dem Pumpenlaufrad abgewandten Seite an den Schwingstator des Piezo-Wanderwellenmotors gedrückt wird. Die Spannschraube erzeugt dabei die für einen Piezo-Wanderwellenmotor notwendige Andruckkraft zwischen Schwingstator und dem Kontaktbelag des Rotors.
Mögliche Ausführungsbeispiele eines magnetischen Pumpenantriebs mittels eines Piezo-Wanderwellenmotors werden anhand der Zeichnungen nachfolgend näher erläutert.
Es zeigen:
Fig. 1
Eine Kreiselpumpe mit Spalttopf und dazugehöriger Magnetkupplung, bei der der äußere Rotor mittels eines Piezo-Wanderwellenmotors angetrieben wird.
Fig. 2
Eine Kreiselpumpe, bei der die Piezo-Elemente an einer an der Trennwand anliegenden Scheibe angeordnet sind.
Fig. 3
Eine Kreiselpumpe mit Piezo-Wanderwellenmotor, bei der die einen Magnete der Magnetkupplung direkt am Laufrad befestigt sind.
Fig. 4
Eine Kreiselpumpe, bei der der Gehäusedeckel den Rotor des Piezo-Wanderwellenmotors gegen die Piezo-Elemente drückt.
Fig. 5 und 6
Eine Kreiselpumpe, bei der die Trennwand als flache Scheibe ausgebildet ist.
Fig. 7 bis 9
Eine Kreiselpumpe mit Piezo-Wanderwellenantrieb, bei dem die zylindrische Oberfläche des Rotors im Schwingstator einliegt.
In Figur 1 ist eine Kreiselpumpe dargestellt, in deren Gehäuse 1 auf einer Welle 3 ein Pumpenlaufrad 2 lagert, wobei die Welle 3 sich mit ihrem einen Ende mittels des als Rollenlager ausgebildeten Lagers 13 an der Innenseite des Spalttopfes abstützt. Der auf der Welle 3 angeordnete innere Rotor 4 trägt an seiner zylindrischen Oberfläche Magnete 5, die mit dem am äußeren Rotor 6 angeordneten Magneten 7 eine Magnetkupplung bilden. Der Spalttopf 10 trennt die fördermediumsführende Seite 22 der Pumpe von der Trockenseite 21, in der sich der Piezo-Wanderwellenantrieb befindet.
Das Gehäuse 1 der Pumpe ist mit einem Deckel 14 verschlossen, wobei der Deckel 14 mittels Schrauben 15 am Gehäuse befestigt ist. Zwischen dem Deckel 14 und dem Gehäuse 1 und dem Spalttopf 10 liegt ein Dichtungsteil 17 ein. Der Spalttopf 10 kann doppelwandig gestaltet sein, so daß zwischen den beiden Wänden des Spalttopfes 10 ein Anzeigemedium 16 ist, welches mit einem nicht dargestellten, außen am Pumpengehäuse 1,14 befindlichen Anzeiger in Verbindung ist. Durch das im Spalttopf 10 befindliche Anzeigemedium 16 und den Anzeiger werden Beschädigungen des Spalttopfes 10 frühzeitig angezeigt.
Mittels einer Spannschraube 18 und den dazugehörigen Muttern 19 und Tellerfedern 20 wird der äußere Rotor 6 mit seiner Kontaktfläche gegen den als Scheibe ausgebildeten Schwingstator 9 gedrückt, wobei der Schwingstator 9 mit seiner anderen Seite an den Piezo-Elementen 8 anliegt, und die Piezo-Elemente 8 an der Innenseite des Gehäusedeckels 14 befestigt sind. Zwischen der Mutter 19 und dem äußeren Rotor 6 liegt ei Gleitlager, bestehend aus einer Gummischeibe 11 und ein Tellerfeder 11a, ein.
