EP0711498B1 - Dispositif a microprocesseur pour le controle et la gestion d'elements d'eclairage, et procede utilisant un tel dispositf - Google Patents

Dispositif a microprocesseur pour le controle et la gestion d'elements d'eclairage, et procede utilisant un tel dispositf Download PDF

Info

Publication number
EP0711498B1
EP0711498B1 EP94923769A EP94923769A EP0711498B1 EP 0711498 B1 EP0711498 B1 EP 0711498B1 EP 94923769 A EP94923769 A EP 94923769A EP 94923769 A EP94923769 A EP 94923769A EP 0711498 B1 EP0711498 B1 EP 0711498B1
Authority
EP
European Patent Office
Prior art keywords
measured
lighting element
circuit
supply voltage
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94923769A
Other languages
German (de)
English (en)
Other versions
EP0711498A1 (fr
Inventor
Jacques Andres
Michel Martin
Piero Cecchini
Alberto Grossi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPIE TRINDEL SA
UMPI ELETTRONICA
Original Assignee
SPIE TRINDEL SA
UMPI ELETTRONICA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPIE TRINDEL SA, UMPI ELETTRONICA filed Critical SPIE TRINDEL SA
Publication of EP0711498A1 publication Critical patent/EP0711498A1/fr
Application granted granted Critical
Publication of EP0711498B1 publication Critical patent/EP0711498B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • H05B47/21Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel
    • H05B47/22Responsive to malfunctions or to light source life; for protection of two or more light sources connected in parallel with communication between the lamps and a central unit

