EP0708492A1 - Microstrip patch antenna and its particular application in a timepiece - Google Patents
Microstrip patch antenna and its particular application in a timepiece Download PDFInfo
- Publication number
- EP0708492A1 EP0708492A1 EP95116148A EP95116148A EP0708492A1 EP 0708492 A1 EP0708492 A1 EP 0708492A1 EP 95116148 A EP95116148 A EP 95116148A EP 95116148 A EP95116148 A EP 95116148A EP 0708492 A1 EP0708492 A1 EP 0708492A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- conductive element
- antenna
- frequency adjustment
- antenna according
- adjustment plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/273—Adaptation for carrying or wearing by persons or animals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
Definitions
- the present invention relates to antennas intended to convert an alternating voltage into a microwave and vice versa and, more particularly, to antennas of this type comprising a conductive element and a ground plane separated by a dielectric substrate. These antennas are also known by the English name "microstrip patch antennas".
- the invention can be used to transmit and / or receive GPS ("Global Positioning System") signals, and, moreover, it can be incorporated into watches or other horological products. The invention will therefore be described in the context of this example of application. However, it will be understood that the invention is of course not limited to this application.
- the miniaturization of antennas of the type described above is generally accomplished by using a substrate of very high permittivity. This invariably involves the use of a ceramic substrate. The costs of manufacturing such a substrate are often high.
- miniaturized antennas of this type have a very narrow bandwidth. Therefore, under manufacturing tolerances, the design and construction of these antennas is a difficult task.
- Mechanical adjustment of the edges of the conductive element has been a technique used for a long time to obtain the resonance frequency of the desired antenna.
- such a solution is both destructive and cumbersome.
- the object of the present invention is to provide a miniaturized antenna of the type defined above which remedies at least in part to the disadvantages of antennas of the state of the prior art.
- Another object of the invention is to provide a miniaturized antenna of the type defined above which is compact, and which is relatively easy and inexpensive to manufacture.
- Another object of the invention is to provide a miniaturized antenna of the type defined above which allows simple adjustment of its resonant frequency.
- Another object of the invention is to provide a miniaturized antenna of the type defined above which is suitable for use in a watch.
- the invention allows the realization of a miniaturized antenna without requiring the use of a substrate of very high permittivity.
- the antenna according to the invention further comprises a frequency adjustment plate, the distance between the periphery and the center of said plate along said second axis varying as a function of the angle of rotation of the plate setting frequency around an axis perpendicular to the plane of the plate and passing through its center with respect to said conductive element.
- the rotation of the frequency adjustment plate around the third axis allows a simple and precise adjustment of the resonance frequency of the antenna, and this over a bandwidth greater than the bandwidth of l conductive element.
- the arrangement of the miniaturized antenna 1 according to the invention shown in FIGS. 1 and 2 comprises a dielectric substrate 2, a conductive element 3 and a ground plane 4.
- the conductive element 3 has the general shape of a disc and according to the Anglo-Saxon name is called "radiating patch".
- the conductive element 3 and the ground plane 4 are deposited on opposite surfaces of the dielectric substrate 2.
- the antenna 1 has a geometry capable of receiving and emitting linearly polarized waves.
- the conductive element 3 has slots 5 and 6 diametrically opposite and aligned along the axis 7. These slots 5 and 6 extend from the periphery towards the center of the conductive element 3.
- An excitation point 8 is located in the plane of the conductive element 3, on an axis 9 which is perpendicular to the axis 7.
- the excitation is provided by means of a coaxial cable whose central conductor 10 passes through the substrate 2 and is soldered to the conductive element 3 at the location of the excitation point 8.
- FIG. 3 shows more precisely the geometry of the conductive element 3. It can be seen that the slots 5 and 6 both have a length r x and that the conductive element 3 has a diameter 2R, R being the radius of the latter.
- the slots 5 and 6 constitute a capacitive load for the antenna 1.
- Theoretical considerations which will not be repeated here since they go beyond the scope of the present patent application, show that the resonance frequency of the antenna 1 strongly depends of the length r x of the slots 5 and 6. According to these considerations, when r x is zero, the antenna 1 resonates at a frequency f c . However, when the value of r x approaches R, the resonant frequency approaches f c / 2.
- the diameter 2R of the antenna is a function of the inverse of the resonance frequency f c thereof.
- the resonance frequency f c is close to f c / 2 for a certain dimension 2R, one can also choose to reduce the dimension 2R by half for a certain resonance frequency f c . That is to say, the maximum dimension of the antenna 1 can be reduced by a factor of 2 when the slots extend substantially over the entire distance separating the periphery from the center of said conductive element.
- the slots 5 and 6 can be produced by cutting the conductive element 3 by means of a laser beam. Of course the slots 5 and 6 can also be made by etching or any other chemical or mechanical treatment of the conductive element 3.
- the circular shape of the conductive element 3 of FIGS. 2 and 3 represents only one example of a shape of the conductive element of the invention.
- a square shape can also be used, as well as any other conductive element which is delimited at its periphery by an edge which gives this element a double planar symmetry along two perpendicular axes.
- the excitation point is on one of the two axes of symmetry of the conductive element and the slots 5 and 6 extend on the other axis of symmetry.
- FIG. 4 shows the geometry of a conductive element 20 capable of receiving and transmitting both circularly polarized signals and linearly polarized signals.
- the conductive element 20 has slots 21 and 22 which extend from its periphery towards the center and which are aligned on the same axis 23.
- the conductive element 20 has slots 24 and 25 which extend from its periphery towards the center and which are aligned on the same axis 26 perpendicular to the axis 23.
- An excitation point 27 is located on an axis offset by 45 ° relative to the two axes 23 and 24.
- the lengths r x of the slots 21 and 22 and r y of the slots 24 and 25 must be equal.
- a right circular polarization is obtained if, for an excitation point 27 as described above, r x is greater than r y according to a suitable choice.
- the circular shape of the conductive element 20 of FIG. 4 only represents a particular shape of the conductive element of the invention. It goes without saying that a square shape can also be used or any other form of conductive element delimited at its periphery by an edge which gives it a double planar symmetry along two perpendicular axes.
- the excitation point 27 of the conductive element is on a bisecting axis of the angle formed between the two axes of symmetry.
- the pairs of slots 21, 22 and 23, 24 extend respectively on the two axes of symmetry.
- the resonant frequency of the antenna according to the invention varies as a function of the distance r, if we consider the conductive element 3 of FIG. 3, or as a function of the distances r x and r y , if we consider the conductive element shown in FIG. 4.
- r the distance between the conductive elements 3 of FIG. 3
- r x and r y the distance between the conductive elements shown in FIG. 4.
- Figures 5, 6, 7 and 8 respectively show examples 30, 31, 32 and 33 of geometries of such a frequency adjustment plate, the distance between the periphery and the center of said plate, along at least one of the axes defined by the slots of the conductive element, varying as a function of the angle of rotation of the plate around an axis perpendicular A to the plane of the plate and passing through the center of the plate relative to the conductive element.
- the structures shown in Figures 5 to 8 can be made in several ways. For example, they can be printed on a dielectric substrate or machined from a metal block. Several forms of plates are possible and the choice of these depends on the necessary tuning range as well as the fineness of the tuning.
- FIGS. 9 and 10 show an antenna 40 comprising a dielectric substrate 41, a ground plane 42, a conductive element 43 and a frequency adjustment plate 44, the latter being separated from the conductive element 43 by another dielectric substrate 45
- the conductive element 43 has orthogonal slots 46, 47, 48 and 49.
- the rotation of the frequency adjustment plate 44 about the axis A relative to the conductive element 43 modifies the effective lengths of the slots 46 to 49 and, therefore, changes the resonant frequency of the antenna 40.
- the antenna 40 further comprises a coaxial connector whose central conductor 50 passes through the substrate 41.
- the central conductor 50 is soldered to the conductive element 43, while the external conductor is soldered to the ground plane 42.
- the two Coaxial connector conductors are also connected to an antenna circuit.
- the antenna 40 converts an alternating voltage coming from the antenna circuit, between the two conductors of the coaxial connector, into a microwave and vice versa.
- the antenna 40 has a central support 51 which passes through openings 52, 53 and 54 at the center of the structure shown in FIG. 9 and which maintains the alignment of the various elements of the antenna 40.
- the central support 51 can be made either of insulating material or of conductive material, the difference related to the use of either of these two materials being a slight change in the resonant frequency. This difference can be compensated anyway by a rotation of the frequency adjustment plate 44.
- the center of the conducting element 43 is a point of zero voltage and that the fact that this point is in open circuit or in short-circuit with the ground does not affect the characteristics of the antenna.
- a metal central support will be used, because in this case the electrostatic potential of the conductive element 43 and that of the frequency adjustment plate 44 are grounded. This can be advantageous from the point of view of the electromagnetic compatibility of the antenna 40.
- the conductive element 20 is linearly polarized along a line passing through the center of the conductive element 20 and by the excitation point 27.
- this linear polarization can be adjusted.
- adjusting the resonant frequency of an antenna is only required to overcome the uncertainty in the value of the permittivity of the substrate.
- the antenna can be adjusted by using the disturbance segments which have just been described.
- Simple narrow band frequency tuning plates can be used so that the antenna can be tuned to a desired frequency.
- Figures 13, 14 and 15 show examples of the shape of the plates 70, 71 and 72.
- Figure 16 shows the arrangement of the frequency adjustment plate 70 of Figure 13 and the conductive element 65 of Figure 12 17 shows the arrangement of the frequency adjustment plate 72 of FIG. 15 and of the conductive element 64 of FIG. 11.
- the shape and the size of the frequency adjustment plates 70, 71 and 72 relative to the corresponding conductive elements are such that the distance between the periphery and the center of the plates 70, 71 and 72 varies little as a function of the angle of rotation.
- FIGS. 7 and 8 show an example of such a combination of plates.
- the frequency adjustment plates 32 and 33 are supported above the conductive element 20 of FIG. 4.
- the adjustment plate can first be rotated 32 to establish linear polarization at a desired frequency.
- the frequency adjustment plate 33 can be rotated to introduce a controlled offset between the dimensions r x and r y , which leads the antenna to circular polarization operation.
- the use of two frequency adjustment plates makes it possible to be able to provide wider manufacturing tolerances for the antenna.
- a conductive element having the shape shown in FIG. 3 is etched from a substrate made of a material sold under the trade designation ULTRALAM®.
- the initial dimensions of the substrate were 144 x 1.5 mm3 and its relative permittivity is 2.5.
- a circular hole with a diameter of 1 mm is drilled in the center of the substrate.