Durch die im Schwingstator 9 von den Piezo-Elementen 8 angeregte Wanderwelle greift die Wanderwelle mit ihren dem Rotor 6 zugewandten Wellenbergen in die nicht dargestellte Kontaktschicht bzw. Haftschicht, die am Rotor 6 angebracht ist, ein und versetzt den äußeren Rotor 6 in Drehbewegung. Mittels der Magnetkupplung 5,7 wird ein Drehmoment auf die Welle 3 und somit auf das Pumpenlaufrad 2 übertragen.
Die Figur 2 zeigt eine weitere Ausführungsform einer Kreiselpumpe mit Piezo-Wanderwellenantrieb. Der äußere Rotor 6 ist jetzt ringförmig, wobei der Gehäusedeckel 1 den Rotor 6 in Richtung Schwingstator 9 und Piezo-Elemente 8 druckbeaufschlagt. Zwischen dem Gehäusedeckel 14 und dem Rotor 6 liegt ein Gleitlager, bestehend aus einer Gummischeibe 11 und einer Tellerfeder 11a, ein. Die Piezo-Elemente 8 sind auf ein Scheibe 23 angeordnet, die zwischen dem Gehäusedeckel 1 und dem als Spalttopf ausgebildeten Trennkörper 10 verdrehsicher einliegt und verformen sich durch die an sie gelegte Spannung in axialer Richtung und erzeugen im Schwingstator 9 die erforderliche Wanderwelle. Die äußeren Magnete 7 der Magnetkupplung 5,7 sind an der Innenseite des ringförmig ausgebildeten Rotors 6 angeordnet.
Figur 3 zeigt ein weiteres Ausführungsbeispiel einer Kreiselpumpe mit Piezo-Wanderwellenantrieb, wobei die Piezo-Elemente 8 auf einer Scheibe 23 angeordnet sind, die mittels Schrauben 24 im Gehäusedeckel 14 befestigt ist und die Scheibe 23 mittels einer Spannschraube 18 und den dazugehörigen Muttern 19 mit ihren Piezo-Elementen 8 und dem Schwingstator 9 fest gegen den Rotor 6 in axialer Richtung gedrückt wird.
Der Spalttopf 10 ist derart gestaltet, daß er eine ringförmige Ausnehmung aufweist, in der der Rotor 6 mit seinen Magneten 7 eingreift und einer weiteren zentrischen, zur Fördermediumsseite 22 geöffneten Ausnehmung, in der die das Laufrad 2 tragende Welle 3 über das Lager 13 gelagert ist. Die mit den Magneten 7 korrespondierenden Magnete 5 sind unmittelbar an der dem Spalttopf 10 zugewandten Seite des Laufrades 2 befestigt.
Figur 4 zeigt eine Kreiselpumpe mit einem Piezo-Wanderwellenantrieb, bei dem die mit dem Schwingstator 9 korrespondierende Haftschicht des Rotors 6 und die Magnete 7 der Magnetkupplung 5,7 auf der pumpenzugewandten Seite des Rotors 6 befestigt sind. Der Gehäusedeckel 14 drückt über ein Gleitlager, insbesondere bestehend aus einer Gummischeibe 11 und einer Tellerfeder lla, den Rotor 6 mittels der Schrauben 15 fest gegen den Schwingstator 9. Die Piezo-Elemente 8 sind auf einer Ringscheibe 23 angeordnet, die zwischen dem Gehäuse 1 und dem Schwingstator 9 einliegt.
Die Trennwand weist im Gegensatz zur Ausführung nach Figur 3 nur eine Ausnehmung auf, die das Lager 13 hält, in dem die mit dem Pumpenlaufrad 2 drehbar verbundene Welle 3 gelagert ist.