Definitions

  • the invention relates to a microprocessor device for controlling and managing a lighting element, in particular lamps, a system for controlling and managing a set of lighting elements provided with such a device, a remote monitoring device comprising such a microprocessor device, a method for controlling and managing a lighting element, and a method for monitoring an electrical circuit comprising several lighting elements.
  • a lighting circuit usually includes a set of lamps connected in parallel to a supply line.
  • the supply line is usually connected to a local unit used to connect it to the mains to apply a supply voltage to it.
  • An urban lighting system comprises a certain number of such circuits, each circuit grouping together lamps (typically a few tens) mounted in nearby candelabras, for example arranged along the same public road.
  • this device still has several drawbacks. In particular, it remains necessary to organize rounds which, most often, give negative results, these rounds having to be practically daily if it is desired that the defective lamps be replaced immediately.
  • the operation of this device is relatively expensive because each candelabra must be equipped with its own monitoring device.
  • this monitoring device operates by detecting variations in the intensity of the current passing through the lamp when it is supplied.
  • the mains voltage has significant fluctuations due to the fact that it is used to supply not only public lighting but also professional or residential premises or even industrial installations whose consumption can vary significantly. These voltage fluctuations cause variations in intensity in the lamp which the monitoring device can erroneously interpret as a fault in the lighting circuit.
  • the proposals presented to date are certainly based on carrier currents, on the use of microprocessors to make the system intelligent, on the overall management of the lamps of a lighting network, but do not make it possible to locate safe the defective lamp, determine the type of failure, or manage each of the lamps separately and do not guarantee overall system reliability.
  • the invention aims to overcome the aforementioned drawbacks by proposing to integrate all of the remote control functions of a lamp of a lighting network in a multifunctional circuit mounted either on the pole of each lamp or on the central unit managing the entire lighting network.
  • the characteristics of the carrier currents were used and the same means of communication was used as that used to power the lamps themselves, the whole being managed either centrally or peripherally by microprocessor circuits.
  • the subject of the invention is a microprocessor-based device for controlling and managing a lighting element, comprising a transmission system by carrier currents connected to the lighting element, characterized in that the transmission system comprises a transmitter module provided with a comparison circuit intended to measure the phase shift angle between the voltage across the terminals of the lighting element and the current flowing in the lighting element, this phase shift angle being transmitted to the outside by the transmission system by carrier currents.
  • the subject of the invention is a system for controlling and managing lighting elements comprising at least one set of lighting elements connected in parallel to a supply line, characterized in that each lighting element is associated respectively with a microprocessor device as described above, each transmission system of each microprocessor device being connected by the supply line to a common local processing unit.
  • the invention therefore relates to a microprocessor device 1 intended to be mounted in the candelabrum of a lighting element, in particular a lamp and its peripheral circuits.
  • connection between these three elements is via a transmission line by carrier currents 8a, 7a, 9a.
  • the transmitter module E comprises a microprocessor 3 intended to manage the information taken by the transmitter module E.
  • This microprocessor 3 is provided with a memory 4 in particular of non-volatile EEROM type which stores the parameters or the code of the transmitter. It is in this memory that the identification number of the transmitter is stored with a code ranging in particular from 1 to 128, and the operating parameters of the transmitter (the different time delays, the threshold values of phase angle, number of lamps, etc.). By code, it is possible to identify the transmitter and therefore the associated lighting element; thanks to the various modifiable parameters, it is possible to adapt the transmitter to the different types of lamps and to the conditions of application of the transmitter itself.
  • the transmitter E comprises a first comparator circuit 5 intended to read what is called the voltage 0. With this circuit, it is possible to read the passage through the value 0 of the voltage across the lighting element. This consists of a logic gate comparator which compares the value of its zero voltage and further checks that the value of this voltage does not fall below a defined minimum value.
  • This second comparator circuit 6 consists of a comparator with logic gates which compares the value of the current with the zero value.
  • the first and second comparator circuits 5 and 6 constitute a comparison circuit intended to measure the phase shift angle between the voltage across the terminals of the lighting element and the current flowing in the lighting element.
  • This measured phase shift angle is then transmitted to the outside by the transmission system by carrier currents.
  • the two comparator circuits 5 and 6 are connected to the microprocessor 3 which analyzes the measured values.
  • an electronic switch which consists of a transistor controlled by the current and which is used for ON / OFF control of the lamp to which the microprocessor device 1 is connected by connection 7a.
  • a network coupling circuit 9 consisting of a circuit composed of transistors and a coil.
  • the network coupling circuit 9 is connected to a reception circuit 11 downstream of which a sound decoding circuit 12 is connected to intercept, by a PPL circuit, the signal of a given frequency in the scheduled period.
  • the signal decoded by the decoder 12 is then sent, on line 10a to a microprocessor 13 placed in the receiver R and also connected to the lamp to be checked. Similarly, the supply to the network is provided by line 9a which supplies the supply circuit of the receiver R represented by the block 15. This supply circuit 15 is therefore connected to the microprocessor 13.
  • the local microprocessor 13, coupled to the line 10a is connected to a communication interface 14 which allows connection to a system central data transmission station connected by line 16.
  • a rephasing capacitor 20 is provided, a conventional reactor 17 and an ignition circuit for fluorescent lamps (see at 18).
  • the lighting element is in fact made up not only of the lamp 19 but also of the peripheral components 20, 17 or 18.
  • the lamps used can be mercury vapor or sodium vapor.
  • the difference between the two types of lamps is that for sodium vapor lamps, there is no ignition circuit (18).
  • the microprocessor device 1 uses the carrier current technique, that is to say that it uses a transmission system on which a signal is transmitted in frequency by a transmitter E on a normal power line and is received by a receiver R after prior coupling to the network and interception of the defined operating frequency.
  • the receiver R intercepts this signal by coupling to the network and interprets it by decoding it.
  • the microprocessor device 1 makes it possible both to control the lighting elements 17, 18, 19, 20 and to manage each lamp separately.
  • phase shift angle between voltage and current is independent of the type and power of the lamp. There are therefore no restrictions; the angle is not influenced by a variation in the supply voltage while being perfectly indicative of the state of the lighting element.
  • This phase shift angle is determined by measuring the time interval between the passage through the 0 of the voltage across the lighting element, i.e. the negative / positive passage, and the passage through the 0 of the current passing through the lighting element, i.e. the negative / positive passage. At 50Hz the time interval is around 20ms which is equivalent to an angle of 360 °.
  • the predetermined values of the phase shift angle can therefore be in particular between 20 ° and 270 °.
  • the reading is carried out by the comparator circuits 5 and 6 which send the signal to the microprocessor 3.
  • the latter processes the corresponding situation to determine the category of the angle and to see in which predicted situations there is, in the memory 4, the lighting element 19, 17, 20, 18.
  • Each transmitter module E is identifiable by a code which goes in particular from 1 to 128 and a specific communication protocol is provided to allow an easily interpretable dialogue between a central unit which can be located far from the lighting network and which is not shown and microprocessors 3 and 13 located on each pole.
  • the protocol provides, in the situation of connection of the central unit to the transmitter E, that the first byte identifies the transmitter 3 while the second byte controls the switch 7 to switch the lamp 19 on or off.
  • the first byte identifies the code of transmitter E and the second byte indicates the state of the lighting element.
  • the maximum number of lamps is in particular 128, the maximum number of transmitters installed then being 128. However, it is also possible to have each transmitter control several lamps. In this case, it is possible to control a number of lamps multiple of 128.
  • the invention also relates to a C / G control and management system for lighting elements.
  • This system comprises a set of lighting elements 17, 18, 19, 20 as described above connected in parallel by a common supply line A.
  • Each lighting element comprises a microprocessor device 1 according to the invention and each transmission system by carrier currents of each microprocessor device 1 is connected by the supply line A to a local processing unit UTL which in particular transmits the information received at a central processing unit U.
  • the link between the local processing unit UTL and the central unit U is made by a bidirectional link, in particular of the PSTN type, by cable, by optical fiber, without wires or the like.
  • each panel can be installed in the central control unit which gathers the data of each lighting element.
  • the dialogue starts between the transmitters E and the receivers R by a transmission of carrier current signals on the line 8a-9a of the electrical network of the lamps 19.
  • the data on the status situations of each lighting element and on the ON / OFF control of each lamp are taken by each E / R transmitter / receiver in the local processing unit and are sent to the central unit. of the centralization panel of the lighting system by a telephone modem or any other means of transmission.
  • the remote central unit U calls at predefined intervals the various transmitters E then the only transmitter E concerned, once it has received the signal on its receiver R, sends its identification code and the status of the lighting element it controls.
  • All the status information of a lighting element is contained on one bit.
  • a transmitter 10 at 112KHz is present in the receiver / transmitter interface circuit I and is controlled by the microprocessor 3, that is to say by the microprocessor controlling the switching on and off.
  • a filter 11 located in the receiver / transmitter interface I filters these signals in frequency and then decodes the sound on the decoder circuit 12.
  • the microprocessor 3 and the microprocessor 13 provide the interface between the modules E, I, R which decode the signals received on the carrier currents thanks to the integrated software and verify with the comparators 5 and 6 the supply voltage of the lamps; this must not be less than a predefined value in order to guarantee optimal management of the communication and modulation of the carrier with carrier currents for transmission.
  • the signal concerning the phase shift angle between voltage and current of each lighting element is sent and, depending on the measurement of this angle, a state of the lighting element is established and if necessary an activation command is launched.
  • the invention also relates to a remote monitoring device T of an electronic circuit, in particular of a lighting circuit.
  • the remote monitoring device is used to monitor a lighting circuit 101 comprising a set of lighting elements, here lamps 102 connected in parallel to a supply line 103, 104.
  • the lamps 102 can be combined ballasts and filter circuits of transient regimes not shown.
  • the lamps 102 are, for example, mounted in candelabras arranged along a public road.
  • the circuit 101 further comprises a local connection unit 106 located near these candelabras for connecting the supply line 103, 104 to the sector supplying a supply voltage, for example an alternating voltage of frequency 50 Hz and of effective value. rated 220 volts.
  • the unit 106 comprises, in a conventional manner, a control circuit 107 which makes the connection between the line 103, 104 and the sector at the desired times, usually overnight, or under the control of a dark detector.
  • the lighting circuit to which the invention applies comprises several tens of lamps, identical or of different types.
  • the lighting circuit 101 is equipped with a monitoring circuit installed in the connection unit 106.
  • the monitoring circuit comprises means 108, 109 for measuring the supply voltage U 'applied to the line 103, 104, connected in parallel to means 111, 112, 113, 114 to measure the intensity I 'of the current flowing in the line 103, 104.
  • the voltage measurement means comprise a measurement transformer 108 whose primary winding is connected to the two conductors 103, 104 of the supply line, and a shaping circuit 109 connected to the secondary winding of the transformer 108.
  • the integrator delivers an analog signal representing the effective supply voltage and the analog-digital converter converts this signal into a digital value U '.
  • the intensity measurement means comprise a current transformer 111 whose primary winding is mounted on a conductor 104 of the supply line, a load 112 connected to the terminals of the secondary winding of the transformer 111, a gain amplifier adjustable 113 whose input is connected to the terminals of the load 112, and a shaping circuit 114 connected to the output of the amplifier 113.
  • the shaping circuit 114 is identical (integrator and analog-digital converter) to the shaping circuit 109 voltage measuring means. It delivers a numerical value I ′ representing the effective intensity in the supply line 103, 104.
  • the numerical values U ', I' supplied by the shaping circuits 109, 114 will be designated by measured supply voltage and by measured current.
  • the processor 116 is associated with a non-volatile memory 117. It is also connected, by suitable interfaces not shown, to a control member such as a push button 118 accessible on the connection unit 106 and to three indicator lights 121, 122, 123 of different colors visible on the connection unit 106.
  • the indicator light 121 indicates the operating state of the monitoring circuit, and the indicators 122, 123 indicate certain faults in the lighting circuit 101 as will be explained below.
  • the processor 116 is connected to a relay 124 forming part of a communication device 125 installed in the connection unit 106.
  • This communication device 125 is for example of the type described in FR-A-2 601 485 It is connected to a communication line 126, for example a telephone line, and is adapted to send an alert signal to a local processing unit UTL via the line 126 when the processor 116 switches the relay. 124 (remote signaling of a lighting circuit fault).
  • the central monitoring unit U is equipped with computer means, also described in FR-A-2 601 485, for managing the reception of alert signals from the various connection units 106 to which it can be connected by communication 126.
  • this remote monitoring device also comprises, associated with certain lighting elements, respectively microprocessor devices 1 as described above.
  • This remote monitoring device thus makes it possible to reduce costs by installing only a few microprocessor devices 1 while monitoring vital lighting elements more specifically.
  • the remote monitoring device T also comprises the local processing unit UTL connected by an interface 100 to the connection unit 106, the monitoring circuit of which is connected by the carrier current link (supply line), to the transmissions from microprocessor devices 1.
  • the interface 100 can also be connected to a central unit U by a bidirectional link, in particular of the PSTN, cable, optical fiber or similar type.
  • the link between the lighting circuit and the transmission systems can be bidirectional so that the local processing unit UTL receives on the one hand information from the transmission systems which it sends to the central unit U and on the other hand sends control instructions to these transmission systems which it has received from central unit U.
  • connection unit 106 can be placed in the local processing unit UTL.
  • the interface 100 may include means, not shown, intended to detect faults on all of the electrical elements of the local processing unit UTL downstream from the connection unit 106.
  • the processor 116 calculates the average values UM, IM of these two quantities over a predetermined period T, for example of one hour.
  • the processor 116 analyzes the variations of these two average values UM, IM, to detect faults in the lighting circuit 101.
  • the processor 116 commands the lighting of the signaling light 121 and the switching of the relay 124 to send an alert signal to the central monitoring unit, and stores a fault detection indication in memory 117.
  • This predetermined number of periods T can be equal to one, but, preferably, the alert signal is only emitted after having detected a fault for at least two periods in order to eliminate any artifacts.
  • the alert signal having been received at the central monitoring unit U the latter sends a control instruction to the various microprocessor-based devices 1 in order to check whether it is the lighting elements associated with them which have failed.
  • the repairer can be sent later to the site of the lighting circuit 101. After repairing the fault (defective lamp, line break or short circuit), the repairer pushes the push button 118 to turn off the indicator light 121, remove the fault detection indication from memory 117, and reset the monitoring process for the repaired circuit 101.
  • the repairer pushes the push button 118 to turn off the indicator light 121, remove the fault detection indication from memory 117, and reset the monitoring process for the repaired circuit 101.
  • the memory 117 contains data useful for the operation of the monitoring device, in particular information relating to a normal dependence between the average values of the supply voltage and of the current.
  • the processor 116 checks the conformity between the average values UM, IM calculated over each period T and this stored information. in memory 117. At the reinitialization step, this information is erased from memory 117. After a period T following the reinitialization step, the processor 116 uses the calculated average values UM, IM of the measured supply voltage U 'and the measured intensity I' to obtain new information to be stored in memory 117.
  • This stored information includes a table of correspondences between average values of the supply voltage and average values of the current.
  • the processor 116 detects a fault in the lighting circuit when the average value UM of the measured supply voltage U 'is substantially equal (for example to within 0.5 V) to a value stored in the table and the average value IM of the measured intensity I 'differs significantly (for example by 3% or more) from the corresponding value stored in the table.
  • the processor 116 compares the average values IM of the measured intensity with a representative value which takes account of these fluctuations, and therefore detects only the faults attributable to the circuit. lighting 101.
  • the memory 117 also contains two variables UMP, IMP which respectively receive the average values UM, IM at the end of each period T after the analysis step.
  • the analysis step includes a comparison between the new calculated average values UM, IM and these variables UMP, IMP which are then equal to the average values calculated during the previous period.
  • a fault in circuit 101 is detected by processor 116 when it finds between the two consecutive periods at the same time a significant reduction (for example of 3% or more) in the average value of the measured intensity I '(IM ⁇ IMP), and an increase in the average value of the measured voltage (UM> UMP). In fact, when the mains voltage increases, an increase in intensity should normally be observed, unless a fault such as a defective lamp has appeared.
  • the memory 117 further contains a minimum intensity threshold IMIN and a maximum intensity threshold IMAX predetermined.
  • IMIN minimum intensity threshold
  • IMAX maximum intensity threshold
  • the execution of the reset step can be controlled selectively by means of the button pusher 118 as previously explained. It can also be selectively controlled by an appropriate instruction from a program of the processor 116 included in the connection unit 106.
  • This instruction can consist of commanding regular resets, for example every year, to take into account the normal aging of the lamps 102 which does not constitute a fault in itself but which would lead to untimely fault detections in the absence of regular corrections to the memorized correspondence table.
  • the reset command can also result from the reception of a command signal coming from the central monitoring unit U via a communication line 129 (indicated in dashes in FIG. 5) connected to a processor input port 116,
  • processor 116 The operation of processor 116 is illustrated in more detail by the flow diagram of FIG. 6.
  • the processor 116 When the lighting circuit 101 and the monitoring device are energized, the processor 116 performs a time delay of time t to initialize the integrators of the shaping circuits 109, 114.
  • An indication of fault detection present in the memory non-volatile 117 signifies that a fault was detected before the circuit 101 was powered down.
  • the processor 116 commands the lighting of the indicator light 121 (step 132) and the switching of the relay 124 for communicate the alert signal to the central monitoring unit (step 133).
  • the processor then enters a reset loop 134.
  • a verification of the state of the vital lighting elements is carried out by their microprocessor device 1. This verification is carried out by the stages of the control and management process already described.
  • the processor 116 In the absence of a fault detection indication in the memory 117 (test 131), the processor 116 initializes the parameters N, IMP and UMP as indicated in step 136, N designating a counting variable for the number of consecutive periods during which a fault in circuit 101 was observed. Then the processor 116 enters the measurement and analysis loop, each iteration of which has a duration equal to the averaging period T.
  • the processor 116 receives from the shaping circuits 109, 114 the T / t measured values I ', U' of the supply current and voltage, performs various checks on these measured values I ', U 'and calculates their respective average values IM, UM over period T.
  • the processor examines whether the average value IM is less than the minimum threshold IMIN or greater than the maximum threshold IMAX. If so, it detects a fault (line break or short circuit). Otherwise, it goes to test 139 where it checks whether there is both a significant decrease in the average value IM of the intensity (IM "IMP) and an increase in the average value UM of the voltage (UM> UMP). If so, the processor 116 also detects a fault.
  • the processor 116 examines whether the mean value IM differs significantly from the intensity value f (MU) corresponding, in the table, to the mean value MU. If so, it detects a fault.
  • the processor 116 updates the variables IMP, UMP (step 144) and returns to step 137 to execute the next iteration of the measurement and analysis loop.
  • the counting variable N is increased by one unit, in 145. Then the processor 116 examines whether N> 1 (test 146) that is that is, if the fault has been detected during at least the last two periods T. If so, the processor 116 writes the fault detection indication in the memory 117 (step 147), then executes the signaling steps 132 , 133 and enters the reset wait loop 134. If the test 146 reveals that N ⁇ 1, the fault which comes to be detected must be confirmed and the processor 116 returns to steps 144 and 137 to execute another iteration of the measurement and analysis loop.
  • the processor When a fault has been reported, the processor remains in the waiting loop 134 until the appearance of a reset command. At this time, the processor 116 commands the extinction of the indicator light 121 (step 148), removes the fault detection indication from the memory 117 (step 149), and erases the correspondence table from the memory 117 (step 150) , before returning to the initialization step 36 to resume the monitoring process.
  • step 137 of measurements and calculation of the average values, carried out at each period T, is detailed on the flow chart of FIG. 7.
  • the variables X, IM and UM are initialized to zero, in 160, X designating a time-counting variable.
  • the processor 116 After acquisition (161) of each pair of measured values I ', U' from the shaping circuits 109, 114, the processor 116 compares the measured value I 'of the intensity to the two thresholds IMIN, IMAX and controls the state of the indicators 122, 123 as a function of the result of the comparisons (steps 162, 163).
  • the processor 116 examines whether a reset command is in progress (push button 118 pressed, or execution of an instruction from a program of the processor, or reception of an external command signal). If so, it deletes the correspondence table from memory 117 (step 165) and returns to initialization step 160 to resume a complete measurement cycle.
  • the measured values I ', U' are added to the variables IM, UM and the counting variable X is increased by one unit (step 166). Then, in test 167, the counting variable X is compared to the ratio T / t between the period T and the duration t. In the event of a tie (period T completed), the average values IM, UM are determined at 168 and step 137 of measurements and calculation of average values is completed. If X ⁇ T / t (period T incomplete) the processor 116 performs, in 169, a time delay of duration t and commands a flashing of the indicator light 121, which indicates a normal monitoring process, then returns to the acquisition step 161.
  • the processor 116, the memory 117 and the shaping circuits 109, 114 can be included in a card installed in the connection unit 106. Some of the functions of the processor 116 can also be implemented by logic circuits of the card intended to receive the communication device 125.
  • the invention preferably applies to the monitoring of a lighting circuit.
  • other types of electrical circuits notably signaling for example for traffic lights, can be monitored in accordance with the invention.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Debugging And Monitoring (AREA)
  • Selective Calling Equipment (AREA)