- the antenna is energized by means of a signal applied to the conductive element 3 via a standard 50 ⁇ SMA coaxial cable.
- a hole with a diameter equal to 3 ⁇ is formed in the center of the conductive element.
- a frequency adjustment plate having the shape shown in Figure 5 was used.
- the arrangement of the antenna is shown in Figure 19.
- the frequency adjustment plate is etched from a circular epoxy disc. We chose this material in this case because of its high rigidity.
- the circular disc has a thickness of 0.8 mm and a diameter of 60 mm.
- Another epoxy disc such as that referenced 45 in FIG. 9 was also used. This disc serves as a spacer plate between the conductive element and the frequency adjustment plate.
- the spacer plate has a thickness of 0.1 mm and a diameter of 25 mm.
- the standing voltage wave ratio, measured at the resonant frequency is better than 2 over the entire band.
- the radiation patterns were measured in an anechoic enclosure at three different frequencies, namely, 2.118, 2.296 and 2.488 GHz, these three frequencies corresponding respectively to three different angular positions of the frequency adjustment structure.
- the co-polarization diagrams are in these cases substantially the same as the co-polarization diagrams for a circular conducting element.
- the cross-polarization levels are less than -20 dB, which indicates that the frequency control structure does not introduce any unacceptable cross-polarization radiation level.
- the angle of rotation of the frequency adjustment plate 33 of the antenna shown in FIG. 19 is limited to a value of 90 °.
- the use of the frequency adjustment plate shown in Figure 6 allows rotation of an angle of 180 ° and therefore a finer adjustment of the frequency in the same frequency range.
- An antenna was made having an arrangement such as that shown in FIG. 18. This antenna was excited at a single point situated on an axis bisecting the angle formed between the two orthogonal axes of the slots of the conductive element.
- this excitation technique is quite sensitive compared to other known techniques and that it requires a precise separation between the two degenerate modes of the antenna.
- the geometry of the conductive element shown in Figure 4 can be adapted for this purpose using an asymmetrical frequency adjustment structure.
- a circularly polarized excitation requires asymmetry in the dimensions of the slots of the conductive element.
- the fact that the length r x is greater than the length r y leads to circular polarization to the right.
- the conductive element is etched from a substrate made of a material sold under the trade designation ULTRALAM®.
- the initial dimensions of the substrate were 144 x 144 x 1.5 mm3 and its relative permittivity is 2.5.
- a circular hole with a diameter of 1 mm is drilled in the center of the substrate.
- the antenna is energized by means of a signal applied to the conductive element 3 via a standard 50 ⁇ coaxial cable SMA.
- a hole with a diameter equal to 3 ⁇ is provided in the center of the conductive element.
- Frequency adjustment plates having the form shown in Figures 7 and 8 are used.
- the antenna layout is shown in Figure 18.
- the frequency adjustment plate in Figure 7 is etched from a circular epoxy disc.
- the circular disc has a thickness of 0.1 mm and a diameter of 60 mm.
- the frequency adjustment plate in Figure 8 is also etched from a circular epoxy disc.
- the circular disc has a thickness of 0.8 mm and a diameter of 50 mm.
- Another epoxy disc such as that designated by the reference numeral 45 in FIG. 9, is used as a spacer plate and is placed between the conductive element and the frequency adjustment plate.
- the spacer plate has a thickness of 0.1 mm and a diameter of 25 mm. No spacer disc is used between the two frequency adjustment plates.
- the adjustment range of the antenna resonant frequency is slightly less than the adjustment range of the previous example due to the offset between the two degenerate modes of the antenna in the second example. This variation is around 10%.
- the standing voltage wave ratio, measured at resonance, is better than 2 at a frequency of 2.306 MHz.
- a conductive element having the shape shown in FIG. 11 is etched from a substrate made of a material sold under the trade designation TMM-10®, this conductive element comprising disturbance segments allowing operation with circular polarization to the right.
- the substrate is circular and has a diameter of 34.5 mm.
- the thickness of the substrate is 0.635 mm and its relative permittivity is 9.2.
- a circular hole with a diameter of 1.4 mm is drilled in the center of the substrate.
- the antenna is energized by means of a signal applied to the conductive element via a standard 50 ⁇ SMA coaxial cable.
- a frequency adjustment plate having the shape shown in Figure 15 was used.
- the arrangement of the antenna is shown in Figure 17.
- the frequency adjustment plate is etched from a circular epoxy disc. This material is preferred here because of its high rigidity.
- the circular disc has a thickness of 0.8 mm and a diameter of 25 mm.
- a TEFLON® dielectric disc is used as a spacer plate and is placed between the conductive element and the frequency adjustment plate.
- the spacer plate is 0.254 mm thick and 25 mm in diameter. This structure makes it possible to obtain a frequency adjustment range of the order of 2%.
- the antenna is adjusted to the frequency of the GPS signals (1.57542 GHz) by the rotation of the frequency adjustment plate.
- the measured axial ratio is 2.54 dB and the bandwidth, with a standing wave ratio in voltage equal to 2, is 12 MHz.
- the gain measured is -6 dBi.
- Example 4 Circular polarization and narrow band adjustment.
- This example uses a conductive element comprising disturbance segments for operation with right-hand circular polarization.
- a conductive element having the shape shown in FIG. 12 is etched from a TMM-10® substrate.
- the substrate is circular and has a diameter of 34.5 mm.
- the thickness of the substrate is 1.27 mm and its relative permittivity is 9.2.
- a circular hole with a diameter of 1.4 mm is drilled in the center of the substrate.
- the antenna is energized by means of a signal applied to the conductive element via a standard 50 ⁇ SMA coaxial cable.
- a hole with a diameter equal to 1.631 mm is drilled in the center of the conductive element.
- a frequency adjustment plate having the shape shown in Figure 13 is machined from a block of copper. No spacer disc is used, but an air gap is created by supporting the frequency adjustment plate 0.2 mm above the conductive element by means of a central support element.
- the antenna layout is illustrated in Figure 16.
- the frequency adjustment plate can be rotated 90 ° to obtain a range of frequency setting of 6%.
- the geometry of the frequency adjustment plate 70 is such that the distance between its periphery and its origin varies linearly between 4.5 mm and 8.75 mm depending on the angle of rotation thereof.
- the antenna in this example is mounted in a plastic housing and is adjusted to the frequency of the GPS signals (1.57542 GHz) by rotation of the frequency adjustment plate.
- the measured axial ratio, with the box fixed to the ground plane of the antenna, is 1.78 dB and the bandwidth when the standing voltage wave ratio is 2 is 11 MHz.
- the gain measured is -4.0 dB.
- the frequency adjustment plate 70 can be replaced by the frequency adjustment plate 71 of FIG. 14.
- This frequency adjustment plate is easier to manufacture because it can be produced from of rectangular bars currently available on the market.
- the adjustment range in this case is around 3% and the maximum angle of rotation is 45 °.
- the geometry of the conductive element allows proper control of its size.
- Current shapes such as circular or rectangular shapes have a fixed size according to the desired resonant frequency and according to the characteristics of the substrate used.
- the antenna dimensions can be changed by a factor of 2.
- the shape of the conductive element allows optimum use of the available surface, since there is little surface not metallic. Consequently, the invention allows miniaturization of the antenna while keeping an optimal gain / size ratio.
- Examples 3 and 4 above describe antennas which are intended to receive waves of GPS signals transmitted by satellite.
- the dimensions of the antenna are such that it can be mounted in a watch case. In a watch, the antenna can for example be arranged between the engine and the hands.
- FIG. 20 is a sectional view of a watch 80 comprising a box 81, a bottom 82 and a glass 83.
- the watch 80 comprises a dielectric substrate 85, a ground plane 86 connected to the box 81, a conductive element 87 and a frequency adjustment plate 88, the latter being separated from the conductive element 87 by another dielectric substrate 89.
- the conductive element comprises two pairs of orthogonal slots. The length of one of the pairs of slots is greater than the length of the other pair, in order to ensure circular polarization of the antenna 87.
- the rotation of a frequency adjustment plate 88 relative to the conductive element 87 modifies the lengths of the two pairs of orthogonal slots and, consequently, modifies the resonant frequency of the antenna 84.
- the watch 80 further comprises a coaxial cable 90, the central conductor of which crosses the dielectric substrate 85. This central conductor is welded to the conductive element 87, while the external conductor is welded to the ground plane 86.
- the two conductors of the cable coaxial are also connected to an antenna circuit 91, arranged in watch 80, between the bottom 82 and the ground plane 86.
- watch 80 has a central support 92 on which are mounted the hour, minute and second hands, respectively 93, 94 and 95.
- the central support 92 is connected to a clockwork movement 96 which is also disposed between the bottom 82 and the ground plane 86.
- the clockwork movement 96 rotates the hands 93 to 95 of the watch 80 via the central support 92 in order to indicate the standard time.
- the central support 92 serves to maintain the alignment of the various elements 85 to 88 of the antenna 80.
- the environment near the antenna 80 has a certain effect on the resonant frequency of the antenna.
- the angular positions of the needles 93 to 95 relative to the slots of the conductive element 87 have a certain effect on the resonance frequency of the antenna.
- the hands 93 to 95 are brought by the clockwork movement 96 into angular positions which have little influence on the frequency. antenna 80.
- these angular positions are such that none of the needles 93 to 95 are superimposed on the slots of the conductive element 87.
- the needles 93 to 95 can be brought into the same angular positions during each reception / transmission. , so that the influence of needles 93 to 95 on the resonant frequency of antenna 80 is always the same.
- the structures for adjusting the resonance frequency of the antenna which have just been described allow, on the one hand, compensation for the non-homogeneity of the characteristics of the material of the substrate, and, on the other hand, frequency adjustment over a wide band.
- the dimensions of the antenna remain minimum because the frequency adjustment structures only slightly increase the thickness of the antenna.
- the environment near the antenna has a certain effect on the resonant frequency of the antenna. This effect can be offset by a simple rotation of the antenna frequency adjustment plate.
- the hands of a watch comprising the antenna of the invention are preferably made of plastic, or any other non-metallic material, to reduce this effect.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Support Of Aerials (AREA)
- Transceivers (AREA)
Abstract
Description
La présente invention est relative aux antennes destinées à convertir une tension alternative en une micro-onde et vice-versa et, plus particulièrement, à des antennes de ce type comprenant un élément conducteur et un plan de masse séparés par un substrat diélectrique. Ces antennes sont aussi connues sous l'appellation anglaise "microstrip patch antennas". L'invention peut être utilisée pour émettre et/ou recevoir des signaux GPS ("Global Positioning System"), et, en outre, elle peut être incorporée dans des montres ou d'autres produits horlogers. On décrira donc l'invention dans le cadre de cet exemple d'application. Toutefois, on comprendra que l'invention n'est bien entendu pas limitée à cette application.The present invention relates to antennas intended to convert an alternating voltage into a microwave and vice versa and, more particularly, to antennas of this type comprising a conductive element and a ground plane separated by a dielectric substrate. These antennas are also known by the English name "microstrip patch antennas". The invention can be used to transmit and / or receive GPS ("Global Positioning System") signals, and, moreover, it can be incorporated into watches or other horological products. The invention will therefore be described in the context of this example of application. However, it will be understood that the invention is of course not limited to this application.