Figur 5 zeigt eine Kreiselpumpe, bei der der Trennkörper 10 eine flache Scheibe, insbesondere eine doppelwandige Scheibe ist, an der auf der fördermediumsführenden Seite eine Hülse 12 angeformt oder befestigt ist, die an ihrer Innenseite ein Lager 13, insbesondere ein Rollenlager hat, in dem die das Pumpenlaufrad 2 tragende Welle 3 drehbar einliegt.
In Figur 6 ist eine Kreiselpumpe dargestellt, bei der der Gehäusedeckel 14 eine flache Scheibe ist, die mittels der Schrauben 15 über das Gleitlager 11,11a den Rotor 6 gegen den Schwingstator 9 und die Piezo-Elemente 8 drückt, wobei zwischen den Piezo-Elementen 8 und dem Gehäuse 1 der Trennkörper 10 abdichtend einliegt und an dem Trennkörper 10 ein Körper 3 angeformt ist, der insbesondere zylindrisch ist und an seiner Außenfläche ein Lager 13 hat, auf dem das Pumpenlaufrad 2 drehbar gelagert ist.
Figur 7 zeigt eine Kreiselpumpe mit einem Piezo-Wanderwellenantrieb, bei dem die Piezo-Elemente 8 an einer zylindrischen Innenfläche des Gehäusedeckels 14 einliegen, wobei sich die Piezo-Elemente 8 in radialer Richtung durch Anlegen einer äußeren Spannung ausdehnen bzw. zusammenziehen, und dadurch den Schwingstator 9 in Resonanz versetzen. In dem als zylindrische Hülse geformten Schwingstator 9 liegt der Rotor 6 ein, wobei der Rotor 6 mit seiner an seiner zylindrischen Oberfläche befindlichen Haftschicht im Schwingstator 9 einliegt.
Die an der Innenseite des Schwingstators ausgebildeten Wellenberge der durch die Resonanz entstandenen Wanderwellen greifen in die Kontaktschicht bzw. Haftschicht des Rotors 6 ein und versetzen diesen in Drehung. An der Innenseite des ebenfalls hülsenförmigen Rotors 6 liegen die Magnete 7 der Magnetkupplung 5,7 ein und wirken mit den Magneten 5 zusammen, welche außen am Rotor 4 befestigt sind, wodurch das Pumpenrad ebenfalls in Drehung versetzt wird.
Die Figuren 8 und 9 zeigen eine Kreiselpumpe mittels eines Piezo-Wanderwellenmotors, bei der die Magnetkupplung 5,7 in axialer Richtung durch einen Trennkörper 10 wirkt. Dabei sind die Magnete 5 an der dem Trennkörper 10 zugewandten Seite des Laufrades 2 befestigt. Die Magnete 7 sind an der dem Pumpenlaufrad 2 zugewandten Seite des scheiben- oder ringförmigen Rotors 6 angeordnet. Der Rotor 6 liegt ganz oder abschnittsweise mit seiner zylindrischen Oberfläche an dem als Hülse ausgebildeten Schwingstator 9 mit seiner Kontaktschicht an. Die Piezo-Elemente 8 liegen dabei ringförmig in dem Gehäusedeckel 14 oder dem Pumpengehäuse 1 ein. Die Oberfläche des Rotors 6 und des als Hülse geformten Schwingstators 9 sind gebogen, insbesondere konkav oder konvex ausgeführt, wodurch der Rotor 6 in axialer Richtung vom Schwingstator 9 gehalten wird. Dabei kann entweder die Oberfläche des Rotors 6 oder die Oberflächenform des Schwingstators 9 zumindest teilweise konkav oder konvex sein.