Description

  • L'invention concerne un dispositif à microprocesseur pour le contrôle et la gestion d'un élément d'éclairage, notamment des lampes, un système de contrôle et de gestion d'un ensemble d'éléments d'éclairage munis d'un tel dispositif, un dispositif de télésurveillance comportant un tel dispositif à microprocesseur, un procédé de contrôle et de gestion d'un élément d'éclairage, et un procédé de surveillance d'un circuit électrique comprenant plusieurs éléments d'éclairage.
  • Un circuit d'éclairage comprend habituellement un ensemble de lampes reliées en parallèle à une ligne d'alimentation. La ligne d'alimentation est habituellement reliée à une unité locale servant à la raccorder au secteur pour lui appliquer une tension d'alimentation. Un système d'éclairage urbain comprend un certain nombre de tels circuits, chaque circuit regroupant des lampes (typiquement quelques dizaines) montées dans des candélabres proches, par exemple disposés le long d'une même voie publique.
  • Les éventuels défauts de ces circuits d'éclairage (lampes défectueuses, court-circuits ou ruptures des lignes d'alimentation) doivent être détectés dès que possible pour effectuer les réparations nécessaires et pouvoir ainsi garantir un pourcentage important de lampes en fonctionnement, critère généralement exigé des installateurs et sociétés de maintenance par les municipalités ou collectivités locales.
  • Compte tenu du fonctionnement nocturne des systèmes d'éclairage, il est très coûteux en main-d'oeuvre d'organiser des rondes pour s'assurer visuellement du bon fonctionnement des différentes lampes.
  • Pour s'affranchir de cet inconvénient, il a été proposé dans le FR-A-2 646 581 d'équiper chaque candélabre d'un dispositif de surveillance qui détecte les défauts de la lampe pendant le fonctionnement du circuit d'éclairage pour faire basculer un témoin de mémorisation. Avec ce dispositif, il est possible d'organiser des rondes de jour pour vérifier l'état des différents témoins et effectuer les réparations nécessaires.
  • Mais ce dispositif présente encore plusieurs inconvénients. Notamment, il reste nécessaire d'organiser des rondes qui, le plus souvent, donnent des résultats négatifs, ces rondes devant pratiquement être quotidiennes si on souhaite que les lampes défectueuses soient remplacées immédiatement.
    L'exploitation de ce dispositif est relativement coûteuse car chaque candélabre doit être équipé de son propre dispositif de surveillance.
  • En outre, ce dispositif de surveillance fonctionne en détectant des variations d'intensité du courant traversant la lampe lorsqu'elle est alimentée. Or on sait que la tension du secteur présente des fluctuations non négligeables dues au fait qu'il sert à alimenter non seulement l'éclairage public mais aussi des locaux professionnels ou d'habitation voire des installations industrielles dont la consommation peut varier sensiblement. Ces fluctuations de tension provoquent des variations d'intensité dans la lampe que le dispositif de surveillance peut interpréter de manière erronée comme un défaut du circuit d'éclairage.
  • En outre, Il faut néanmoins pouvoir adapter de vieilles installations aux technologies modernes sans avoir à effectuer de lourds travaux de mise à niveau et de modernisation de façon à ne pas alourdir les frais d'installation et de gestion du réseau d'éclairage.
  • On connait également des dispositifs de gestion d'éléments d'éclairage utilisant la transmission par courants porteurs.
  • En l'état actuel de la technique, il y a déjà eu des propositions de solutions. Toutefois toutes les propositions présentées à ce jour, bien qu'elles utilisent des microprocesseurs, ne permettent pas de localiser la lampe défectueuse, de connaître le type de panne et de gérer directement chaque point d'éclairage du système. Les solutions actuelles ne permettent pas de choisir les lampes à activer, de repérer une lampe en panne, en court-circuit ou vidée de son gaz ou d'identifier d'autres problèmes similaires.
  • Si toutes les solutions proposées sont basées sur les courants porteurs (utilisation de la même ligne d'alimentation électrique pour envoyer et recevoir les signaux), cette technologie n'est pas suffisamment développée pour permettre une gestion sûre, rapide et rentable.
  • En résumé, les propositions présentées à ce jour sont certes basées sur les courants porteurs, sur l'utilisation de microprocesseurs pour rendre le système intelligent, sur la gestion globale des lampes d'un réseau d'éclairage mais ne permettent pas de repérer de façon sûre la lampe défectueuse, de déterminer le type de panne, ni de gérer chacune des lampes séparément et ne garantissent pas une fiabilité globale du système.
  • L'invention vise à pallier les inconvénients précités en proposant d'intégrer l'ensemble des fonctions de contrôle à distance d'une lampe d'un réseau d'éclairage dans un circuit multifonctionnel monté soit sur le poteau de chaque lampe soit sur l'unité centrale gérant la totalité du réseau d'éclairage. On a utilisé les caractéristiques des courants porteurs et utilisé le même moyen de communication que celui qui sert à alimenter les lampes elles-mêmes, le tout étant géré soit de façon centrale soit de façon périphérique par des circuits à microprocesseur.
  • A cet effet, l'invention a pour objet un dispositif à microprocesseurs pour le contrôle et la gestion d'un élément d'éclairage, comportant un système de transmission par courants porteurs relié à l'élément d'éclairage, caractérisé en ce que le système de transmission comporte un module émetteur muni d'un circuit de comparaison destiné à mesurer l'angle de déphasage entre la tension aux bornes de l'élément d'éclairage et le courant passant dans l'élément d'éclairage, cet angle de déphasage étant transmis vers l'extérieur par le système de transmission par courants porteurs.
  • Selon un deuxième aspect, l'invention a pour objet un système de contrôle et de gestion d'éléments d'éclairage comportant au moins un ensemble d'éléments d'éclairage reliés en parallèle à une ligne d'alimentation, caractérisé en ce qu'à chaque élément d'éclairage est associé respectivement un dispositif à microprocesseurs tel que décrit précédemment, chaque système de transmission de chaque dispositif à microprocesseur étant relié par la ligne d'alimentation à une unité locale de traitement commune.
  • Selon un troisième aspect, l'invention a pour objet un dispositif de télésurveillance d'un circuit électrique, notamment d'un circuit d'éclairage, ce circuit comprenant au moins un ensemble d'éléments d'éclairage, reliés en parallèle à une ligne d'alimentation alimentée par une unité de raccordement appliquant une tension d'alimentation à la ligne d'alimentation, ce dispositif de télésurveillance comprenant un circuit de surveillance comportant :
    • des moyens pour mesurer la tension d'alimentation branchés en parallèle à des moyens pour mesurer l'intensité du courant circulant dans la ligne d'alimentation, et
    • des moyens de traitement qui sont reliés en aval aux moyens pour mesurer la tension d'alimentation d'une part et aux moyens pour mesurer l'intensité du courant circulant dans l'alimentation d'autre part, et qui sont destinés à
    • calculer, sur une période prédéterminées, la valeur moyenne de la tension d'alimentation mesurée et la valeur moyenne de l'intensité mesurée, et
    • détecter des défauts du circuit électrique en fonction du résultat de l'analyse,
    caractérisé en ce qu'il comporte en outre :
    • associés à certains éléments d'éclairage, respectivement des dispositifs à microprocesseur tels que décrits précédemment, et
    • une unité de traitement locale reliée par une interface à l'unité de raccordement dont le circuit de surveillance est relié, par des liaisons à courants porteurs aux systèmes de transmission des dispositifs à microprocesseur.
  • Selon un quatrième aspect, l'invention a pour objet un procédé de contrôle et de gestion d'un élément d'éclairage, dans lequel on effectue les phases opératoires suivantes :
    • a) on mesure la tension aux bornes de l'élément d'éclairage,
    • b) on mesure le courant passant dans l'élément d'éclairage, et
    • c) on transmet vers l'extérieur une information résultante par courants porteurs,
    caractérisé en ce qu'entre les phases b et c on effectue une mesure de l'angle de déphasage entre la tension mesuré et le courant mesuré, l'information résultante transmise par courants porteurs comportant la tension mesurée, le courant mesuré et l'angle de déphasage mesuré.
  • Enfin, l'invention a également pour objet un procédé de surveillance d'un circuit électrique, notamment un circuit d'éclairage, comprenant au moins un ensemble d'éléments d'éclairage, notamment des lampes, reliés en parallèle à une ligne d'alimentation, alimentée par une unité de raccordement appliquant une tension d'alimentation, procédé dans lequel
    • on mesure la tension d'alimentation et l'intensité du courant circulant dans la ligne d'alimentation,
    • on calcule, sur une période prédéterminée, la valeur moyenne de la tension d'alimentation mesurée et la valeur moyenne de l'intensité mesurée, et
    • on analyse les variations de ces deux valeurs moyennes pour détecter des défauts du circuit électrique,
    caractérisé en ce qu'en cas de défaut détecté on effectue les phases opératoires du procédé de contrôle et de gestion d'un élément d'éclairage tel que décrit précédemment.
  • D'autres caractéristiques et avantages de la présente invention seront mis en évidence lors de la description détaillée qui va suivre, en référence aux dessins dans lesquels :
    • la figure 1 représente un schéma de principe d'un dispositif à microprocesseur selon invention ;
    • la figure 2 représente un schéma de principe d'un système de contrôle et de gestion selon l'invention ;
    • la figure 3 représente les différentes possibilités de relevé d'état dans un système de contrôle et de gestion selon l'invention ;
    • la figure 4 représente un schéma général d'un dispositif de surveillance selon l'invention ;
    • la figure 5 représente un schéma d'un circuit d'éclairage compris dans le dispositif de la figure 4 ;
    • la figure 6 représente un organe illustrant un procédé selon l'invention, et
    • la figure 7 représente un organigramme détaillant une étape du procédé illustré sur la figure 6.
  • Les éléments électroniques utilisés dans la présente demande sont connus ou à la portée de l'homme de métier. Ils sont donc représentés sur les figures de manière schématique et ne seront pas décrits en détail.
  • L'invention concerne donc un dispositif à microprocesseur 1 destiné à être monté dans le candélabre d'un élément d'éclairage, notamment une lampe et ses circuits périphériques.
  • Le dispositif à microprocesseur 1 est constitué d'un système de transmission par courants porteurs comportant reliés en série :
    • un module émetteur E,
    • une interface émetteur/récepteur I,
    • un module récepteur R.
  • La liaison entre ces trois éléments se fait par l'intermédiaire d'une ligne de transmission par courants porteurs 8a, 7a, 9a.
  • Le module émetteur E comporte un microprocesseur 3 destiné à gérer les informations prises par le module émetteur E.