La miniaturisation des antennes du type décrit ci-dessus est généralement accomplie en utilisant un substrat d'une permittivité très grande. Ceci implique invariablement l'utilisation d'un substrat en céramique. Les coûts de fabrication d'un tel substrat sont souvent élevés.The miniaturization of antennas of the type described above is generally accomplished by using a substrate of very high permittivity. This invariably involves the use of a ceramic substrate. The costs of manufacturing such a substrate are often high.
De plus, les antennes miniaturisées de ce type possèdent une largeur de bande très étroite. Par conséquent, en vertu des tolérances de fabrication, la conception et la construction de ces antennes est une tâche difficile. L'ajustement mécanique des bords de l'élément conducteur est une technique utilisée depuis longtemps pour obtenir la fréquence de résonance de l'antenne désirée. Cependant, une telle solution est à la fois destructrice et encombrante.In addition, miniaturized antennas of this type have a very narrow bandwidth. Therefore, under manufacturing tolerances, the design and construction of these antennas is a difficult task. Mechanical adjustment of the edges of the conductive element has been a technique used for a long time to obtain the resonance frequency of the desired antenna. However, such a solution is both destructive and cumbersome.
La présente invention a pour but de fournir une antenne miniaturisée du type défini ci-dessus qui remédie tout au moins en partie aux inconvénients des antennes de l'état de l'art antérieur.The object of the present invention is to provide a miniaturized antenna of the type defined above which remedies at least in part to the disadvantages of antennas of the state of the prior art.
Un autre but de l'invention est de fournir une antenne miniaturisée du type défini ci-dessus qui soit compacte, et qui soit relativement facile et peu coûteuse à fabriquer.Another object of the invention is to provide a miniaturized antenna of the type defined above which is compact, and which is relatively easy and inexpensive to manufacture.
Un autre but de l'invention est de fournir une antenne miniaturisée du type défini ci-dessus qui permette un réglage simple de sa fréquence de résonance.Another object of the invention is to provide a miniaturized antenna of the type defined above which allows simple adjustment of its resonant frequency.
Un autre but de l'invention est de fournir une antenne miniaturisée du type défini ci-dessus qui soit apte à être utilisée dans une montre.Another object of the invention is to provide a miniaturized antenna of the type defined above which is suitable for use in a watch.
A cet effet, l'invention a donc pour objet une antenne destinée à convertir une tension alternative, provenant d'un circuit d'antenne, en une onde à polarisation linéaire et vice versa, comprenant :
- un premier substrat diélectrique comportant deux côtés opposés;
- un élément conducteur fixé sur un premier côté dudit premier substrat diélectrique, ledit élément conducteur étant délimité à sa périphérie par un bord qui confère à cet élément une double symétrie planaire selon deux axes perpendiculaires; et
- un plan de masse fixé sur le deuxième côté dudit premier substrat diélectrique;
ledit élément conducteur comportant un point d'excitation par lequel il est relié audit circuit d'antenne, ce dernier délivrant ladite tension alternative entre le point d'excitation et ledit plan de masse;
ledit point d'excitation se trouvant sur un premier desdits axes;
ladite antenne étant caractérisée en ce que ledit élément conducteur comporte: - une première paire de fentes qui s'étendent, sur le deuxième desdits axes, à partir de la périphérie vers le centre dudit élément conducteur.
- a first dielectric substrate having two opposite sides;
- a conductive element fixed on a first side of said first dielectric substrate, said conductive element being delimited at its periphery by an edge which gives this element a double planar symmetry along two perpendicular axes; and
- a ground plane attached to the second side of said first dielectric substrate;
said conductive element comprising an excitation point by which it is connected to said antenna circuit, the latter delivering said alternating voltage between the excitation point and said ground plane;
said excitation point being on a first of said axes;
said antenna being characterized in that said conductive element comprises: - a first pair of slots which extend, on the second of said axes, from the periphery towards the center of said conductive element.
L'invention a aussi pour objet une antenne destinée à convertir une tension alternative provenant d'un circuit d'antenne, en une onde à polarisation linéaire ou circulaire et vice-versa, comprenant :
- un premier substrat diélectrique comportant deux côtés opposés;
- un élément conducteur fixé sur un premier côté dudit premier substrat diélectrique, ledit élément conducteur étant délimité à sa périphérie par un bord qui confère à cet élément une double symétrie planaire selon deux axes perpendiculaires; et
- un plan de masse fixé sur le deuxième côté dudit premier substrat diélectrique;
ledit élément conducteur comportant un point d'excitation par lequel il est relié audit circuit d'antenne, ce dernier délivrant ladite tension alternative entre le point d'excitation et ledit plan de masse;
ledit point d'excitation se trouvant sur un troisième axe bissecteur de l'angle formé entre les premier et deuxième axes;
ladite antenne étant caractérisée en ce que ledit élément conducteur comporte : - une première paire de fentes qui s'étendent, sur le premier desdits axes, à partir de la périphérie vers le centre dudit élément conducteur; et
- une seconde paire de fentes qui s'étendent, sur ledit deuxième axe, à partir de la périphérie vers le centre dudit élément conducteur.
- a first dielectric substrate having two opposite sides;
- a conductive element fixed on a first side of said first dielectric substrate, said conductive element being delimited at its periphery by an edge which gives this element a double planar symmetry along two perpendicular axes; and
- a ground plane attached to the second side of said first dielectric substrate;
said conductive element comprising an excitation point by which it is connected to said antenna circuit, the latter delivering said alternating voltage between the excitation point and said ground plane;
said excitation point being on a third axis bisecting the angle formed between the first and second axes;
said antenna being characterized in that said conductive element comprises: - a first pair of slots which extend, on the first of said axes, from the periphery to the center of said conductive member; and
- a second pair of slots which extend, on said second axis, from the periphery towards the center of said conductive element.
Grâce à ces caractéristiques, l'invention permet la réalisation d'une antenne miniaturisée sans exiger l'utilisation d'un substrat d'une permittivité très élevée.Thanks to these characteristics, the invention allows the realization of a miniaturized antenna without requiring the use of a substrate of very high permittivity.
Selon un mode réalisation, l'antenne selon l'invention comprend en outre une plaque de réglage de fréquence, la distance entre la périphérie et le centre de ladite plaque le long dudit deuxième axe variant en fonction de l'angle de rotation de la plaque de réglage de fréquence autour d'un axe perpendiculaire au plan de la plaque et passant par son centre par rapport audit élément conducteur .According to one embodiment, the antenna according to the invention further comprises a frequency adjustment plate, the distance between the periphery and the center of said plate along said second axis varying as a function of the angle of rotation of the plate setting frequency around an axis perpendicular to the plane of the plate and passing through its center with respect to said conductive element.
Il en résulte que la rotation de la plaque de réglage de fréquence autour du troisième axe permet, un réglage simple et précis de la fréquence de résonance de l'antenne, et ceci sur une largeur de bande plus grande que la largeur de bande de l'élément conducteur.As a result, the rotation of the frequency adjustment plate around the third axis allows a simple and precise adjustment of the resonance frequency of the antenna, and this over a bandwidth greater than the bandwidth of l conductive element.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés dans lesquels:
- la figure 1 est une vue en coupe d'une antenne selon la présente invention;
- la figure 2 est une vue en perspective de l'antenne de la figure 1;
- la figure 3 est une vue en plan de l'élément conducteur de l'antenne des figures 1 et 2;
- la figure 4 est une vue en plan d'une variante de réalisation de l'élément conducteur de la figure 3;
- la figure 5 est une vue en plan d'une plaque de réglage de fréquence destinée à régler la fréquence de résonance de l'antenne de la figure 1;
- la figure 6 est une première variante de réalisation de la plaque de réglage de fréquence de la figure 5;
- la figure 7 est une deuxième variante de réalisation de la plaque de réglage de fréquence de la figure 5;
- la figure 8 est une troisième variante de réalisation de la plaque de réglage de fréquence de la figure 5;
- la figure 9 est une vue éclatée et en perspective d'une autre antenne selon l'invention;
- la figure 10 est une vue en coupe de l'antenne de la figure 9;
- la figure 11 est une vue en plan d'une autre variante de réalisation de l'élément conducteur de l'invention;
- la figure 12 est une vue en plan d'une autre variante de réalisation de l'élément conducteur de l'invention;
- la figure 13 est un vue en plan d'une autre variante de réalisation de la plaque de réglage de fréquence de la figure 5;
- la figure 14 est un vue en plan d'une autre variante de réalisation de la plaque de réglage de fréquence de la figure 5;
- la figure 15 est un vue en plan d'une autre variante du plaque de réglage de fréquence de la figure 5;
- la figure 16 est une vue en plan de l'agencement de la plaque de réglage de fréquence de la figure 13 et de l'élément conducteur de la figure 12;
- la figure 17 est une vue en plan de l'agencement de la plaque de réglage de fréquence de la figure 15 et de l'élément conducteur de la figure 11;
- la figure 18 est une vue en plan de l'agencement des plaques de réglage de fréquence des figures 7
et 8 et de l'élément conducteur de la figure 4; - la figure 19 est une vue en plan de l'agencement de la plaque de réglage de fréquence de la figure 5 et de l'élément conducteur de la figure 3; et
- la figure 20 est une vue en coupe d'une montre comportant une antenne selon la présente invention.