Claims (18)

  1. Magnetischer Pumpenantrieb mit einem Pumpgehäuse, mit einem von einem Motor angetriebenen äußeren Rotor (6), der über Magnete (5,7) einen inneren Rotor (3,4) antreibt, wobei zwischen äußerem und innerem Rotor ein Spalt besteht, in dem eine Trennwand (10) einliegt, die die fördermediumsführende Seite von der Trockenseite des Motors trennt, dadurch gekennzeichnet, daß der äußere Rotor (6) von einem Piezo-Wanderwellenmotor angetrieben ist, wobei der äußere Rotor (6) mit einer an diesem angebrachten Kontaktschicht an einem Schwingstator (9) des Wanderwellenmotors anliegt.
  2. Magnetischer Pumpenantrieb nach Anspruch 1, dadurch gekennzeichnet, daß die Piezo-Elemente (8) des Piezo-Wanderwellenmotors an der Innenseite eines den äußeren Rotor (6) umfassenden Teils (14) befestigt sind.
  3. Magnetischer Pumpenantrieb nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Piezo-Elemente (8) an einer Seite einer Scheibe (23) befestigt sind und daß die andere Seite der Scheibe (23) an der Trennwand (10) verdrehsicher anliegt.
  4. Magnetischer Pumpenantrieb nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Piezo-Elemente (8) am Pumpengehäuse (1) befestigt sind.
  5. Magnetischer Pumpenantrieb nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Trennwand (10) zwischen dem Pumpengehäuse (1) und dem die Piezo-Elemente (8) tragenden Träger (14,23) abdichtend einliegt.
  6. Magnetischer Pumpenantrieb nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Trennwand (10) ein flaches Teil ist.
  7. Magnetischer Pumpenantrieb nach Anspruch 6, dadurch gekennzeichnet, daß die Trennwand (10) doppelwandig ist.
  8. Magnetischer Pumpenantrieb nach Anspruch 6 und 7 dadurch gekennzeichnet, daß zwische den Wänden der Trennwand (10) ein Anzeigemedium (16) ist das mit einem Außenanzeiger in Kontakt steht.
  9. Magnetischer Pumpenantrieb nach einem der Ansprüche 7 bis 8, wobei der Pumpenantrieb an einer Pumpe befestigt ist, die ein Pumpenlaufrad aufweist, dadurch gekennzeichnet, daß an der Trennwand (10) ein Lager (13) tragendes Teil (12) befestigt oder angeformt ist und daß das Lager (13) ein Pumpenlaufrad (2) drehbar hält.
  10. Magnetischer Pumpenantrieb nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Magnete (5,7) der Magnetkupplung sich in axialer Richtung gegenüberliegen.
  11. Magnetischer Pumpenantrieb nach einem der vorherigen Ansprüche, wobei der Pumpenantrieb an einer Pumpe befestigt ist, die ein Pumpenlaufrad aufweist, dadurch gekennzeichnet, daß die Magnete (5) der Magnetkupplung an der der Trennwand (10) zugewandten Seite des Pumpenlaufrades (2) befestigt sind.
  12. Magnetischer Pumpenantrieb nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Magnete (7) an der der Trennwand (10) zugewandten Seite des als Scheibe ausgebildeten Rotors (6) befestigt sind.
  13. Magnetischer Pumpenantrieb nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß zwischen dem Rotor (6) und einem Teil (24) ein Gleit- oder Wälzlager (11,11a) einliegt.
  14. Magnetischer Pumpenantrieb nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß zwischen dem Rotor (6) und dem Teil (24) eine Tellerfeder (11) und/oder eine Gummischeibe (lla) einliegt.
  15. Magnetischer Pumpenantrieb nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß die Spannschraube (18), die durch eine axiale Bohrung des äußeren Rotors (6) greift, den Rotor (6) mit seiner dem Pumpenlaufrad (2) abgewandten Seite an den Schwingstator (9) des Piezo-Wanderwellenmotors drückt.
  16. Magnetischer Pumpenantrieb nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß der Rotor (6) von einem das Pumpengehäuse (1) abschließenden Teil (24) in Richtung der Piezo-Elemente (8) gedrückt wird.
  17. Magnetischer Pumpenantrieb nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß der Rotor (6) mittels des Schwingstator (9) in axialer Richtung formschlüssig gelagert ist.
  18. Magnetischer Pumpenantrieb nach Anspruch 19, dadurch gekennzeichnet, daß die Mantelfläche des Rotors (6) zumindest teilweise konkav oder konvex ausgestellt ist und die Innenfläche des Schwingstators (9) bei konkav ausgestalteter Mantelfläche des Rotors (6) konvex und bei konvex geformter Mantelfläche des Rotors (6) konkav ausgestaltet ist.
EP95119281A 1994-12-28 1995-12-07 Piezo-Wanderwellenmotor für Spaltrohrpumpen mit magnetischer Kupplung Expired - Lifetime EP0719938B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4446915 1994-12-28
DE4446915A DE4446915A1 (de) 1994-12-28 1994-12-28 Magnetischer Pumpenantrieb