  • Ce microprocesseur 3 est doté d'une mémoire 4 notamment de type EEROM non volatile qui mémorise les paramètres ou le code de l'émetteur. C'est dans cette mémoire que sont mémorisés le numéro d'identification de l'émetteur avec un code allant notamment de 1 à 128, et les paramètres de fonctionnement de l'émetteur (les différentes temporisations, les valeurs de seuil de l'angle de déphasage, le nombre de lampes, etc.). Par le code, il est possible d'identifier l'émetteur et donc l'élément d'éclairage associé ; grâce aux différents paramètres modifiables, il est possible d'adapter l'émetteur aux différents types de lampes et aux conditions d'application de l'émetteur lui-même.
  • L'émetteur E comporte un premier circuit comparateur 5 destiné à relever ce qu'on appelle le 0 de tension. Avec ce circuit, il est possible de relever le passage par la valeur 0 de la tension aux bornes de l'élément d'éclairage. Celui-ci est constitué d'un comparateur à portes logiques qui compare la valeur de la tension nulle de celle-ci et vérifie en outre que la valeur de cette tension ne descend pas en dessous d'une valeur minimum définie.
  • Ensuite, à l'aide d'un deuxième circuit comparateur 6, il est possible au contraire de contrôler le circuit de relevé du 0 de courant. Avec ce circuit il est possible de relever le passage par la valeur 0 du courant passant dans l'élément d'éclairage et de vérifier en outre que la valeur de ce courant ne descend pas en dessous du seuil minimum de façon à signaler au processeur 3 l'interruption du circuit d'alimentation de la lampe. Ce deuxième circuit comparateur 6 est constitué d'un comparateur à portes logiques qui compare la valeur du courant avec la valeur nulle.
  • Les premier et deuxième circuits comparateurs 5 et 6 constituent un circuit de comparaison destiné à mesurer l'angle de déphasage entre la tension aux bornes de l'élément d'éclairage et le courant passant dans l'élément d'éclairage.
  • Cet angle de déphasage mesuré est alors transmis vers l'extérieur par le système de transmission par courants porteurs. Les deux circuits comparateurs 5 et 6 sont reliés au microprocesseur 3 qui analyse les valeurs mesurées.
  • Au contraire avec le bloc 7, on a indiqué un interrupteur électronique qui est constitué d'un transistor piloté par le courant et qui sert à la commande ON/OFF de la lampe à laquelle est relié le dispositif à microprocesseur 1 par la connexion 7a.
  • Dans le cadre de l'interface émetteur/récepteur à courants porteurs I, il est possible de relever comment l'alimentation de 220 volt est utilisée par un circuit de couplage réseau 9 constitué d'un circuit composé de transistors et d'une bobine. Le circuit de couplage réseau 9 est relié à un circuit de réception 11 en aval duquel est branché un circuit de décodage de son 12 pour intercepter, par un circuit PPL, le signal d'une fréquence donnée dans la période prévue.
  • Le signal décodé par le décodeur 12 est ensuite envoyé, sur la ligne 10a à un microprocesseur 13 placé dans le récepteur R et relié également à la lampe à contrôler. De manière analogue, l'alimentation du réseau est assurée par la ligne 9a qui alimente le circuit d'alimentation du récepteur R représenté par le bloc 15. Ce ciruit d'alimentation 15 est donc relié au microprocesseur 13.
  • Dans le récepteur R, le microprocesseur local 13, couplé à la ligne 10a est relié à une interface de communication 14 qui permet la connexion à un système central de transmission de données relié par la ligne 16.
  • Les conditions de fonctionnement d'une lampe 19 en fonction de son état sont établies en référence notamment à la figure 3.
  • En ce qui concerne la situation expliquée au point 3a, on a représenté des conditions normales de fonctionnement d'une lampe alimentée par les bornes 21a et 21b ; il est prévu un condensateur 20 de rephasage, un réacteur 17 classique et un circuit d'allumage pour lampes fluorescentes (voir en 18). L'élément d'éclairage est en fait constitué non seulement de la lampe 19 mais également des composants périphériques 20, 17 ou 18.
  • Il faut préciser que les lampes utilisées peuvent être à vapeur de mercure ou à vapeur de sodium. La différence entre les deux types de lampes est que pour les lampes à vapeur de sodium, il n'y a pas de circuit d'allumage (18).
  • Dans le cas 3b, on a représenté une lampe 19 dans laquelle le condensateur de rephasage 20 se trouve interrompu et n'est donc pas représenté.
  • Dans le cas 3c, on a représenté la situation classique où la lampe 19 est en court-circuit, les bornes 19a et 19b étant directement reliées en court-circuit entre elles.
  • Enfin dans le cas 3d, on a représenté une lampe qui est interrompue entre les bornes 19a et 19b et où le circuit d'allumage 18 est défectueux.
  • Après avoir présenté la structure globale du dispositif à microprocesseur 1 selon l'invention, on va maintenant présenter son fonctionnement de façon à mettre en évidence les caractéristiques de contrôle.
  • Il faut au préalable préciser que le dispositif à microprocesseur 1 selon l'invention utilise la technique des courants porteurs, c'est-à-dire qu'il utilise un système de transmission sur lequel un signal est transmis en fréquence par un émetteur E sur une ligne électrique normale et est reçu par un récepteur R après couplage préalable au réseau et interception de la fréquence de fonctionnement définie.
  • Il y a superposition d'un signal fréquence et d'un signal correspondant au réseau électrique qui en général est de 50Hz.
  • Lorsque le signal transporté sur la ligne électrique normale atteint le point désiré, le récepteur R intercepte ce signal en se couplant au réseau et l'interprète en le décodant.
  • On va maintenant voir comment en utilisant la technique des courants porteurs, le dispositif à microprocesseur 1 permet tout à la fois de contrôler les éléments d'éclairage 17, 18, 19, 20 et de gérer chaque lampe séparément.
  • En se référant à la figure 3, on va voir comment s'effectue le repérage et donc la détermination des différents états de fonctionnement des éléments d'éclairage en utilisant la mesure de l'angle de déphasage entre la tension présente aux bornes de l'élément d'éclairage et le courant passant dans l'élément d'éclairage. Cette mesure de l'angle de déphasage est effectuée par comparaison des signaux de sortie des circuits comparateurs 5 et 6.
  • Ce critère est très important car l'angle de déphasage entre la tension et le courant est indépendant du type et de la puissance de la lampe. Il n'y a donc aucune restriction ; l'angle n'est pas influencé par une variation de la tension d'alimentation tout en étant parfaitement révélateur de l'état de l'élément d'éclairage.
  • Cet angle de déphasage est déterminé en mesurant l'intervalle de temps entre le passage par le 0 de la tension aux bornes de l'élément d'éclairage, c'est-à-dire le passage négatif/positif, et le passage par le 0 du courant passant dans l'élément d'éclairage, c'est-à-dire le passage négatif/positif. A 50Hz l'intervalle de temps est d'environ 20ms ce qui équivaut à un angle de 360°.
  • En se rapportant aux cas de la figure 3, il est possible de définir avec précision les points suivants :
    • Cas 3a - lampe en condition normale : l'angle doit varier entre 20 et 25°,
    • Cas 3b - condensateur de rephasage (20) cassé : l'angle doit varier entre 50 et 75°,
    • Cas 3c - lampe en court-circuit : l'angle doit varier entre 77 et 86°,
    • Cas 3d - lampe 19 interrompue : l'angle doit varier entre 260 et 270°, alors que si c'est la connexion avec la lampe qui est interrompue, il n'y a pas de passage de courant.
  • Les valeurs prédéterminées de l'angle de déphasage peuvent donc être comprises notamment entre 20° et 270°.
  • Le relevé est effectué par les circuits comparateurs 5 et 6 qui envoient le signal au microprocesseur 3. Celui-ci traite la situation correspondante pour déterminer la catégorie de l'angle et voir dans quelles situations prévues se trouve, dans la mémoire 4, l'élément d'éclairage 19, 17, 20, 18.
  • Chaque module émetteur E est repérable par un code qui va notamment de 1 à 128 et un protocole spécifique de communication est prévu pour permettre un dialogue facilement interprétable entre une unité centrale qui peut être située loin du réseau d'éclairage et qui n'est pas représentée et les microprocesseurs 3 et 13 situés sur chaque poteau.
  • Le protocole prévoit, dans la situation de connexion de l'unité centrale à l'émetteur E que le premier octet identifie l'émetteur 3 alors que le second octet commande l'interrupteur 7 pour allumer ou éteindre la lampe 19.
  • Dans la situation de connexion inverse de l'émetteur E à l'unité centrale, le premier octet identifie le code de l'émetteur E et le second octet indique l'état de l'élément d'éclairage.
  • Le nombre maximum de lampes est notamment de 128, le nombre maximum d'émetteurs installés étant alors de 128. Toutefois, on peut également faire en sorte que chaque émetteur contrôle plusieurs lampes. Dans ce cas, il est possible de contrôler un nombre de lampes multiple de 128.
  • L'invention concerne également un système de contrôle et de gestion C/G d'éléments d'éclairage.
  • Ce système comporte un ensemble d'éléments d'éclairage 17, 18, 19, 20 tels que décrits précédemment reliés en parallèle par une ligne d'alimentation A commune.
  • Chaque élément d'éclairage comporte un dispositif à microprocesseur 1 selon l'invention et chaque système de transmission par courants porteurs de chaque dispositif à microprocesseur 1 est relié par la ligne d'alimentation A à une unité de traitement locale UTL qui transmet notamment les informations reçues à une unité centrale U.
  • La transmission par courants porteurs se fait donc par l'intermédiaire de la ligne d'alimentation A.
  • La liaison entre l'unité de traitement locale UTL et l'unité centrale U se fait, elle, par une liaison bidirectionnelle notamment de type RTC, par câble, par fibre optique, sans fils ou analogue.
  • On obtient ainsi un contrôle et une commande du réseau d'éclairage (figure 2).
  • Dans le réseau d'éclairage, plusieurs tableaux électriques peuvent être prévus et chaque tableau peut être installé dans l'unité centrale de contrôle qui regroupe les données de chaque élément d'éclairage.
  • Le dialogue démarre entre les émetteurs E et les récepteurs R par une transmission de signaux à courants porteurs sur la ligne 8a-9a du réseau électrique des lampes 19.
  • Les données sur les situations de l'état de chaque élément d'éclairage et sur la commande ON/OFF de chaque lampe sont prélevées par chaque émetteur/récepteur E/R dans l'unité locale de traitement et sont envoyées à l'unité centrale du tableau de centralisation du système d'éclairage par un modem téléphonique ou tout autre moyen de transmission.
  • Fonctionnellement, l'unité centrale U distante appelle à intervalles prédéfinis les différents émetteurs E puis le seul émetteur E concerné, une fois qu'il a reçu sur son récepteur R le signal, envoie son code d'identification et l'état de l'élément d'éclairage qu'il contrôle.
  • On peut activer et désactiver chaque lampe 19, au niveau de l'unité centrale U, à l'aide de la commande 7 - l'interrupteur -.
  • En considérant un quartz qui donne 3,58 MHz on peut dans le système à courants porteurs envoyer un signal à 112 KHz modulé par un codage binaire pour permettre l'allumage et l'extinction des lampes. La modulation est à la demande c'est-à-dire de type ASK avec codage de type MANCHESTER.
  • La totalité des informations d'état d'un élément d'éclairage est contenue sur un bit.