- Figure 1 is a sectional view of an antenna according to the present invention;
- Figure 2 is a perspective view of the antenna of Figure 1;
- Figure 3 is a plan view of the conductive element of the antenna of Figures 1 and 2;
- Figure 4 is a plan view of an alternative embodiment of the conductive member of Figure 3;
- Figure 5 is a plan view of a frequency adjustment plate for adjusting the resonant frequency of the antenna of Figure 1;
- Figure 6 is a first alternative embodiment of the frequency adjustment plate of Figure 5;
- Figure 7 is a second alternative embodiment of the frequency adjustment plate of Figure 5;
- Figure 8 is a third alternative embodiment of the frequency adjustment plate of Figure 5;
- Figure 9 is an exploded perspective view of another antenna according to the invention;
- Figure 10 is a sectional view of the antenna of Figure 9;
- Figure 11 is a plan view of another alternative embodiment of the conductive element of the invention;
- Figure 12 is a plan view of another alternative embodiment of the conductive element of the invention;
- Figure 13 is a plan view of another alternative embodiment of the frequency adjustment plate of Figure 5;
- Figure 14 is a plan view of another alternative embodiment of the frequency adjustment plate of Figure 5;
- Figure 15 is a plan view of another variant of the frequency adjustment plate of Figure 5;
- Figure 16 is a plan view of the arrangement of the frequency adjustment plate of Figure 13 and the conductive member of Figure 12;
- Figure 17 is a plan view of the arrangement of the frequency adjustment plate of Figure 15 and the conductive member of Figure 11;
- Figure 18 is a plan view of the arrangement of the frequency adjustment plates of Figures 7 and 8 and of the conductive member of Figure 4;
- Figure 19 is a plan view of the arrangement of the frequency adjustment plate of Figure 5 and the conductive member of Figure 3; and
- Figure 20 is a sectional view of a watch comprising an antenna according to the present invention.
L'agencement de l'antenne miniaturisée 1 selon l'invention représentée aux figures 1 et 2 comprend un substrat diélectrique 2, un élément conducteur 3 et un plan de masse 4. L'élément conducteur 3 a la forme générale d'un disque et selon la dénomination anglo-saxonne est appelé "radiating patch". L' élément conducteur 3 et le plan de masse 4 sont déposés sur des surfaces opposées du substrat diélectrique 2. L'antenne 1 a une géométrie apte à recevoir et émettre des ondes à polarisation linéaire.The arrangement of the
L'élément conducteur 3 comporte des fentes 5 et 6 diamétralement opposées et alignées selon l'axe 7. Ces fentes 5 et 6 s'étendent à partir de la périphérie vers le centre de l'élément conducteur 3. Un point d'excitation 8 est situé dans le plan de l'élément conducteur 3, sur un axe 9 qui est perpendiculaire à l'axe 7. L'excitation est assurée au moyen d'un câble coaxial dont le conducteur central 10 traverse le substrat 2 et est soudé à l'élément conducteur 3 à l'endroit du point d'excitation 8.The
La figure 3 montre plus précisément la géométrie de l'élément conducteur 3. On voit que les fentes 5 et 6 ont toutes deux une longueur rx et que l'élément conducteur 3 a un diamètre 2R, R étant le rayon de ce dernier.FIG. 3 shows more precisely the geometry of the
Les fentes 5 et 6 constituent une charge capacitive pour l'antenne 1. Des considérations théoriques, qui ne seront pas reprises ici car elles dépassent le cadre de la présente demande de brevet, montrent que la fréquence de résonance de l'antenne 1 dépend fortement de la longueur rx des fentes 5 et 6. Selon ces considérations, lorsque rx est nul, l'antenne 1 résonne à une fréquence fc. Mais, lorsque la valeur de rx s'approche de R, la fréquence de résonance s'approche de fc/2. On sait par ailleurs que le diamètre 2R de l'antenne est une fonction de l'inverse de la fréquence de résonance fc de celle-ci. Puisque la fréquence de résonance fc est proche de fc/2 pour une certaine dimension 2R, on peut également choisir de réduire la dimension 2R de moitié pour une certaine fréquence de résonance fc. C'est-à-dire, on peut diminuer la dimension maximale de l'antenne 1 d'un facteur de 2 lorsque les fentes s'étendent sensiblement sur toute la distance séparant la périphérie du centre dudit élément conducteur. On notera à ce propos que les fentes 5 et 6 peuvent être réalisées par découpage de l'élément conducteur 3 au moyen d'un faisceau laser. Bien entendu les fentes 5 et 6 peuvent être également être réalisées par gravage ou tout autre traitement chimique ou mécanique de l'élément conducteur 3.The
Il faut noter que la forme circulaire de l'élément conducteur 3 des figures 2 et 3 ne représente qu'un exemple d'une forme de l'élément conducteur de l'invention. Une forme carrée peut également être utilisée, ainsi que tout autre élément conducteur qui est délimité à sa périphérie par un bord qui confère à cet élément une double symétrie planaire selon deux axes perpendiculaires.It should be noted that the circular shape of the
Dans le cas d'une antenne à polarisation linéaire, le point d'excitation se trouve sur un des deux axes de symétrie de l'élément conducteur et les fentes 5 et 6 s'étendent sur l'autre axe de symétrie.In the case of a linearly polarized antenna, the excitation point is on one of the two axes of symmetry of the conductive element and the
La figure 4 montre la géométrie d'un élément conducteur 20 apte à recevoir et à émettre aussi bien des signaux à polarisation circulaire que des signaux à polarisation linéaire. L'élément conducteur 20 comporte des fentes 21 et 22 qui s'étendent à partir de sa périphérie vers le centre et qui sont alignées sur un même axe 23. En outre, l'élément conducteur 20 comporte des fentes 24 et 25 qui s'étendent à partir de sa périphérie vers le centre et qui sont alignées sur un même axe 26 perpendiculaire à l'axe 23. Un point d'excitation 27 est situé sur un axe décalé de 45° par rapport aux deux axes 23 et 24.FIG. 4 shows the geometry of a
Pour que l'antenne ait une polarisation linéaire, les longueurs rx des fentes 21 et 22 et ry des fentes 24 et 25 doivent être égales. Par contre, on obtient une polarisation circulaire droite si, pour un point d'excitation 27 tel que décrit ci-dessus, rx est supérieur à ry selon un choix convenable. On comprendra que la forme circulaire de l'élément conducteur 20 de la figure 4 ne représente qu'une forme particulière de l'élément conducteur de l'invention. Il va de soi qu'une forme carrée peut être également utilisée ou encore tout autre forme d'élément conducteur délimitée à sa périphérie par un bord qui lui confère une double symétrie planaire selon deux axes perpendiculaires. Dans le cas d'une antenne à polarisation linéaire ou circulaire, comme, par exemple, une antenne comportant l'élément conducteur 20 de la figure 4, le point d'excitation 27 de l'élément conducteur se trouve sur un axe bissecteur de l'angle formé entre les deux axes de symétrie. Dans ce cas, les paires de fentes 21, 22 et 23, 24 s'étendent respectivement sur les deux axes de symétrie.For the antenna to have a linear polarization, the lengths r x of the
La fréquence de résonance de l'antenne selon l'invention varie en fonction de la distance r, si l'on considère l'élément conducteur 3 de la figure 3, ou en fonction des distances rx et ry, si l'on considère l'élément conducteur montré à la figure 4. Comme on le verra par la suite, en utilisant une ou plusieurs plaques de réglage de fréquence de forme particulière comme couche supérieure, on peut effectivement faire varier les dimensions r, et le cas échéant les dimensions rx et ry, par une simple rotation de cette plaque.The resonant frequency of the antenna according to the invention varies as a function of the distance r, if we consider the
Les figures 5, 6, 7 et 8 montrent respectivement des exemples 30, 31, 32 et 33 de géométries d'une telle plaque de réglage de fréquence, la distance entre la périphérie et le centre de ladite plaque, le long d'au moins un des axes définis par les fentes de l'élément conducteur, variant en fonction de l'angle de rotation de la plaque autour d'un axe perpendiculaire A au plan de la plaque et passant par le centre de la plaque par rapport à l'élément conducteur. Les structures montrées aux figures 5 à 8 peuvent être réalisées de plusieurs manières. Par exemple, elles peuvent être imprimées sur un substrat diélectrique ou usinées à partir d'un bloc de métal. Plusieurs formes de plaques sont envisageables et le choix de celles-ci dépend de la plage d'accord nécessaire ainsi que de la finesse de l'accord.Figures 5, 6, 7 and 8 respectively show examples 30, 31, 32 and 33 of geometries of such a frequency adjustment plate, the distance between the periphery and the center of said plate, along at least one of the axes defined by the slots of the conductive element, varying as a function of the angle of rotation of the plate around an axis perpendicular A to the plane of the plate and passing through the center of the plate relative to the conductive element. The structures shown in Figures 5 to 8 can be made in several ways. For example, they can be printed on a dielectric substrate or machined from a metal block. Several forms of plates are possible and the choice of these depends on the necessary tuning range as well as the fineness of the tuning.
Un contact électrique avec la surface de l'élément conducteur n'est pas nécessaire car le principe consistant à faire varier la capacité à travers les fentes fonctionne également lorsque le plaque et l'élément conducteur sont isolés l'un de l'autre. Aussi, si l'on désire conserver un contact électrique, le contact doit être uniforme sur toutes les fentes ce qui complique la conception de la plaque de réglage de fréquence. En conséquence, il est plus facile d'obtenir une isolation en utilisant une plaque diélectrique ou un entrefer entre la plaque de réglage de fréquence et les fentes de l'élément conducteur. De plus, on notera que dans ce cas la fréquence de résonance est moins sensible aux variations de rx et ry.Electrical contact with the surface of the conductive element is not necessary since the principle of varying the capacitance through the slots works also when the plate and the conductive element are isolated from each other. Also, if one wishes to maintain an electrical contact, the contact must be uniform on all the slots, which complicates the design of the frequency adjustment plate. As a result, it is easier to obtain insulation by using a dielectric plate or an air gap between the frequency adjustment plate and the slots of the conductive element. In addition, it will be noted that in this case the resonant frequency is less sensitive to the variations of r x and r y .