Publications (2)

Publication Number Publication Date
EP0719938A1 EP0719938A1 (de) 1996-07-03
EP0719938B1 true EP0719938B1 (de) 1999-06-02

Family

ID=6537328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95119281A Expired - Lifetime EP0719938B1 (de) 1994-12-28 1995-12-07 Piezo-Wanderwellenmotor für Spaltrohrpumpen mit magnetischer Kupplung

Country Status (2)

Country Link
EP (1) EP0719938B1 (de)
DE (2) DE4446915A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19627145C2 (de) * 1996-07-05 2003-05-28 Andreas Hilker Kupplung
US6034465A (en) * 1997-08-06 2000-03-07 Shurfle Pump Manufacturing Co. Pump driven by brushless motor
US6132186A (en) 1997-08-06 2000-10-17 Shurflo Pump Manufacturing Co. Impeller pump driven by a dynamo electric machine having a stator comprised of a mass of metal particles
CN1258607A (zh) * 2000-01-21 2000-07-05 陈缨 由永磁联轴节传动的不泄漏汽车水泵
DE10012663B4 (de) * 2000-03-15 2012-08-02 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Merbelsrod Kühlmittelpumpe mit elektronisch kommutiertem Eletromotor
DE10012662B4 (de) * 2000-03-15 2010-11-04 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Merbelsrod Kühlmittelpumpe mit elektrisch kommutiertem Elektromotor
US20140246960A1 (en) * 2013-03-04 2014-09-04 Stephen Smith Energy transfer system and method
DE102014224151A1 (de) * 2014-11-26 2016-06-02 Mahle International Gmbh Vorrichtung zur berührungslosen Übertragung von Drehbewegungen
DE102015223338A1 (de) * 2015-11-25 2017-06-01 Mahle International Gmbh Magnetische Kupplung, insbesondere für eine Abwärmenutzungseinrichtung
CN110080992A (zh) * 2019-04-24 2019-08-02 南京航空航天大学 一种贴片式行波压电离心泵及其驱动方法
CN110425149B (zh) * 2019-07-29 2024-09-20 南京航空航天大学 一种两级夹心式行波压电离心泵及其驱动方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1928352U (de) * 1965-09-20 1965-12-02 Heinrich Gerster Pumpenaggregat.
DE2307226A1 (de) * 1973-02-14 1974-08-22 Siemens Ag Pumpe fuer chemisch aggressive fluessigkeit
JPS60210172A (ja) * 1984-04-02 1985-10-22 Canon Inc 振動波モ−タ
JPS60210173A (ja) * 1984-04-02 1985-10-22 Canon Inc 振動波モ−タ
DE3527687A1 (de) * 1985-08-01 1987-02-12 Siemens Ag Magnetkupplung mit integrierter magnetischer lagerentlastung
DE3639720C1 (de) * 1986-11-20 1993-04-29 Reinecker Heyko Pumpe mit Spaltrohrmotor- oder Spaltrohrmagnetkupplungsantrieb
US5099166A (en) * 1987-01-12 1992-03-24 Canon Kabushiki Kaisha Vibration wave driven motor
DE8717855U1 (de) * 1987-02-14 1990-09-27 Richter Chemie Technik GmbH, 47906 Kempen Leckanzeigevorrichtung für eine Magnetkreiselpumpe
JPH01268463A (ja) * 1988-04-18 1989-10-26 Fuji Photo Film Co Ltd 超音波モータ
JPH02214478A (ja) * 1989-02-15 1990-08-27 Aisin Seiki Co Ltd 超音波モータ
JPH0560076A (ja) * 1991-08-28 1993-03-09 Koji Toda 超音波流体移送ポンプ
US5269664A (en) * 1992-09-16 1993-12-14 Ingersoll-Dresser Pump Company Magnetically coupled centrifugal pump

Also Published As

Publication number Publication date
DE4446915A1 (de) 1996-07-04
EP0719938A1 (de) 1996-07-03
DE59506097D1 (de) 1999-07-08

Similar Documents

Publication Publication Date Title
EP2056432B1 (de) Magnetische Kupplung
EP0719938B1 (de) Piezo-Wanderwellenmotor für Spaltrohrpumpen mit magnetischer Kupplung
DE69023317T2 (de) Magnetisch angetriebene Pumpe.
EP1725775A1 (de) Anordnung mit einem elektronisch kommutierten aussenläufermotor
EP1256722B1 (de) Kreiselpumpe
DE69333691T2 (de) Vibrationsgetriebener Antrieb
DE3545214A1 (de) Stopfbuchsenlose hermetische magnetkupplung
DE102016206405A1 (de) Pumpenmotor mit einem Festlager
EP1488121A1 (de) Vorrichtung zur kopplung einer gehauseanordnung einer kopplungseinrichtung mit einer rotoranordnung einer elektromaschine
EP1158175B1 (de) Spaltrohrmotor mit Folienspaltrohr
EP0474004B1 (de) Eine Anlaufhilfe aufweisender Synchronmotor
WO2020074318A1 (de) Pumpe, insbesondere für einen flüssigkeitskreislauf in einem fahrzeug
DE102007051988A1 (de) Turbomolekularpumpe
EP0719939B1 (de) Piezo-Wanderwellenmotor für Spaltrohrpumpe
DE102009038767B4 (de) Reibschaltkupplung zur Betätigung mit einem strömungsfähigen Druckmittel
EP1230486B1 (de) Pumpe für ein flüssiges oder gasförmiges medium
DE4424257C2 (de) Zentrifugalpumpe hoher Leistung mit Einphasensynchronmotorantrieb
DE19701993A1 (de) Pumpe, insbesondere Kühlmittelpumpe, für Kraftfahrzeuge
EP0918932A1 (de) Elektromotor-/pumpenaggregat
EP1797330A1 (de) Anordnung zur förderung von fluiden
EP0487785A1 (de) Pumpenrad-Antrieb
DE19733147C1 (de) Motor-Pumpen-Aggregat, insbesondere für eine Kraftfahrzeug-Antiblockiblockier-Bremsvorrichtung
DE102004003400B4 (de) Kreiselpumpenaggregat
DE2950046C2 (de) Gleichstrommotor
EP0779699B1 (de) Magnetkupplung für eine Kreiselpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19970630

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990603

REF Corresponds to:

Ref document number: 59506097

Country of ref document: DE

Date of ref document: 19990708

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011205

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031210

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20041207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081212

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081205

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701