  • Un émetteur 10 à 112KHz est présent dans le circuit d'interface récepteur/émetteur I et est commandé par le microprocesseur 3 c'est-à-dire par le microprocesseur commandant l'allumage et l'extinction.
  • Un filtre 11 situé dans l'interface récepteur/émetteur I filtre ces signaux en fréquence et en décode ensuite le son sur le circuit décodeur 12.
  • Le microprocesseur 3 et le microprocesseur 13 assurent l'interface entre les modules E, I, R qui décodent les signaux reçus sur les courants porteurs grâce au logiciel intégré et vérifient avec les comparateurs 5 et 6 la tension d'alimentation des lampes ; celle-ci ne doit pas être inférieure à une valeur prédéfinie afin de garantir une gestion optimale de la communication et la modulation de la porteuse à courants porteurs pour la transmission.
  • En utilisant la ligne d'alimentation A et le critère des courants porteurs, le signal concernant l'angle de déphasage entre tension et courant de chaque élément d'éclairage est envoyé et en fonction de la mesure de cet angle, un état de l'élément d'éclairage est établi et si nécessaire une commande d'activation est lancée.
  • A cet effet, conformément au procédé de contrôle et de gestion d'un élément d'éclairage selon l'invention, on effectue les phases opératoires suivantes :
    • a) on mesure la tension aux bornes de l'élément d'éclairage,
    • b) on mesure le courant passant dans l'élément d'éclairage,
    • b') on effectue une mesure de l'angle de déphasage entre la tension mesurée et le courant mesuré.
    • c) on transmet vers l'extérieur une information résultante par courants porteurs, cette information résultante transmise par courants porteurs comportant la tension mesurée, le courant mesuré et l'angle de déphasage mesuré.
  • L'invention concerne également un dispositif de télésurveillance T d'un circuit électronique, notamment d'un circuit d'éclairage.
  • Le dispositif de télésurveillance sert à surveiller un circuit d'éclairage 101 comprenant un ensemble d'éléments d'éclairage, ici des lampes 102 reliées en parallèle à une ligne d'alimentation 103, 104. De façon classique, les lampes 102 peuvent être associées à des ballasts et à des circuits de filtrage de régimes transitoires non représentés.
  • Les lampes 102 sont, par exemple, montées dans des candélabres disposés le long d'une voie publique. Le circuit 101 comprend en outre une unité locale de raccordement 106 située à proximité de ces candélabres pour raccorder la ligne d'alimentation 103, 104 au secteur délivrant une tension d'alimentation, par exemple une tension alternative de fréquence 50 Hz et de valeur efficace nominale 220 volts. L'unité 106 comporte, de façon classique, un circuit de commande 107 qui effectue le raccordement entre la ligne 103, 104 et le secteur aux heures désirées, habituellement pendant la nuit, ou sous commande d'un détecteur d'obscurité. Typiquement, le circuit d'éclairage auquel s'applique l'invention comporte plusieurs dizaines de lampes, identiques ou de types différents.
  • Le circuit d'éclairage 101 est équipé d'un circuit de surveillance installé dans l'unité de raccordement 106. Le circuit de surveillance comprend des moyens 108, 109 pour mesurer la tension d'alimentation U' appliquée à la ligne 103, 104, branchés en parallèle à des moyens 111, 112, 113, 114 pour mesurer l'intensité I' du courant circulant dans la ligne 103, 104.
  • Les moyens de mesure de tension comprennent un transformateur de mesure 108 dont l'enroulement primaire est relié aux deux conducteurs 103, 104 de la ligne d'alimentation, et un circuit de mise en forme 109 relié à l'enroulement secondaire du transformateur 108. Le circuit de mise en forme 109 comporte un intégrateur ayant une constante de temps t supérieure à la période du secteur (par exemple t = 100 ms) et un convertisseur analogique-numérique relié à la sortie de l'intégrateur. L'intégrateur délivre un signal analogique représentant la tension d'alimentation efficace et le convertisseur analogique-numérique convertit ce signal en une valeur numérique U'.
  • Les moyens de mesure d'intensité comprennent un transformateur de courant 111 dont l'enroulement primaire est monté sur un conducteur 104 de la ligne d'alimentation, une charge 112 reliée aux bornes de l'enroulement secondaire du transformateur 111, un amplificateur à gain réglable 113 dont l'entrée est reliée aux bornes de la charge 112, et un circuit de mise en forme 114 relié à la sortie de l'amplificateur 113. Le circuit de mise en forme 114 est identique (intégrateur et convertisseur analogique-numérique) au circuit de mise en forme 109 des moyens de mesure de tension. Il délivre une valeur numérique I' représentant l'intensité efficace dans la ligne d'alimentation 103, 104.
  • Dans l'exposé ci-dessous, on désignera par tension d'alimentation mesurée et par intensité mesurée les valeurs numériques U', I' délivrées respectivement par les circuits de mise en forme 109, 114.
  • Ces deux valeurs U', I' sont adressées à un processeur 116 constituant les moyens de traitement du circuit qui sont reliés en aval aux moyens 108, 109 pour mesurer la tension d'alimentation U', d'une part, et aux moyens 111, 112, 113, 114 pour mesurer l'intensité du courant circulant dans la ligne, d'autre part. Le signal commandant le gain de l'amplificateur à gain réglable 113 est issu du processeur 116 qui élabore ce signal sur la base de la gamme de valeurs de l'intensité mesurée I'. Cette disposition permet au circuit de surveillance de s'adapter à différentes puissances du circuit d'éclairage 101 sans avoir à modifier le transformateur de courant 111.
  • Le processeur 116 est associé à une mémoire non volatile 117. Il est également relié, par des interfaces appropriées non représentées, à un organe de commande tel qu'un bouton poussoir 118 accessible sur l'unité de raccordement 106 et à trois voyants de signalisation 121, 122, 123 de couleurs différentes visibles sur l'unité de raccordement 106. Le voyant 121 indique l'état de fonctionnement du circuit de surveillance, et les voyants 122, 123 indiquent certains défauts du circuit d'éclairage 101 comme il sera expliqué plus loin.
  • En outre, le processeur 116 est relié à un relais 124 faisant partie d'un dispositif de communication 125 installé dans l'unité de raccordement 106. Ce dispositif de communication 125 est par exemple du type décrit dans le FR-A-2 601 485. Il est relié à une ligne de communication 126, par exemple une ligne téléphonique, et est adapté pour émettre un signal d'alerte vers une unité de traitement locale UTL par l'intermédiaire de la ligne 126 lorsque le processeur 116 fait basculer le relais 124 (signalisation à distance d'un défaut du circuit d'éclairage). L'unité centrale de télésurveillance U est équipé de moyens informatiques, également décrits dans le FR-A-2 601 485, pour gérer la réception des signaux d'alerte provenant des différentes unités de raccordement 106 auxquelles elle peut être reliée par des lignes de communication 126.
  • Selon l'invention, ce dispositif de télésurveillance comporte en outre, associés à certains éléments d'éclairage respectivement des dispositifs à microprocesseur 1 tels que décrits précédemment.
  • En effet certains éléments d'éclairage nécessitent une surveillance plus précise comme par exemple les lampes situées à proximité des passages pour piétons.
  • Ce dispositif de télésurveillance permet ainsi de diminuer les coûts en installant unique que quelques dispositifs à microprocesseur 1 tout en surveillant les éléments d'éclairage vitaux de manière plus spécifique.
  • Le dispositif de télésurveillance T comporte en outre l'unité de traitement locale UTL reliée par une interface 100 à l'unité de raccordement 106 dont le circuit de surveillance est relié par la liaison à courants porteurs (ligne d'alimentation), aux systèmes de transmissions des dispositifs à microprocesseurs 1.
  • L'interface 100 peut en outre être reliée à une unité centrale U par une liaison bidirectionnelle notamment de type RTC, câble, fibre optique ou analogue.
  • Côté réseau d'éclairage, la liaison entre le circuit d'éclairage et les systèmes de transmission peut être bidirectionnelle de sorte que l'unité de traitement locale UTL reçoit d'une part des informations des systèmes de transmission qu'elle envoie à l'unité centrale U et envoie d'autre part des instructions de commande à ces systèmes de transmission qu'elle a reçues de l'unité centrale U.
  • L'unité de raccordement 106 peut être placée dans l'unité de traitement local UTL.
  • Enfin, l'interface 100 peut comporter des moyens non représentés destinés à détecter des défauts sur l'ensemble des éléments électriques de l'unité de traitement local UTL en aval de l'unité de raccordement 106.
  • On va maintenant décrire le fonctionnement du dispositif de surveillance de la figure 1, ce qui fera apparaître les particularités du procédé selon l'invention.
  • Les valeurs de la tension d'alimentation U' et de l'intensité I' ayant été mesurées par les moyens de mesure 108, 109 et 111, 112, 113, 114, le processeur 116 calcule les valeurs moyennes UM, IM de ces deux grandeurs sur une période prédéterminée T, par exemple d'une heure. Le processeur 116 analyse les variations de ces deux valeurs moyennes UM, IM, pour détecter des défauts du circuit d'éclairage 101.
  • Lorsqu'un défaut a ainsi été détecté pendant un nombre prédéterminé de périodes T, le processeur 116 commande l'allumage du voyant de signalisation 121 et le basculement du relais 124 pour émettre un signal d'alerte vers l'unité centrale de télésurveillance, et mémorise une indication de détection de défaut dans la mémoire 117. Ce nombre prédéterminé de périodes T peut être égal à un, mais, de préférence, on n'émet le signal d'alerte qu'après avoir détecté un défaut pendant au moins deux périodes consécutives, afin d'éliminer d'éventuels artefacts.
  • Le signal d'alerte ayant été reçu à l'unité centrale de télésurveillance U, cette dernière envoie une instruction de commande aux différents dispositifs à microprocesseur 1 afin de vérifier si ce sont les éléments d'éclairage qui leurs sont associés qui sont en panne.
  • Dans chaque dispositif à microprocesseur 1, on effectue alors les phases opératoires suivantes :
    • on mesure la tension aux bornes de l'élément d'éclairage ;
    • on mesure le courant passant dans l'élément d'éclairage ;
    • on mesure l'angle de déphasage entre la tension mesurée et le courant mesuré ;
    • on transmet vers l'unité centrale U, via l'unité de traitement locale UTL l'information résultante par courants porteurs, cette inforation résultante comportant la tension mesurée, le courant mesuré, et l'angle de déphasage mesuré.
  • Si une panne d'un des éléments vitaux d'éclairage est détectée, on effectue une réparation immédiate.
  • Dans le cas contraire, le réparateur peut être envoyé ultérieurement sur le site du circuit d'éclairage 101. Après la réparation du défaut (lampe défectueuse, rupture de ligne ou court-circuit), le réparateur enfonce le bouton poussoir 118 pour éteindre le voyant 121, enlever l'indication de détection de défaut de la mémoire 117, et réinitialiser le processus de surveillance du circuit réparé 101.