Les figures 9 et 10 montrent une antenne 40 comportant un substrat diélectrique 41, un plan de masse 42, un élément conducteur 43 et une plaque de réglage de fréquence 44, cette dernière étant séparée de l'élément conducteur 43 par un autre substrat diélectrique 45. L'élément conducteur 43 comporte des fentes orthogonales 46, 47, 48 et 49. La rotation de la plaque de réglage de fréquence 44 autour de l'axe A par rapport à l'élément conducteur 43 modifie les longueurs effectives des fentes 46 à 49 et, par conséquent, modifie la fréquence de résonance de l'antenne 40.FIGS. 9 and 10 show an
L'antenne 40 comporte en outre un connecteur coaxial dont le conducteur central 50 passe à travers le substrat 41. Le conducteur central 50 est soudé à l'élément conducteur 43, tandis que le conducteur externe est soudé au plan de masse 42. Les deux conducteurs du connecteur coaxial sont également reliés à un circuit d'antenne. L'antenne 40 convertit une tension alternative provenant du circuit d'antenne, entre les deux conducteurs du connecteur coaxial, en une micro-onde et vice-versa.The
De plus, l'antenne 40 comporte un support central 51 qui passe par des ouvertures 52, 53 et 54 au centre de la structure montrée à la figure 9 et qui maintient l'alignement des divers éléments de l'antenne 40. Le support central 51 peut être réalisé soit en matière isolante soit en matière conductrice, la différence liée à l'utilisation de l'une ou l'autre de ces deux matières étant un faible changement de la fréquence de résonance. Cette différence peut être compensée de toute façon par une rotation de la plaque de réglage de fréquence 44.In addition, the
On notera que le centre de l'élément conducteur 43 est un point de tension nul et que le fait que ce point soit en circuit ouvert ou en court-circuit avec la masse n'affecte pas les caractéristiques de l'antenne. On utilisera de préférence, un support central métallique, car dans ce cas le potentiel électrostatique de l'élément conducteur 43 et celui de la plaque de réglage de fréquence 44 sont à la masse. Ceci peut être avantageux du point de vue de la compatibilité électromagnétique de l'antenne 40.It will be noted that the center of the conducting
Lorsque la longueur rx des fentes 21 et 22 et la longueur ry des fentes 24 et 25 de la figure 4 sont égales, l'élément conducteur 20 est polarisé linéairement le long d'une ligne passant par le centre de l'élément conducteur 20 et par le point d'excitation 27. En utilisant une plaque de réglage de fréquence comme cela est représenté à la figure 7 ou à la figure 9, on peut régler cette polarisation linéaire.When the length r x of the
Cependant, une polarisation circulaire de l'antenne ayant un seul point d'excitation exige l'introduction d'une asymétrie dans l'élément conducteur 20 afin que deux modes orthogonaux de résonance soient établis. Une manière de le faire consiste à introduire des segments de perturbations dans l'élément conducteur 20. Divers exemples de la forme de ces segments de perturbations sont représentés par les références 60, 61, 62 et 63 des éléments conducteurs 64 et 65 aux figures 11 et 12. Ensuite, ces segments de perturbations 60 à 63 peuvent être coupés pour introduire l'asymétrie désirée.However, circular polarization of the antenna having a single excitation point requires the introduction of asymmetry in the
Dans certaines applications, le réglage de la fréquence de résonance d'une antenne n'est requis que pour surmonter l'incertitude de la valeur de la permittivité du substrat. Dans ces cas, l'antenne peut être réglée en utilisant les segments de perturbations qui viennent d'être décrits. Des plaques de réglage de fréquence simples à bande étroite peuvent être utilisées pour que l'antenne puisse être accordée sur une fréquence désirée. Les figures 13, 14 et 15 montrent des exemples de forme des plaques 70, 71 et 72. La figure 16 montre l'agencement de la plaque de réglage de fréquence 70 de la figure 13 et de l'élément conducteur 65 de la figure 12. La figure 17 montre l'agencement de la plaque de réglage de fréquence 72 de la figure 15 et de l'élément conducteur 64 de la figure 11. On remarquera que la forme et la taille des plaques de réglage de fréquence 70, 71 et 72 par rapport aux éléments conducteurs correspondants sont telles que la distance entre la périphérie et le centre des plaques 70, 71 et 72 varie peu en fonction de l'angle de rotation.In some applications, adjusting the resonant frequency of an antenna is only required to overcome the uncertainty in the value of the permittivity of the substrate. In these cases, the antenna can be adjusted by using the disturbance segments which have just been described. Simple narrow band frequency tuning plates can be used so that the antenna can be tuned to a desired frequency. Figures 13, 14 and 15 show examples of the shape of the
Cette asymétrie peut être également introduite, dans le cas où la structure de l'antenne est telle que les longueurs des fentes rx et ry ont la même valeur, en utilisant une combinaison de deux plaques de réglage de fréquence. La figure 18 montre un exemple d'une telle combinaison de plaques. Dans cet exemple, les plaques de réglage de fréquence 32 et 33, respectivement montrées aux figures 7 et 8, sont supportées au-dessus de l'élément conducteur 20 de la figure 4. On peut tout d'abord faire tourner le plaque de réglage de fréquence 32 pour établir une polarisation linéaire à une fréquence désirée. Ensuite, la plaque de réglage de fréquence 33 peut être tournée pour introduire un décalage contrôlé entre les dimensions rx et ry, ce qui conduit l'antenne à un fonctionnement à polarisation circulaire. Avantageusement, l'utilisation de deux plaques de réglage de fréquence permet de pouvoir prévoir des tolérances de fabrication de l'antenne plus larges.This asymmetry can also be introduced, in the case where the structure of the antenna is such that the lengths of the slots r x and r y have the same value, by using a combination of two frequency adjustment plates. Figure 18 shows an example of such a combination of plates. In this example, the
Cette description va maintenant être complétée en se référant à des exemples pratiques de construction d'une antenne selon l'invention. Puisque les antennes étaient conçues en utilisant un plan numérique qui divise la surface de l'élément conducteur en cellules carrées, les dimensions exprimées dans ces exemples sont dans les termes de "taille de cellule Δ".This description will now be supplemented with reference to practical examples of the construction of an antenna according to the invention. Since the antennas were designed using a digital plane that divides the surface of the conducting element in square cells, the dimensions expressed in these examples are in the terms of "cell size Δ".
Un élément conducteur ayant la forme représentée à la figure 3 est gravé à partir d'un substrat en un matériau vendu sous la désignation commerciale ULTRALAM®. Les dimensions initiales du substrat étaient de 144 x 1,5 mm³ et sa permittivité relative est de 2,5. Un trou circulaire d'un diamètre de 1 mm est percé au centre du substrat. L'antenne est excitée au moyen d'un signal appliqué sur l'élément conducteur 3 via un câble coaxial standard 50 Ω SMA. Les dimensions de l'élément conducteur sont les suivantes :
On a utilisé une plaque de réglage de fréquence ayant la forme représentée à la figure 5. L'agencement de l'antenne est représenté à la figure 19. La plaque de réglage de fréquence est gravée à partir d'un disque circulaire en époxy. On a choisi cette matière dans ce cas en raison de sa grande rigidité. Le disque circulaire a une épaisseur de 0,8 mm et un diamètre de 60 mm. On a également utilisé un autre disque en époxy tel que celui référencé 45 à la figure 9. Ce disque sert de plaque d'espacement entre l'élément conducteur et la plaque de réglage de fréquence. La plaque d'espacement a une épaisseur de 0,1 mm et un diamètre de 25 mm.A frequency adjustment plate having the shape shown in Figure 5 was used. The arrangement of the antenna is shown in Figure 19. The frequency adjustment plate is etched from a circular epoxy disc. We chose this material in this case because of its high rigidity. The circular disc has a thickness of 0.8 mm and a diameter of 60 mm. Another epoxy disc such as that referenced 45 in FIG. 9 was also used. This disc serves as a spacer plate between the conductive element and the frequency adjustment plate. The spacer plate has a thickness of 0.1 mm and a diameter of 25 mm.
On a mesuré la fréquence de résonance de l'antenne et on a constaté que cette fréquence variait entre 2,118 GHz (lorsque l'angle φ₁ = 90°) et 2,448 GHz (lorsque l'angle φ₁ = 0°). Cette variation correspond à une plage de réglage de la fréquence de 14,5%. Le rapport d'ondes stationnaires en tension, mesuré à la fréquence de résonance, est meilleur que 2 sur la totalité de la bande. Les diagrammes de rayonnement ont été mesurés dans une enceinte anechoïque à trois fréquences différentes, à savoir, 2,118, 2,296 et 2,448 GHz, ces trois fréquences correspondant respectivement à trois positions angulaires différentes de la structure de réglage de fréquence. Les diagrammes de co-polarisation sont dans ces cas sensiblement les mêmes que les diagrammes de co-polarisation pour un élément conducteur circulaire. De plus, les niveaux de polarisation croisée sont inférieurs à -20 dB, ce qui indique que la structure de réglage de fréquence n'introduit aucun niveau de rayonnement à polarisation croisée inacceptable.The antenna resonance frequency was measured and it was found that this frequency varied between 2.118 GHz (when the angle φ₁ = 90 °) and 2.488 GHz (when the angle φ₁ = 0 °). This variation corresponds to a range of frequency setting of 14.5%. The standing voltage wave ratio, measured at the resonant frequency, is better than 2 over the entire band. The radiation patterns were measured in an anechoic enclosure at three different frequencies, namely, 2.118, 2.296 and 2.488 GHz, these three frequencies corresponding respectively to three different angular positions of the frequency adjustment structure. The co-polarization diagrams are in these cases substantially the same as the co-polarization diagrams for a circular conducting element. In addition, the cross-polarization levels are less than -20 dB, which indicates that the frequency control structure does not introduce any unacceptable cross-polarization radiation level.
On notera que l'angle de rotation de la plaque de réglage de fréquence 33 de l'antenne représentée à la figure 19 est limité à une valeur de 90°. Cependant, l'utilisation de la plaque de réglage de fréquence représentée à la figure 6 autorise une rotation d'un angle de 180° et par conséquent un réglage plus fin de la fréquence dans la même plage de fréquence.It will be noted that the angle of rotation of the
On a fabriqué une antenne ayant un agencement tel que celui représenté à la figure 18. Cette antenne a été excitée en un seul point situé sur un axe bissecteur de l'angle formé entre les deux axes orthogonaux des fentes de l'élément conducteur. On sait que cette technique d'excitation est assez sensible par rapport aux autres techniques connues et qu'elle exige une séparation précise entre les deux modes dégénérés de l'antenne. En particulier, les deux fréquences de résonance doivent être séparées d'une fréquence α où
Des expériences pratiques ont montré que la largeur de bande de l'antenne varie en fonction du réglage de la fréquence. Cette variation peut compliquer la conception d'une simple plaque de réglage de fréquence car une connaissance précise de son effet est requise. L'utilisation de deux plaques de réglage de fréquence, comme les deux plaques représentées à la figure 18, peut pallier ce problème. En outre, l'utilisation de deux plaques de réglage de fréquence permet de pouvoir prévoir des tolérances de fabrication de l'antenne plus larges.Practical experience has shown that the bandwidth of the antenna varies depending on the frequency setting. This variation can complicate the design of a simple frequency adjustment plate since precise knowledge of its effect is required. The use of two frequency adjustment plates, like the two plates shown in Figure 18, can overcome this problem. In addition, the use of two frequency adjustment plates makes it possible to provide wider manufacturing tolerances for the antenna.
Dans cet exemple, l'élément conducteur est gravé à partir d'un substrat en un matériau vendu sous la désignation commerciale ULTRALAM®. Les dimensions initiales du substrat étaient de 144 x 144 x 1,5 mm³ et sa permittivité relative est de 2,5. Un trou circulaire d'un diamètre de 1 mm est percé au centre du substrat. L'antenne est excitée au moyen d'un signal appliqué sur l'élément conducteur 3 via un câble coaxial standard 50 Ω SMA. Les dimensions de l'élément conducteur sont les suivantes :
Des plaques de réglage de fréquence ayant la forme représentée aux figures 7 et 8 sont utilisées. L'agencement de l'antenne est représenté à la figure 18. La plaque de réglage de fréquence de la figure 7 est gravée à partir d'un disque circulaire en époxy. Le disque circulaire a une épaisseur de 0,1 mm et un diamètre de 60 mm. La plaque de réglage de fréquence de la figure 8 est également gravée à partir d'un disque circulaire en époxy. Le disque circulaire a une épaisseur de 0,8 mm et un diamètre de 50 mm. Un autre disque en époxy, comme celui désigné par la référence numérique 45 à la figure 9, est utilisé comme plaque d'espacement et est disposé entre l'élément conducteur et la plaque de réglage de fréquence. La plaque d'espacement a une épaisseur de 0,1 mm et un diamètre de 25 mm. Aucun disque d'espacement n'est utilisé entre les deux plaques de réglage de fréquence.Frequency adjustment plates having the form shown in Figures 7 and 8 are used. The antenna layout is shown in Figure 18. The frequency adjustment plate in Figure 7 is etched from a circular epoxy disc. The circular disc has a thickness of 0.1 mm and a diameter of 60 mm. The frequency adjustment plate in Figure 8 is also etched from a circular epoxy disc. The circular disc has a thickness of 0.8 mm and a diameter of 50 mm. Another epoxy disc, such as that designated by the
La gamme de réglage de la fréquence de résonance de l'antenne est légèrement inférieure à la gamme de réglage de l'exemple précédent en raison du décalage entre les deux modes dégénérés de l'antenne dans le deuxième exemple. Cette variation est de l'ordre de 10%. Le rapport d'ondes stationnaires en tension, mesuré à la résonance, est meilleur que 2 à une fréquence de 2,306 MHz.The adjustment range of the antenna resonant frequency is slightly less than the adjustment range of the previous example due to the offset between the two degenerate modes of the antenna in the second example. This variation is around 10%. The standing voltage wave ratio, measured at resonance, is better than 2 at a frequency of 2.306 MHz.
Alors que l'agencement montré à la figure 18 engendre une polarisation circulaire à droite, on notera que la rotation de la plaque 33 d'un angle de 90° engendre une polarisation circulaire à gauche.While the arrangement shown in FIG. 18 generates a circular polarization on the right, it will be noted that the rotation of the
On grave à partir d'un substrat en un matériau vendu sous la désignation commerciale TMM-10® un élément conducteur ayant la forme représentée à la figure 11, cet élément conducteur comportant des segments de perturbations permettant un fonctionnement à polarisation circulaire à droite. Le substrat est circulaire et a un diamètre de 34,5 mm. L'épaisseur du substrat est de 0,635 mm et sa permittivité relative est de 9,2. Un trou circulaire d'un diamètre de 1,4 mm est percé au centre du substrat. L'antenne est excitée au moyen d'un signal appliqué sur l'élément conducteur via un câble coaxial standard 50 Ω SMA. Les dimensions de l'élément conducteur sont les suivantes:
On a utilisé une plaque de réglage de fréquence ayant la forme représentée à la figure 15. L'agencement de l'antenne est représenté à la figure 17. La plaque de réglage de fréquence est gravée à partir d'un disque circulaire en époxy. Cette matière est préférée ici en raison de sa grande rigidité. Le disque circulaire a une épaisseur de 0,8 mm et un diamètre de 25 mm. Un disque diélectrique en TEFLON® est utilisé comme plaque d'espacement et est disposé entre l'élément conducteur et la plaque de réglage de fréquence. La plaque d'espacement a une épaisseur de 0,254 mm et un diamètre de 25 mm. Cette structure permet d'obtenir une gamme de réglage de fréquence de l'ordre de 2 %.A frequency adjustment plate having the shape shown in Figure 15 was used. The arrangement of the antenna is shown in Figure 17. The frequency adjustment plate is etched from a circular epoxy disc. This material is preferred here because of its high rigidity. The circular disc has a thickness of 0.8 mm and a diameter of 25 mm. A TEFLON® dielectric disc is used as a spacer plate and is placed between the conductive element and the frequency adjustment plate. The spacer plate is 0.254 mm thick and 25 mm in diameter. This structure makes it possible to obtain a frequency adjustment range of the order of 2%.
L'antenne est réglée à la fréquence des signaux GPS (1,57542 GHz) par la rotation de la plaque de réglage de fréquence. Le rapport axial mesuré est de 2,54 dB et la largeur de bande, avec un rapport d'ondes stationnaires en tension égale à 2, est de 12 MHz. Le gain mesuré est de -6 dBi.The antenna is adjusted to the frequency of the GPS signals (1.57542 GHz) by the rotation of the frequency adjustment plate. The measured axial ratio is 2.54 dB and the bandwidth, with a standing wave ratio in voltage equal to 2, is 12 MHz. The gain measured is -6 dBi.
Cet exemple utilise un élément conducteur comprenant des segments de perturbations pour un fonctionnement à polarisation circulaire à droite. Un élément conducteur ayant la forme représentée à la figure 12 est gravé à partir d'un substrat en TMM-10®. Le substrat est circulaire et a un diamètre de 34,5 mm. L'épaisseur du substrat est de 1,27 mm et sa permittivité relative est de 9,2. Un trou circulaire d'un diamètre de 1,4 mm est percé au centre du substrat. L'antenne est excitée au moyen d'un signal appliqué sur l'élément conducteur via un câble coaxial standard 50 Ω SMA. Les dimensions de l'élément conducteur sont les suivantes :
Une plaque de réglage de fréquence ayant la forme représentée à la figure 13 est usinée à partir d'un bloc de cuivre. Aucun disque d'espacement n'est utilisé, mais un entrefer est créé en supportant la plaque de réglage de fréquence à 0,2 mm au-dessus de l'élément conducteur au moyen d'un élément de support central. L'agencement de l'antenne est illustré à la figure 16.A frequency adjustment plate having the shape shown in Figure 13 is machined from a block of copper. No spacer disc is used, but an air gap is created by supporting the frequency adjustment plate 0.2 mm above the conductive element by means of a central support element. The antenna layout is illustrated in Figure 16.
Dans cet exemple, on peut faire tourner la plaque de réglage de fréquence de 90° pour obtenir une gamme de réglage de fréquence de 6%. La géométrie de la plaque de réglage de fréquence 70 est telle que la distance entre sa périphérie et son origine varie linéairement entre 4,5 mm et 8,75 mm en fonction de l'angle de rotation de celle-ci.In this example, the frequency adjustment plate can be rotated 90 ° to obtain a range of frequency setting of 6%. The geometry of the
L'antenne de cet exemple est montée dans un boîtier en plastique et est réglée à la fréquence des signaux GPS (1,57542 GHz) par rotation de la plaque de réglage de fréquence. Le rapport axial mesuré, avec le boîtier fixé au plan de masse de l'antenne, est de 1,78 dB et la largeur de bande lorsque le rapport d'ondes stationnaires en tension est égale à 2 est de 11 MHz. Le gain mesuré est de -4,0 dB.The antenna in this example is mounted in a plastic housing and is adjusted to the frequency of the GPS signals (1.57542 GHz) by rotation of the frequency adjustment plate. The measured axial ratio, with the box fixed to the ground plane of the antenna, is 1.78 dB and the bandwidth when the standing voltage wave ratio is 2 is 11 MHz. The gain measured is -4.0 dB.
Selon une variante de cet exemple de réalisation, la plaque de réglage de fréquence 70 peut être remplacée par la plaque de réglage de fréquence 71 de la figure 14. Cette plaque de réglage de fréquence est plus facile à fabriquer car elle peut être réalisée à partir de barres parallélipédiques actuellement disponibles dans le commerce. La gamme de réglage dans ce cas est de l'ordre de 3 % et l'angle de rotation maximale est de 45°.According to a variant of this exemplary embodiment, the
L'invention permet un certain nombre d'applications intéressantes. D'abord, la géométrie de l'élément conducteur permet un contrôle convenable de sa taille. Des formes actuelles telles que des formes circulaires ou rectangulaires ont une taille fixe selon la fréquence de résonance désirée et selon les caractéristiques du substrat utilisé. En utilisant une longueur de fente variable, on peut modifier les dimensions de l'antenne d'un facteur 2. En outre, la forme de l'élément conducteur permet une utilisation optimale de la surface disponible, car il y a peu de surface non métallisée. En conséquence, l'invention permet une miniaturisation de l'antenne tout en gardant un rapport gain/taille optimal.The invention allows a number of interesting applications. First, the geometry of the conductive element allows proper control of its size. Current shapes such as circular or rectangular shapes have a fixed size according to the desired resonant frequency and according to the characteristics of the substrate used. By using a variable slot length, the antenna dimensions can be changed by a factor of 2. In addition, the shape of the conductive element allows optimum use of the available surface, since there is little surface not metallic. Consequently, the invention allows miniaturization of the antenna while keeping an optimal gain / size ratio.
Les exemples 3 et 4 ci-dessus décrivent des antennes qui sont destinées à recevoir, des ondes de signaux GPS transmis par satellite. Les dimensions de l'antenne sont telles qu'elle peut être montée dans une boîte de montre. Dans une montre, l'antenne peut être par exemple disposée entre le moteur et les aiguilles.Examples 3 and 4 above describe antennas which are intended to receive waves of GPS signals transmitted by satellite. The dimensions of the antenna are such that it can be mounted in a watch case. In a watch, the antenna can for example be arranged between the engine and the hands.