  • La mémoire 117 contient des données utiles au fonctionnement du dispositif de surveillance, notamment des informations relatives à une dépendance normale entre les valeurs moyennes de la tension d'alimentation et de l'intensité. Pour l'analyse des variations des valeurs moyennes, le processeur 116 vérifie la conformité entre les valeurs moyennes UM, IM calculées sur chaque période T et ces informations mémorisées dans la mémoire 117. A l'étape de réinitialisation, ces informations sont effacées de la mémoire 117. Après une période T suivant l'étape de réinitialisation, le processeur 116 utilise les valeurs moyennes calculées UM, IM de la tension d'alimentation mesurée U' et de l'intensité mesurée I' pour obtenir de nouvelles informations à stocker dans la mémoire 117.
  • Ces informations mémorisées comprennent un tableau de correspondances entre des valeurs moyennes de la tension d'alimentation et des valeurs moyennes de l'intensité. Le processeur 116 détecte un défaut du circuit d'éclairage lorsque la valeur moyenne UM de la tension d'alimentation mesurée U' est sensiblement égale (par exemple à 0,5 V près) à une valeur mémorisée dans le tableau et la valeur moyenne IM de l'intensité mesurée I' diffère de façon significative (par exemple de 3% ou plus) de la valeur correspondante mémorisée dans le tableau.
  • Ainsi, si la tension du secteur fluctue pour une cause extérieure quelconque, le processeur 116 compare les valeurs moyennes IM de l'intensité mesurée à une valeur représentative qui tient compte de ces fluctuations, et ne détecte donc que les défauts attribuables au circuit d'éclairage 101.
  • Lorsqu'aucune valeur mémorisée de la tension d'alimentation n'est sensiblement égale à la valeur moyenne UM calculée sur une période T, on mémorise cette valeur moyenne UM de la tension mesurée U' dans le tableau et, en correspondance, la valeur moyenne IM de l'intensité mesurée I' calculée sur la même période T. Ceci complète le processus d'auto-apprentissage commençant après chaque réinitialisation du système.
  • La mémoire 117 contient en outre deux variables UMP, IMP qui reçoivent respectivement les valeurs moyennes UM, IM à l'issue de chaque période T après l'étape d'analyse. Après la période suivante, l'étape d'analyse comporte une comparaison entre les nouvelles valeurs moyennes calculées UM, IM et ces variables UMP, IMP qui sont alors égales aux valeurs moyennes calculées lors de la période précédente. Un défaut du circuit 101 est détecté par le processeur 116 lorsqu'il constate entre les deux périodes consécutives à la fois une diminution significative (par exemple de 3% ou plus) de la valeur moyenne de l'intensité mesurée I' (IM<<IMP), et une augmentation de la valeur moyenne de la tension mesurée (UM>UMP). En effet, lorsque la tension du secteur augmente, on doit normalement observer une augmentation de l'intensité, à moins qu'un défaut tel qu'une lampe défectueuse soit apparu.
  • La mémoire 117 contient en outre un seuil minimal d'intensité IMIN et un seuil maximal d'intensité IMAX prédéterminés. Lorsque le processeur 116 constate que l'intensité mesurée I' est inférieure au seuil minimal IMIN, on considère que le circuit d'éclairage 101 présente une rupture de ligne et le processeur 116 commande l'allumage du voyant 122 pour signaler au réparateur la nature de ce défaut. Lorsque le processeur 116 constate que l'intensité mesurée I' est supérieure au seuil maximal IMAX, on considère que le circuit d'éclairage 101 présente un court-circuit et le processeur 116 commande l'allumage du voyant 123 pour signaler au réparateur la nature de ce défaut.
  • L'exécution de l'étape de réinitialisation peut être commandée sélectivement par l'intermédiaire du bouton poussoir 118 comme exposé précédemment. Elle peut aussi être commandée sélectivement par une instruction appropriée d'un programme du processeur 116 inclus dans l'unité de raccordement 106. Cette instruction peut consister à commander des réinitialisations régulières, par exemple tous les ans, pour prendre en considération le vieillissement normal des lampes 102 qui ne constitue pas un défaut en lui-même mais qui conduirait à des détections de défaut inopportunes en l'absence de corrections régulières du tableau de correspondances mémorisé.
  • En variante, la commande de réinitialisation peut également résulter de la réception d'un signal de commande provenant de l'unité centrale de télésurveillance U par l'intermédiaire d'une ligne de communication 129 (indiquée en tirets à la figure 5) reliée à un port d'entrée du processeur 116,
  • Le fonctionnement du processeur 116 est illustré de façon plus détaillée par l'organigramme de la figure 6.
  • A la mise sous tension du circuit d'éclairage 101 et du dispositif de surveillance, le processeur 116 effectue une temporisation de durée t pour initialiser les intégrateurs des circuits de mise en forme 109, 114. Une indication de détection de défaut présente dans la mémoire non volatile 117 (test 131), signifie qu'un défaut a été détecté avant la mise hors tension du circuit 101. Dans ce cas, le processeur 116 commande l'allumage du voyant 121 (étape 132) et le basculement du relais 124 pour communiquer le signal d'alerte à l'unité centrale de télésurveillance (étape 133). Le processeur entre alors dans une boucle 134 d'attente de réinitialisation. Au cours de cette phase de réinitialisation, on effectue une vérification de l'état des éléments d'éclairage vitaux par leur dispositif à microprocesseur 1. Cette vérification s'effectue par les étapes du procédé de contrôle et de gestion déjà décrites.
  • En l'absence d'indication de détection de défaut dans la mémoire 117 (test 131), le processeur 116 initialise les paramètres N, IMP et UMP comme indiqué à l'étape 136, N désignant une variable de comptage du nombre de périodes consécutives au cours desquelles un défaut du circuit 101 a été observé. Puis le processeur 116 entre dans la boucle de mesures et d'analyse dont chaque itération a une durée égale à la période de moyennage T.
  • En 137, le processeur 116 reçoit des circuits de mise en forme 109, 114 les T/t valeurs mesurées I', U' de l'intensité et de la tension d'alimentation, effectue divers contrôles sur ces valeurs mesurées I', U' et en calcule les valeurs moyennes respectives IM, UM sur la période T.
  • En 138, le processeur examine si la valeur moyenne IM est inférieure au seuil minimal IMIN ou supérieure au seuil maximal IMAX. Dans l'affirmative, il détecte un défaut (rupture de ligne ou court-circuit). Sinon, il passe au test 139 où il vérifie si on observe à la fois une diminution significative de la valeur moyenne IM de l'intensité (IM«IMP) et une augmentation de la valeur moyenne UM de la tension (UM>UMP). Dans l'affirmative, le processeur 116 détecte également un défaut.
  • Sinon, au test 142, le processeur 116 examine si la valeur moyenne IM diffère de façon significative de la valeur d'intensité f(UM) correspondant, dans le tableau, à la valeur moyenne UM. Dans l'affirmative, il détecte un défaut.
  • Si les trois tests de détection de défaut 138, 139, 142 sont négatifs, alors :
    • a) si le tableau de correspondances stocké dans la mémoire 117 ne comporte pas une valeur de tension sensiblement égale à UM et une valeur d'intensité f(UM) correspondante (test 140), le processeur 116 écrit dans le tableau de correspondances la valeur moyenne UM de la tension d'alimentation mesurée U et, en correspondance la valeur moyenne IM de l'intensité mesurée I' (étape d'auto-apprentissage 141).
    • b) Le processeur 116 met à zéro la variable de comptage N, indiquant ainsi que l'itération achevée n'a pas révélé de défaut (étape 143).
  • Ensuite, le processeur 116 met à jour les variables IMP, UMP (étape 144) et revient à l'étape 137 pour exécuter l'itération suivante de la boucle de mesures et d'analyse.
  • Si un défaut a été détecté à l'un des tests 138, 139, 142, la variable de comptage N est augmentée d'une unité, en 145. Puis le processeur 116 examine si N>1 (test 146) c'est-à-dire si le défaut a été détecté pendant au moins les deux dernières périodes T. Dans l'affirmative, le processeur 116 écrit l'indication de détection de défaut dans la mémoire 117 (étape 147), puis exécute les étapes de signalisation 132, 133 et entre dans la boucle d'attente de réinitialisation 134. Si le test 146 révèle que N<1, le défaut qui vient d'être détecté doit être confirmé et le processeur 116 revient aux étapes 144 et 137 pour exécuter une autre itération de la boucle de mesure et d'analyse.
  • Lorsqu'un défaut a été signalé, le processeur reste dans la boucle d'attente 134 jusqu'à l'apparition d'une commande de réinitialisation. A ce moment, le processeur 116 commande l'extinction du voyant 121 (étape 148), enlève l'indication de détection de défaut de la mémoire 117 (étape 149), et efface le tableau de correspondances de la mémoire 117 (étape 150), avant de revenir à l'étape d'initialisation 36 pour reprendre le processus de surveillance.
  • L'étape 137 de mesures et de calcul des valeurs moyennes, effectuée à chaque période T, est détaillée sur l'organigramme de la figure 7.
  • Au début de la période, les variables X, IM et UM sont initialisées à zéro, en 160, X désignant une variable de comptage du temps. Après acquisition (161) de chaque couple de valeurs mesurées I', U' issues des circuits de mise en forme 109, 114, le processeur 116 compare la valeur mesurée I' de l'intensité aux deux seuils IMIN, IMAX et commande l'état des voyants 122, 123 en fonction du résultat des comparaisons (étapes 162, 163).
  • En 164, le processeur 116 examine si une commande de réinitialisation est en cours (bouton poussoir 118 enfoncé, ou exécution d'une instruction d'un programme du processeur, ou réception d'un signal de commande extérieur). Dans l'affirmative, il efface le tableau de correspondances de la mémoire 117 (étape 165) et revient à l'étape d'initialisation 160 pour reprendre un cycle de mesures complet.
  • En l'absence de commande de réinitialisation, les valeurs mesurées I', U' sont ajoutées aux variables IM, UM et la variable de comptage X est augmentée d'une unité (étape 166). Puis, au test 167, la variable de comptage X est comparée au rapport T/t entre la période T et la durée t. En cas d'égalité (période T achevée), les valeurs moyennes IM, UM sont déterminées en 168 et l'étape 137 de mesures et de calcul de valeurs moyennes est terminée. Si X < T/t (période T inachevée) le processeur 116 effectue, en 169, une temporisation de durée t et commande un clignotement du voyant 121, ce qui indique un processus de surveillance normal, puis revient à l'étape d'acquisition 161.
  • Bien qu'on ait décrit l'invention en référence à un exemple de réalisation particulier, on comprendra que cet exemple n'est pas limitatif et que diverses variantes peuvent lui être apportées sans sortir du cadre de l'invention.
  • Le processeur 116, la mémoire 117 et les circuits de mise en forme 109, 114 peuvent être inclus dans une carte installée dans l'unité de raccordement 106. Certaines des fonctions du processeur 116 peuvent également être mises en oeuvre par des circuits logiques de la carte prévue pour recevoir le dispositif de communication 125.
  • L'invention s'applique de préférence à la surveillance d'un circuit d'éclairage. Toutefois, d'autres types de circuits électriques, notamment des circuits de signalisation par exemple pour feux tricolores, peuvent être surveillés conformément à l'invention.
  • On peut également envisager la surveillance de réseaux d'éléments de type électromécanique, notamment de moteurs.

Claims (35)

  1. Dispositif à microprocesseurs pour le contrôle et la gestion d'un élément d'éclairage, comportant un système de transmission par courants porteurs relié à l'élément d'éclairage, le système de transmission comprenant un module émetteur (E) muni d'un circuit de comparaison (5, 6) destiné à mesurer l'angle de déphasage entre la tension aux bornes de l'élément d'éclairage (17, 18, 19, 20) et le courant passant dans l'élément d'éclairage (17, 18, 19, 20), cet angle de déphasage étant transmis vers l'extérieur par le système de transmission par courants porteurs, caractérisé en ce que le dispositif comporte, en outre, une mémoire (4) dans laquelle sont mémorisées des valeurs de déphasage prédéterminées correspondant à des états connus dudit élément d'éclairage, et des moyens pour comparer ces valeurs prédéterminées aux valeurs de déphasage mesurées par le circuit de comparaison (5, 6).
  2. Dispositif à microprocesseurs conforme à la revendication 1, caractérisé en ce qu'il comporte, en outre, des moyens pour associer à la valeur de déphasage mesurée un signal prédéterminé représentatif de l'état de l'élément d'éclairage correspondant.
  3. Dispositif à microprocesseurs conforme à la revendication 2, caractérisé en ce qu'il comporte, en outre, des moyens pour associer audit signal prédéterminé représentatif de l'état de l'élément d'éclairage correspondant, un autre signal identifiant ledit élément d'éclairage.
  4. Dispositif à microprocesseurs conforme à l'une quelconque des revendications 1 à 3, caractérisé en ce que les circuit de comparaison (5, 6) est constitué d'un premier (5) et d'un second (6) comparateurs destinés à effectuer respectivement la mesure du passage par 0 de la tension aux bornes de l'élément d'éclairage (17, 18, 19, 20) et la mesure du passage par 0 du courant circulant dans l'élément d'éclairage (17, 18, 19, 20).
  5. Dispositif à microprocesseurs conforme à l'une quelconque des revendications 1 à 4, caractérisé en ce que les valeurs de déphasage prédéterminées sont comprises entre 20° et 270°.
  6. Système de contrôle et de gestion d'éléments d'éclairage (17, 18, 19, 20) comportant un ensemble d'éléments d'éclairage reliés en parallèle à une ligne d'alimentation (A), caractérisé en ce qu'à chaque élément d'éclairage est associé respectivement un dispositif à microprocesseurs (1) selon l'une quelconque des revendications 1 à 5, chaque système de transmission de chaque dispositif à microprocesseur (1) étant relié par la ligne d'alimentation (A) à une unité locale de traitement commune (UTL).
  7. Dispositif de télésurveillance d'un circuit électrique, notamment d'un circuit d'éclairage (101), ce circuit comprenant au moins un ensemble d'éléments d'éclairage, reliés en parallèle à une ligne d'alimentation (103, 104) alimentée par une unité de raccordement (106) appliquant une tension d'alimentation à la ligne d'alimentation, ce dispositif de télésurveillance comprenant un circuit de surveillance comportant :
    - des moyens (108, 109) pour mesurer la tension d'alimentation branchés en parallèle à des moyens (111, 112, 113, 114) pour mesurer l'intensité du courant circulant dans la ligne d'alimentation (103, 104), et
    - des moyens de traitement (116) qui sont reliés en aval aux moyens (108, 109) pour mesurer la tension d'alimentation (U') d'une part et aux moyens (111, 112, 113, 114) pour mesurer l'intensité du courant circulant dans l'alimentation d'autre part, et qui sont destinés à
    - calculer, sur une période prédéterminées (T), la valeur moyenne (UM) de la tension d'alimentation mesurée (U') et la valeur moyenne (IM) de l'intensité mesurée (I'), et
    - détecter des défauts du circuit électrique (101) en fonction du résultat de l'analyse,
       caractérisé en ce qu'il comporte en outre :
    - associés à certains éléments d'éclairage (17, 18, 19, 20), respectivement des dispositifs à microprocesseur selon l'une quelconque des revendications 1 à 5, et
    - une unité de traitement locale (UTL) reliée par une interface (100) à l'unité de raccordement (106) dont le circuit de surveillance est relié par la liaison à courants porteurs au système de transmission des dispositifs à microprocesseur (1).
  8. Dispositif de télésurveillance conforme à la revendication 7, caractérisé par le fait qu'il comporte en outre une unité centrale (U) reliée à l'unité de traitement locale (UTL).
  9. Dispositif de télésurveillance conforme à la revendication 8, caractérisé en ce que le circuit de surveillance est installé dans l'unité de traitement locale (UTL).
  10. Dispositif de télésurveillance conforme à la revendication 7, 8 ou 9, caractérisé en ce que la liaison entre l'interface (100) et les systèmes de transmission est bidirectionnelle de sorte que l'unité de traitment locale (UTL) reçoit d'une part des informations des systèmes de transmission et envoie d'autre part des instructions de commande à ces systèmes de transmission.
  11. Dispositif de télésurveillance conforme à l'une des revendications 7 à 10, caractérisé en ce qu'il comprend des moyens (124, 125) pour communiquer à l'unité centrale (U) un signal d'alerte par l'intermédiaire de l'unité de traitement locale (UTL), lorsqu'un défaut est détecté par les moyens de traitement (116).
  12. Dispositif de télésurveillance conforme à l'une des revendications 7 à 11, caractérisé en ce qu'il comprend un moyen de signalisation (121) visible sur l'unité de traitement locale (UTL) et activé lorsqu'un défaut est détecté par les moyens de traitement (116)
  13. Dispositif de télésurveillance conforme à l'une des revendications 7 à 12, caractérisé en ce qu'il comprend une mémoire non volatile (117) pour stocker des informations relatives à une dépendance normale entre les valeurs moyennes de la tension d'alimentation et de l'intensité.
  14. Dispositif de télésurveillance conforme à la revendication 13, caractérisé en ce qu'il comprend un organe de commande (118) accessible sur l'unité de traitement locale (UTL) pour effacer les informations stockées dans la mémoire (117).
  15. Dispositif de télésurveillance conforme à l'une des revendications 7 à 14, caractérisé en ce que les moyens (111, 112, 113, 114) pour mesurer l'intensité (I') comprennent un amplificateur à gain réglable (113).
  16. Dispositif de télésurveillance conforme à l'une quelconque des revendications 7 à 15, caractérisé en ce que l'unité de traitement locale (UTL) et l'unité centrale (U) sont reliées entre elles par une liaison bidirectionnelle.
  17. Dispositif de télésurveillance conforme à l'une quelconque des revendications 7 à 16, caractérisé en ce que l'interface (100) comporte des moyens destinés à détecter des défauts sur l'ensemble des éléments électriques de l'unité de traitement locale (UTL).
  18. Procédé de contrôle et de gestion d'un élément d'éclairage, dans lequel on effectue les phases opératoires suivantes :
    a) on mesure la tension aux bornes de l'élément d'éclairage,
    b) on mesure le courant passant dans l'élément d'éclairage, et
    c) on transmet vers l'extérieur une information résultante par courants porteurs,
       caractérisé en ce qu'entre les phases b et c on effectue une mesure de l'angle de déphasage entre la tension mesuré et le courant mesuré, l'information résultante transmise par courants porteurs, l'information résultante transmise par courants porteurs comportant la tension mesurée, le courant mesuré et l'angle de déphasage mesuré.
  19. Procédé conforme à la revendication 18, caractérisé en ce que l'on associe à la valeur de déphasage prédéterminée un signal prédéterminé représentatif de l'état de l'élément d'éclairage correspondant.
  20. Procédé conforme à la revendication 19, caractérisé en ce que l'on associe en outre audit signal prédéterminé représentatif de l'état de l'élément d'éclairage correspondant, un autre signal identifiant ledit élément d'éclairage.
  21. Procédé de surveillance d'un circuit électrique, notamment un circuit d'éclairage (101), comprenant au moins un ensemble d'éléments d'éclairage, notamment des lampes, reliés en parallèle à une ligne d'alimentation (103, 104), alimentée par une unité de raccordement appliquant une tension d'alimentation, procédé dans lequel
    - on mesure la tension d'alimentation (U') et l'intensité (I') du courant circulant dans la ligne d'alimentation (103, 104),
    - on calcule, sur une période prédéterminée (T), la valeur moyenne (UM) de la tension d'alimentation mesurée (U') et la valeur moyenne (IM) de l'intensité mesurée (I'), et
    - on analyse les variations de ces deux valeurs moyennes (UM, IM) pour détecter des défauts du circuit électrique (101),
       caractérisé en ce qu'en cas de défaut détecté on effectue les phases opératoires du procédé selon l'une quelconque des revendications 18 à 20.
  22. Procédé conforme à la revendication 21, caractérisé en ce que lorsqu'on détecte un défaut du circuit électrique (101) pendant un nombre prédéterminé de périodes, on émet un signal d'alerte vers une unité centrale.
  23. Procédé conforme à la revendication 22, caractérisé en ce qu'on n'émet le signal d'alerte qu'après avoir détecté un défaut pendant au moins deux périodes consécutives.
  24. Procédé conforme à l'une des revendications 21 à 23, caractérisé en ce que lorsqu'on détecte un défaut du circuit électrique (101) pendant un nombre prédéterminé de périodes, on active un moyen de signalisation (121) visible sur l'unité de raccordement (106).
  25. Procédé conforme à l'une des revendications 21 à 24, caractérisé en ce qu'on détecte un défaut du circuit électrique (101) lorsqu'on constate entre deux périodes consécutives à la fois une diminution significative de la valeur moyenne (IM) de l'intensité mesurée (I') et une augmentation de la valeur moyenne (UM) de la tension d'alimentation mesurée (U').
  26. Procédé conforme à l'une des revendications 21 à 25, caractérisé en ce qu'on mémorise des informations relatives à une dépendance normale entre les valeurs moyennes de la tension d'alimentation et de l'intensité, et en ce que, pour l'analyse des variations des valeurs moyennes, on vérifie la conformité entre les valeurs moyennes (UM, IM) calculées sur chaque période et lesdites informations mémorisées.
  27. Procédé conforme à la revendication 26, caractérisé en ce qu'il comprend une étape de réinitialisation dans laquelle on efface les informations mémorisées, l'exécution de cette étape de réinitialisation étant commandable sélectivement et en ce que, après une période suivant l'étape de réinitialisation, on utilise les valeurs moyennes calculées (UM, IM) de la tension d'alimentation mesurée (U') et de l'intensité mesurée (I') pour obtenir de nouvelles informations à mémoriser.
  28. Procédé conforme à la revendication 27, caractérisé en ce que, lorsqu'on détecte un défaut du circuit électrique (101) pendant un nombre prédéterminé de périodes, on mémorise une indication de détection de défaut dans une mémoire non volatile (117), cette indication n'étant enlevée qu'après une commande d'exécution de l'étape de réinitialisation.
  29. Procédé conforme à l'une des revendications 27 ou 28, caractérisé en ce que l'exécution de l'étape de réinitialisation est commandable sélectivement au moyen d'un organe de commande (118) accessible sur l'unité de raccordement (106).
  30. Procédé conforme à l'une des revendications 27 à 29, caractérisé en ce que l'étape de réinitialisation est commandée à la réception d'un signal de commande provenant d'une unité centrale.
  31. Procédé conforme à l'une des revendications 27 à 30, caractérisé en ce que l'étape de réinitialisation est commandée par une instruction d'un programme inclus dans l'unité de raccordement (106).
  32. Procédé conforme à l'une des revendications 26 à 31, caractérisé en ce que les informations mémorisées comprennent des correspondances entre des valeurs moyennes de la tension d'alimentation et des valeurs moyennes de l'intensité, et en ce qu'on détecte un défaut du circuit électrique (101) lorsque la valeur moyenne (UM) de la tension d'alimentation mesurée (U') est sensiblement égale à une valeur mémorisée et la valeur moyenne (IM) de l'intensité mesurée (I') diffère de façon significative de la valeur mémorisée correspondante.
  33. Procédé conforme à la revendication 32, caractérisé en ce que, lorsqu'aucune valeur mémorisée de la tension d'alimentation n'est sensiblement égale à la valeur moyenne (UM) de la tension d'alimentation mesurée (U'), on mémorise cette valeur moyenne (UM) de la tension mesurée (U') et, en correspondance, la valeur moyenne (IM) de l'intensité mesurée (I') calculée sur la même période.
  34. Procédé conforme à l'une des revendications 22 à 33, caractérisé en ce qu'on compare les intensités mesurées (I') à un seuil minimal (IMIN), et en ce qu'on active un moyen de signalisation (122) visible sur l'unité de raccordement (106) lorsqu'une intensité mesurée (I') est inférieure au seuil minimal (IMIN).
  35. Procédé conforme à l'une des revendications 22 à 34, caractérisé en ce qu'on compare les intensités mesurées (I') à un seuil maximal (IMAX), et en ce qu'on active un moyen de signalisation (123) visible sur l'unité de raccordement (106) lorsqu'une intensité mesurée (I') est supérieure au seuil maximal (IMAX).
EP94923769A 1993-07-30 1994-08-01 Dispositif a microprocesseur pour le controle et la gestion d'elements d'eclairage, et procede utilisant un tel dispositf Expired - Lifetime EP0711498B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITBO930339 1993-07-30
IT93BO000339A IT1264183B1 (it) 1993-07-30 1993-07-30 Dispositivo a microprocessore per il controllo e la gestione di lampade per illuminazione.
PCT/FR1994/000970 WO1995004446A1 (fr) 1993-07-30 1994-08-01 Dispositif a microprocesseur pour le controle et la gestion d'elements d'eclairage, et procede utilisant un tel dispositf