La figure 20 est une vue en coupe d'une montre 80 comportant une boîte 81, un fond 82 et un verre 83. La montre 80 comporte un substrat diélectrique 85, un plan de masse 86 relié à la boîte 81, un élément conducteur 87 et une plaque de réglage de fréquence 88, cette dernière étant séparée de l'élément conducteur 87 par un autre substrat diélectrique 89. L'élément conducteur comporte deux paires de fentes orthogonales. La longueur d'une des paires de fentes est plus grande que la longueur de l'autre paire, afin d'assurer une polarisation circulaire de l'antenne 87. La rotation d'une plaque de réglage de fréquence 88 par rapport à l'élément conducteur 87 modifie les longueurs des deux paires de fentes orthogonales et, par conséquent, modifie la fréquence de résonance de l'antenne 84.FIG. 20 is a sectional view of a
La montre 80 comporte en outre un câble coaxial 90 dont le conducteur central traverse le substrat diélectrique 85. Ce conducteur central est soudé à l'élément conducteur 87, tandis que le conducteur externe est soudé au plan de masse 86. Les deux conducteurs du câble coaxial sont également reliés à un circuit d'antenne 91, disposé dans la montre 80, entre le fond 82 et le plan de masse 86.The
De plus, la montre 80 comporte un support central 92 sur lequel sont montées les aiguilles d'heures, de minutes et de secondes, respectivement 93, 94 et 95. Le support central 92 est relié à un mouvement d'horlogerie 96 qui est également disposé entre le fond 82 et le plan de masse 86. Le mouvement d'horlogerie 96 fait tourner les aiguilles 93 à 95 de la montre 80 par l'intermédiaire du support central 92 afin d'indiquer l'heure standard. En outre, le support central 92 sert à maintenir l'alignement des divers éléments 85 à 88 de l'antenne 80.In addition, watch 80 has a
L'environnement proche de l'antenne 80 a un certain effet sur la fréquence de résonance de l'antenne. A cet égard, les positions angulaires des aiguilles 93 à 95 par rapport aux fentes de l'élément conducteur 87 ont un certain effet sur la fréquence de résonance de l'antenne. Pour compenser cet effet, lors de la réception ou de la transmission d'un signal par l'antenne 80, les aiguilles 93 à 95 sont amenées par le mouvement d'horlogerie 96 dans des positions angulaires qui ont peu d'influence sur la fréquence de résonance de l'antenne 80.The environment near the
De préférence, ces positions angulaires sont telles qu'aucune des aiguilles 93 à 95 ne sont superposées aux fentes de l'élément conducteur 87. En outre, les aiguilles 93 à 95 peuvent être amenées dans les mêmes positions angulaires lors de chaque réception/transmission, afin que l'influence des aiguilles 93 à 95 sur la fréquence de résonance de l'antenne 80 soit toujours la même.Preferably, these angular positions are such that none of the
Les structures de réglage de la fréquence de résonance de l'antenne qui viennent d'être décrites, permettent d'une part, une compensation de la non homogénéité des caractéristiques du matériau du substrat, et, d'autre part, un réglage de fréquence sur une bande large. De plus, les dimensions de l'antenne restent minimum car les structures de réglage de fréquence n'augmentent que très légèrement l'épaisseur de l'antenne.The structures for adjusting the resonance frequency of the antenna which have just been described allow, on the one hand, compensation for the non-homogeneity of the characteristics of the material of the substrate, and, on the other hand, frequency adjustment over a wide band. In addition, the dimensions of the antenna remain minimum because the frequency adjustment structures only slightly increase the thickness of the antenna.
On notera que pour obtenir une telle taille avec une antenne circulaire connue, il est nécessaire d'utiliser un substrat ayant une permittivité relative de l'ordre de 15. Une telle permittivité nécessite l'utilisation d'un substrat en céramique et conduit à des frais de fabrication plus élevés. A noter en outre que ces substrats en céramique présentent des caractéristiques thermiques insuffisantes dans de nombreuses applications. Par exemple, l'environnement proche de l'antenne a un certain effet sur la fréquence de résonance de l'antenne. Cet effet peut être compensé par une simple rotation de la plaque de réglage de fréquence de l'antenne. A cet égard, les aiguilles d'une montre comportant l'antenne de l'invention sont, de préférence, réalisées en plastique, ou en toute autre matière non métallique, pour diminuer cet effet.Note that to obtain such a size with a known circular antenna, it is necessary to use a substrate having a relative permittivity of the order of 15. Such permittivity requires the use of a ceramic substrate and leads to higher manufacturing costs. It should also be noted that these ceramic substrates have insufficient thermal characteristics in many applications. For example, the environment near the antenna has a certain effect on the resonant frequency of the antenna. This effect can be offset by a simple rotation of the antenna frequency adjustment plate. In this regard, the hands of a watch comprising the antenna of the invention are preferably made of plastic, or any other non-metallic material, to reduce this effect.
Enfin, il est à noter que plusieurs modifications peuvent être apportées à l'antenne selon l'invention sans sortir du cadre de celle-ci.Finally, it should be noted that several modifications can be made to the antenna according to the invention without departing from the scope thereof.
Claims (23)
ledit élément conducteur comportant un point d'excitation par lequel il est relié audit circuit d'antenne, ce dernier délivrant ladite tension alternative entre le point d'excitation et ledit plan de masse;
ledit point d'excitation se trouvant sur un premier desdits axes;
ladite antenne étant caractérisée en ce que ledit élément conducteur comporte:
said conductive element comprising an excitation point by which it is connected to said antenna circuit, the latter delivering said alternating voltage between the excitation point and said ground plane;
said excitation point being on a first of said axes;
said antenna being characterized in that said conductive element comprises:
ledit élément conducteur comportant un point d'excitation par lequel il est relié audit circuit d'antenne, ce dernier délivrant ladite tension alternative entre le point d'excitation et ledit plan de masse;
ledit point d'excitation se trouvant sur un troisième axe bissecteur de l'angle formé entre les premier et deuxième axes;
ladite antenne étant caractérisée en ce que ledit élément conducteur comporte :
said conductive element comprising an excitation point by which it is connected to said antenna circuit, the latter delivering said alternating voltage between the excitation point and said ground plane;
said excitation point being on a third axis bisecting the angle formed between the first and second axes;
said antenna being characterized in that said conductive element comprises:
ladite montre étant caractérisée en ce que
ladite antenne est disposée entre ledit moteur et lesdites aiguilles, en ce que ledit support central est creusé le long de son axe longitudinal, et en ce que ledit arbre s'étend à l'intérieur dudit support central.
said watch being characterized in that
said antenna is disposed between said motor and said needles, in that said central support is hollowed out along its longitudinal axis, and in that said shaft extends inside said central support.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9412480A FR2726127B1 (en) | 1994-10-19 | 1994-10-19 | MINIATURIZED ANTENNA FOR CONVERTING AN ALTERNATIVE VOLTAGE TO A MICROWAVE AND VICE-VERSA, PARTICULARLY FOR WATCHMAKING APPLICATIONS |
FR9412480 | 1994-10-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0708492A1 true EP0708492A1 (en) | 1996-04-24 |
EP0708492B1 EP0708492B1 (en) | 2002-06-12 |
Family
ID=9468001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95116148A Expired - Lifetime EP0708492B1 (en) | 1994-10-19 | 1995-10-13 | Microstrip patch antenna and its particular application in a timepiece |
Country Status (7)
Country | Link |
---|---|
US (1) | US5646634A (en) |
EP (1) | EP0708492B1 (en) |
JP (1) | JPH08213819A (en) |
AU (1) | AU695429B2 (en) |
CA (1) | CA2159961A1 (en) |
DE (1) | DE69527020T2 (en) |
FR (1) | FR2726127B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0805512A1 (en) * | 1996-04-24 | 1997-11-05 | France Telecom | Compact printed antenna with little radiation in elevation |
EP1729187A3 (en) * | 2001-05-18 | 2007-01-03 | Seiko Instruments Inc. | Power supply apparatus and electronic equipment |
EP2447791A1 (en) * | 2010-10-28 | 2012-05-02 | Casio Computer Co., Ltd. | Electronic device equipped with antenna device and solar panel |
CN109524777A (en) * | 2018-10-22 | 2019-03-26 | 南京尤圣美电子科技有限公司 | A kind of circular polarization microstrip antenna of composite recess structure |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2337861B (en) * | 1995-06-02 | 2000-02-23 | Dsc Communications | Integrated directional antenna |
FR2757315B1 (en) * | 1996-12-17 | 1999-03-05 | Thomson Csf | BROADBAND PRINTED NETWORK ANTENNA |
US6154176A (en) * | 1998-08-07 | 2000-11-28 | Sarnoff Corporation | Antennas formed using multilayer ceramic substrates |
US6100855A (en) * | 1999-02-26 | 2000-08-08 | Marconi Aerospace Defence Systems, Inc. | Ground plane for GPS patch antenna |
US6166692A (en) * | 1999-03-29 | 2000-12-26 | The United States Of America As Represented By The Secretary Of The Army | Planar single feed circularly polarized microstrip antenna with enhanced bandwidth |
AUPQ204599A0 (en) * | 1999-08-05 | 1999-08-26 | R F Industries Pty Ltd | Dual band antenna |
TW431033B (en) * | 1999-09-03 | 2001-04-21 | Ind Tech Res Inst | Twin-notch loaded type microstrip antenna |
US6320548B1 (en) * | 2000-01-26 | 2001-11-20 | Integral Technologies, Inc. | Dual disk active antenna |
US6897808B1 (en) * | 2000-08-28 | 2005-05-24 | The Hong Kong University Of Science And Technology | Antenna device, and mobile communications device incorporating the antenna device |
EP1274150A1 (en) * | 2001-07-05 | 2003-01-08 | Eta SA Fabriques d'Ebauches | Wrist-watch with antenna |
US7050004B2 (en) * | 2002-03-28 | 2006-05-23 | University Of Manitoba | Multiple frequency antenna |
EP1378805B1 (en) * | 2002-07-02 | 2007-01-17 | CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Développement | Timepiece fitted with an antenna |
US7046199B2 (en) * | 2003-02-13 | 2006-05-16 | Skycross, Inc. | Monolithic low profile omni-directional surface-mount antenna |
US20040222930A1 (en) * | 2003-05-07 | 2004-11-11 | Huei-Hsin Sun | Wrist antenna |
EP1489471A1 (en) * | 2003-06-18 | 2004-12-22 | Asulab S.A. | Ground connection of a printed circuit board placed in a wristwatch-type electronic device |