Publications (2)

Publication Number Publication Date
EP0711498A1 EP0711498A1 (fr) 1996-05-15
EP0711498B1 true EP0711498B1 (fr) 1997-11-12

Family

ID=11339196

Family Applications (2)

Application Number Title Priority Date Filing Date
EP94830206A Withdrawn EP0637195A1 (fr) 1993-07-30 1994-04-29 Dispositif de surveillance de l'état de fonctionnement de lampes
EP94923769A Expired - Lifetime EP0711498B1 (fr) 1993-07-30 1994-08-01 Dispositif a microprocesseur pour le controle et la gestion d'elements d'eclairage, et procede utilisant un tel dispositf

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP94830206A Withdrawn EP0637195A1 (fr) 1993-07-30 1994-04-29 Dispositif de surveillance de l'état de fonctionnement de lampes

Country Status (7)

Country Link
EP (2) EP0637195A1 (fr)
AT (1) ATE160253T1 (fr)
AU (1) AU7387194A (fr)
DE (1) DE69406796T2 (fr)
ES (1) ES2113120T3 (fr)
IT (1) IT1264183B1 (fr)
WO (1) WO1995004446A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE227500T1 (de) 1995-05-31 2002-11-15 Umpi Elettronica S R L Elektronische vorrichtung zur fernerkennung von funktionsstörungen in lampen
FR2780234B1 (fr) * 1998-06-17 2000-09-01 Colas Sa Lampe et procede de fonctionnement d'une telle lampe
US6160361A (en) * 1998-07-29 2000-12-12 Philips Electronics North America Corporation For improvements in a lamp type recognition scheme
DE102004036471B4 (de) * 2004-07-28 2006-05-24 Allnet Gmbh Fernüberwachungsvorrichtung
ITRM20040525A1 (it) * 2004-10-25 2005-01-25 Silvano Varesi Dispositivo di gestione e controllo dell'alimentazione di un apparecchio elettrico, in particolare di una lampada a gas.
ES2276641B1 (es) * 2007-02-06 2008-03-01 Sociedad Española De Construcciones Electricas, Sa "dispositivo y sistema para control de punto de luz en redes de alumbrado publico".

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2157903B (en) * 1984-04-24 1987-06-17 Plessey Co Plc Lamp monitoring apparatus
ES2023339A6 (es) * 1990-07-30 1992-01-01 Ingenieria De Sistemas De Cont Sistema de transmision de informacion del estado de las cargas conectadas a una linea electrica.
FR2673296A1 (fr) * 1991-02-27 1992-08-28 Forclum Force Lumiere Elect Procede et dispositif de surveillance d'au moins une source de rayonnement lumineux.
GB9104881D0 (en) * 1991-03-08 1991-04-24 Ind Cybernetics Ltd Monitoring apparatus and system
DE9111867U1 (fr) * 1991-09-23 1991-11-21 Siemens Ag, 8000 Muenchen, De
FR2688067B1 (fr) * 1992-02-28 1998-04-17 Spie Trindel Procede et dispositif de surveillance d'un circuit electrique et circuit equipe d'un tel dispositif.
JPH05343185A (ja) * 1992-06-05 1993-12-24 Kagatsuu Kk 照明灯の点灯判別装置
EP0576098A3 (fr) * 1992-06-26 1995-01-25 Ingenieria De Sistemas De Cont Système de transmission d'information sur l'état de charges raccordées à une ligne électrique.
FR2695286B1 (fr) * 1992-08-31 1994-10-14 Francis Guillot Système de détection et de signalisation de lampes défaillantes dans un réseau d'éclairage.

Also Published As

Publication number Publication date
AU7387194A (en) 1995-02-28
WO1995004446A1 (fr) 1995-02-09
IT1264183B1 (it) 1996-09-23
EP0637195A1 (fr) 1995-02-01
DE69406796T2 (de) 1998-06-25
ATE160253T1 (de) 1997-11-15
ITBO930339A1 (it) 1995-01-30
DE69406796D1 (de) 1997-12-18
EP0711498A1 (fr) 1996-05-15
ES2113120T3 (es) 1998-04-16
ITBO930339A0 (it) 1993-07-30

Similar Documents

Publication Publication Date Title
EP0319440A1 (fr) Ensemble de détection, de signalisation et de localisation de défauts de fonctionnement d&#39;unités éclairantes dans un réseau d&#39;éclairage partagé en zones
US6841944B2 (en) Luminaire diagnostic and configuration identification system
US6441565B1 (en) Intelligent outdoor lighting control system
US5962991A (en) Intelligent outdoor lighting control system
US20020013679A1 (en) System and method for monitoring the light level in a lighted area
US6791284B1 (en) Intelligent outdoor lighting control system
FR2814901A1 (fr) Systeme pour la gestion a distance de la maitenance d&#39;un ensemble d &#39;equipements
FR2756650A1 (fr) Affectation d&#39;adresses a des dispositifs adressables
EP0711498B1 (fr) Dispositif a microprocesseur pour le controle et la gestion d&#39;elements d&#39;eclairage, et procede utilisant un tel dispositf
CA2080522C (fr) Dispositif pour la determination de l&#39;etat d&#39;un appareil et en particulier de l&#39;etat ouvert ou ferme d&#39;un appareil electrique a l&#39;aide de contacts auxiliaires
FR2734118A1 (fr) Dispositif pour la commande et la surveillance a distance d&#39;une lampe a decharge
EP0586322A1 (fr) Système de détection et de signalisation de lampes défaillantes dans un réseau d&#39;éclairage
EP0501887A1 (fr) Procédé et dispositif de surveillance d&#39;au moins une source de rayonnement lumineux
EP1672810B1 (fr) Dispositif de commande d&#39;alimentation électrique pour appareils électriques notamment pour candelabres d&#39;eclairage public
EP0236147B1 (fr) Procédé et système de surveillance des défaillances d&#39;au moins une source de rayonnement lumineux
US20220159816A1 (en) Apparatus and method for a remote control of emergency lighting equipment
FR2688067A1 (fr) Procede et dispositif de surveillance d&#39;un circuit electrique et circuit equipe d&#39;un tel dispositif.
FR2693276A1 (fr) Procédé et dispositif de contrôle de défauts d&#39;appareillages électriques en réseaux.
FR2674996A1 (fr) Systeme d&#39;echanges de donnees entre poste central et stations a distance.
FR2705186A1 (fr) Installation de surveillance, de maintenance et de commande d&#39;un réseau d&#39;éclairage électrique.
WO2023242217A1 (fr) Procédé de codage de conducteurs de communication d&#39;un capteur linéaire appartenant à un système.
FR2640107A2 (fr) Perfectionnement a un ensemble de detection et de signalisation de defauts de fonctionnement d&#39;unites eclairantes dans un reseau d&#39;eclairage
WO2006061470A1 (fr) Procede de surveillance du fonctionnement d&#39;un terminal de telecommunication dans un reseau de telecommunication par fibre optique
WO2023242219A1 (fr) Réseau de capteurs linéaires à auto-découverte
EP0928055A1 (fr) Procédé de contrÔle centralisé à distance d&#39;une pluralité de blocs d&#39;éclairage de sécurité et installation d&#39;éclairage de secours mettant en oeuvre le procédé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960823

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19971112

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971112

REF Corresponds to:

Ref document number: 160253

Country of ref document: AT

Date of ref document: 19971115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69406796

Country of ref document: DE

Date of ref document: 19971218

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980212

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980217

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2113120

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19980212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980714

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 77412

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20020801

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020815

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020829

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20020902

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040301

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20040229

BECA Be: change of holder's address

Owner name: *UMPI ELETTRONICAVIA RESPIGHI 15,I-47841 CATTOLICA

Effective date: 20110819

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: UMPI ELETTRONICA, IT

Effective date: 20110920

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69406796

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: UMPI ELETTRONICA

Effective date: 20120119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69406796

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

Effective date: 20120124

Ref country code: DE

Ref legal event code: R081

Ref document number: 69406796

Country of ref document: DE

Owner name: UMPI ELETTRONICA, IT

Free format text: FORMER OWNERS: SPIE TRINDEL, S.A., CERGY, FR; UMPI ELETTRONICA, CATTOLICA, IT

Effective date: 20120124

Ref country code: DE

Ref legal event code: R081

Ref document number: 69406796

Country of ref document: DE

Owner name: UMPI ELETTRONICA, IT

Free format text: FORMER OWNER: SPIE TRINDEL, S.A., UMPI ELETTRONICA, , IT

Effective date: 20120124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130711

Year of fee payment: 20

Ref country code: DE

Payment date: 20130724

Year of fee payment: 20

Ref country code: AT

Payment date: 20130726

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130812

Year of fee payment: 20

Ref country code: GB

Payment date: 20130731

Year of fee payment: 20

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 160253

Country of ref document: AT

Kind code of ref document: T

Owner name: UMPI ELETTRONICA S.R.L., IT

Effective date: 20131113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130806

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130819

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69406796

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69406796

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140731

BE20 Be: patent expired

Owner name: *UMPI ELETTRONICA

Effective date: 20140801

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 160253

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140801

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140802