EP1513220B1 (en) * | 2003-09-03 | 2018-10-31 | The Swatch Group Research and Development Ltd | Patch antenna integrated in a wrist-watch |
US20090051598A1 (en) * | 2007-08-26 | 2009-02-26 | Micro-Ant, Inc. | Compact microstrip patch antenna |
US20090289855A1 (en) * | 2008-05-23 | 2009-11-26 | Sony Ericsson Mobile Communications Ab | Methods and Apparatus for Providing an Integrated Inverted Loop Antenna in a Wireless Device |
FI20085699A0 (en) * | 2008-07-04 | 2008-07-04 | Polar Electro Oy | Electro-optical component |
JP5170121B2 (en) | 2010-01-29 | 2013-03-27 | カシオ計算機株式会社 | Electronics |
KR101124131B1 (en) * | 2010-08-12 | 2012-03-21 | 주식회사 에이스테크놀로지 | Patch antenna |
US8489162B1 (en) * | 2010-08-17 | 2013-07-16 | Amazon Technologies, Inc. | Slot antenna within existing device component |
JP5573593B2 (en) * | 2010-10-27 | 2014-08-20 | セイコーエプソン株式会社 | Electronic clock with built-in antenna |
JP5712814B2 (en) * | 2010-11-12 | 2015-05-07 | セイコーエプソン株式会社 | Electronic clock with built-in antenna |
TW201304272A (en) * | 2011-07-15 | 2013-01-16 | Wistron Neweb Corp | Antenna structure for wearable electronic device and wearable wireless electronic device |
JP5737048B2 (en) * | 2011-08-12 | 2015-06-17 | カシオ計算機株式会社 | Patch antenna device and radio wave receiving device |
JP5895700B2 (en) | 2011-08-30 | 2016-03-30 | セイコーエプソン株式会社 | Electronic clock with built-in antenna |
CN102694230B (en) * | 2012-04-27 | 2016-12-14 | 深圳光启创新技术有限公司 | Watch antenna and manufacture method, real-time communication watch |
DE102012108600B3 (en) * | 2012-09-14 | 2014-06-26 | Antonics-Icp Gmbh | Antenna array has inner ring whose height distance from flat surface is adjusted corresponding to specific wavelength of antenna element, and metal plate whose height distance is set corresponding to height distance of inner ring |
JP6179123B2 (en) | 2013-02-21 | 2017-08-16 | セイコーエプソン株式会社 | Electronic clock with built-in antenna |
JP6331430B2 (en) * | 2014-01-31 | 2018-05-30 | セイコーエプソン株式会社 | Electronic clock |
CN105024161B (en) * | 2014-04-30 | 2019-05-21 | 深圳富泰宏精密工业有限公司 | Antenna structure and clockwork with the antenna structure |
JP6048531B2 (en) * | 2015-04-22 | 2016-12-21 | カシオ計算機株式会社 | Patch antenna device and radio wave receiving device |
CN106037691A (en) * | 2016-07-10 | 2016-10-26 | 李红艳 | Intelligent health monitoring necklace |
WO2018119796A1 (en) * | 2016-12-28 | 2018-07-05 | 江健良 | Intelligent wristwatch |
CN106773633B (en) * | 2016-12-28 | 2018-01-19 | 泉州奇鹭物联网科技有限公司 | A kind of intelligent spire lamella table |
CN106681132B (en) * | 2016-12-28 | 2018-05-11 | 沈磊 | A kind of intelligent spire lamella table equipped with monitoring of pulse function |
WO2018119797A1 (en) * | 2016-12-28 | 2018-07-05 | 江健良 | Intelligent wristwatch having pulse monitoring function |
CH714069A1 (en) * | 2017-08-17 | 2019-02-28 | Soprod Sa | Electromechanical watchmaking module comprising an antenna. |
JP2019158445A (en) | 2018-03-09 | 2019-09-19 | セイコーエプソン株式会社 | Electronic apparatus |
US11411304B2 (en) * | 2019-02-14 | 2022-08-09 | Google Llc | Wearable antenna and wearable device |
GB2598131A (en) * | 2020-08-19 | 2022-02-23 | Univ Belfast | Miniature antenna with omnidirectional radiation field |
EP4113219A1 (en) * | 2021-06-29 | 2023-01-04 | Montres Breguet S.A. | Method for frequency tuning of an assembly of plates of a watch, and watch comprising the assembly of tuned plates |
DE102023104265A1 (en) | 2023-02-21 | 2024-08-22 | Antonics Gmbh | Multi-band antenna arrangement with cross-polar characteristics |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0121722A1 (en) * | 1983-03-04 | 1984-10-17 | Kabushiki Kaisha Toshiba | A singly fed circularly polarized microstrip antenna |
EP0188087A1 (en) * | 1984-12-18 | 1986-07-23 | Texas Instruments Incorporated | Microstrip patch antenna system |
EP0400872A1 (en) * | 1989-05-23 | 1990-12-05 | Harada Industry Co., Ltd. | A flat-plate antenna for use in mobile communications |
WO1992001953A1 (en) * | 1990-07-24 | 1992-02-06 | Saab-Scania Combitech Aktiebolag | Device for information transmission |
EP0525726A1 (en) * | 1991-07-30 | 1993-02-03 | Murata Manufacturing Co., Ltd. | Circularly polarized wave microstrip antenna and frequency adjusting method therefor |
US5307075A (en) * | 1991-12-12 | 1994-04-26 | Allen Telecom Group, Inc. | Directional microstrip antenna with stacked planar elements |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5791003A (en) * | 1980-11-27 | 1982-06-07 | Nippon Telegr & Teleph Corp <Ntt> | Circular polarized wave microstrip antenna |
-
1994
- 1994-10-19 FR FR9412480A patent/FR2726127B1/en not_active Expired - Fee Related
-
1995
- 1995-10-05 CA CA002159961A patent/CA2159961A1/en not_active Abandoned
- 1995-10-13 EP EP95116148A patent/EP0708492B1/en not_active Expired - Lifetime
- 1995-10-13 DE DE69527020T patent/DE69527020T2/en not_active Expired - Fee Related
- 1995-10-17 AU AU34314/95A patent/AU695429B2/en not_active Ceased
- 1995-10-19 JP JP7271504A patent/JPH08213819A/en active Pending
- 1995-10-19 US US08/545,072 patent/US5646634A/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0121722A1 (en) * | 1983-03-04 | 1984-10-17 | Kabushiki Kaisha Toshiba | A singly fed circularly polarized microstrip antenna |
EP0188087A1 (en) * | 1984-12-18 | 1986-07-23 | Texas Instruments Incorporated | Microstrip patch antenna system |
EP0400872A1 (en) * | 1989-05-23 | 1990-12-05 | Harada Industry Co., Ltd. | A flat-plate antenna for use in mobile communications |
WO1992001953A1 (en) * | 1990-07-24 | 1992-02-06 | Saab-Scania Combitech Aktiebolag | Device for information transmission |
EP0525726A1 (en) * | 1991-07-30 | 1993-02-03 | Murata Manufacturing Co., Ltd. | Circularly polarized wave microstrip antenna and frequency adjusting method therefor |
US5307075A (en) * | 1991-12-12 | 1994-04-26 | Allen Telecom Group, Inc. | Directional microstrip antenna with stacked planar elements |
Non-Patent Citations (1)
Title |
---|
HIROYUKI ARAI ET AL: "A flat energy density antenna system for mobile telephone", IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, vol. 40, no. 2, May 1991 (1991-05-01), NEW YORK US, pages 483 - 486, XP000234906, DOI: doi:10.1109/25.289430 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0805512A1 (en) * | 1996-04-24 | 1997-11-05 | France Telecom | Compact printed antenna with little radiation in elevation |
EP1729187A3 (en) * | 2001-05-18 | 2007-01-03 | Seiko Instruments Inc. | Power supply apparatus and electronic equipment |
EP2447791A1 (en) * | 2010-10-28 | 2012-05-02 | Casio Computer Co., Ltd. | Electronic device equipped with antenna device and solar panel |
CN109524777A (en) * | 2018-10-22 | 2019-03-26 | 南京尤圣美电子科技有限公司 | A kind of circular polarization microstrip antenna of composite recess structure |
CN109524777B (en) * | 2018-10-22 | 2020-07-07 | 南京尤圣美电子科技有限公司 | Circular polarization microstrip antenna with composite slotting structure |
Also Published As
Publication number | Publication date |
---|---|
JPH08213819A (en) | 1996-08-20 |
EP0708492B1 (en) | 2002-06-12 |
US5646634A (en) | 1997-07-08 |
CA2159961A1 (en) | 1996-04-20 |
DE69527020T2 (en) | 2003-03-06 |
AU695429B2 (en) | 1998-08-13 |
AU3431495A (en) | 1996-05-02 |
FR2726127A1 (en) | 1996-04-26 |
DE69527020D1 (en) | 2002-07-18 |
FR2726127B1 (en) | 1996-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0708492B1 (en) | Microstrip patch antenna and its particular application in a timepiece | |
EP3547450B1 (en) | Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity | |
EP0403910B1 (en) | Radiating, diplexing element | |
EP0899814B1 (en) | Radiating structure | |
EP0123350B1 (en) | Plane microwave antenna with a totally suspended microstrip array | |
EP0427654B1 (en) | Tuned helical antennae consisting of two quadrifilar antennas fit into each other | |
CA1338792C (en) | Microwave phase shifter incorporating a microstrip and a suspended dielectric and its application to lobe sweeping network antennas | |
EP1038333B1 (en) | Patch antenna | |
EP1145379B1 (en) | Antenna provided with an assembly of filtering materials | |
EP0542595A1 (en) | Microstrip antenna device especially for satellite telephone transmissions | |
EP2710676B1 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
EP1172885A1 (en) | Short-circuit microstrip antenna and dual-band transmission device including that antenna | |
EP0954055A1 (en) | Dual-frequency radiocommunication antenna realised according to microstrip technique | |
EP2643886B1 (en) | Planar antenna having a widened bandwidth | |
EP1250729B1 (en) | Anisotropic composite antenna | |
WO2012095365A1 (en) | Dielectric resonator antenna | |
EP0174250B1 (en) | Device for receiving dual polarized microwave signals | |
EP0860894B1 (en) | Miniature resonant antenna in the form of annular microstrips | |
EP0020196B1 (en) | Ringplate-type microwave array antenna with feeding system and its application in radars | |
EP0015804A2 (en) | Polarizing device and microwave antenna comprising same | |
EP0860895A1 (en) | Resonant antenna for emitting or receiving polarized waves | |
EP2293385B1 (en) | Self-directing antenna with circular polarisation | |
EP0005396A1 (en) | Hyperfrequency circuit with a resonant cavity equipped with pairs of peripheral diodes | |
EP4203191A1 (en) | Circularly polarized planar radio frequency antenna | |
EP3605730B1 (en) | Antenna device with two different and secant planar substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19961024 |
|
17Q | First examination report despatched |
Effective date: 19991129 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASULAB S.A. |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE GB IT LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20020612 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69527020 Country of ref document: DE Date of ref document: 20020718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020912 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020911 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030313 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030925 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20030926 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030929 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030930 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040924 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 |
|
BERE | Be: lapsed |
Owner name: S.A. *ASULAB Effective date: 20041031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050503 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20041013 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060501 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20060501 |
|
BERE | Be: lapsed |
Owner name: S.A. *ASULAB Effective date: 20041031 |