EP0698800A1 - Procédé de la répartition de l'intensité du rayonnement laser pour le traitement de surfaces d'éléments - Google Patents

Procédé de la répartition de l'intensité du rayonnement laser pour le traitement de surfaces d'éléments Download PDF

Info

Publication number
EP0698800A1
EP0698800A1 EP95111747A EP95111747A EP0698800A1 EP 0698800 A1 EP0698800 A1 EP 0698800A1 EP 95111747 A EP95111747 A EP 95111747A EP 95111747 A EP95111747 A EP 95111747A EP 0698800 A1 EP0698800 A1 EP 0698800A1
Authority
EP
European Patent Office
Prior art keywords
modulated
intensity distribution
laser
vibration
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95111747A
Other languages
German (de)
English (en)
Other versions
EP0698800B1 (fr
Inventor
Lothar Dr. Morgenthal
Dieter Dr. Pollack
Andreas Mertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP0698800A1 publication Critical patent/EP0698800A1/fr
Application granted granted Critical
Publication of EP0698800B1 publication Critical patent/EP0698800B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • F21W2131/401Lighting for industrial, commercial, recreational or military use for swimming pools

Definitions

  • the invention relates to a method for controlling the laser beam intensity distribution for the machining of component surfaces. It takes place during the laser processing of surfaces, e.g. Transformation hardening, remelting, alloying, coating etc., of surfaces in the solid and / or liquid state Application.
  • One area of application in which the invention can be used particularly advantageously is the laser beam surface hardening of components made of metallic materials.
  • cw laser constant laser power
  • CW continuous wave mode
  • P pulse mode
  • the operating mode delivers a continuous laser beam up to max. to the nominal output power of the device.
  • the output power can be regulated within limits by changing the excitation power.
  • the high thermal conductivity of the metals generally requires oscillation frequencies of greater than 100 Hz, so that the frequency-dependent temperature fluctuations on the surface subside quickly into the interior of the workpiece.
  • the galvanoscanners used for controllable oscillating mirror systems can generally only carry out harmonic vibrations in this frequency range. The reason for this is the mass moment of inertia of the moving vibration system components (rotor of the vibration motor and laser mirror), with the copper mirrors with a diameter required for beam transmission, in particular in the laser power range from 1 kW, making up the majority of the moment of inertia.
  • this effect can be used for surface hardening in order to achieve a homogeneous machining geometry by compensating for the higher heat conduction losses at the track edges (DD 242 358 and "Homogeneous laser beam hardening by means of high-frequency beam oscillation", S. Völlmar; W. Pompe; H. Junge in Neue Wegte, 31st vol., issue 11, Nov. 86, pages 414 - 418).
  • a method for controlling the laser beam intensity distribution for the processing of components by means of laser radiation is used, in which conventional mirrors or mirror systems (for laser powers from 1 kW or more, copper mirrors) are used for laser beam shaping and in which laser beam shaping is based on the sinusoidal, harmonic beam oscillation as Control function for the mirror or the mirror system by means of at least one galvanoscanner.
  • the intensity distribution generated in laser beam shaping on the basis of the sinusoidal beam oscillation on a component surface is set independently of the selected shape and size of the scanned surface area, without having to act on the laser used.
  • This is achieved by a predefinable superposition of sinusoidal oscillations as a control function for the oscillating mirror system (scanner system).
  • This setting of the intensity distribution is carried out in such a way that several harmonic control functions are modulated by superimposition so that the The instantaneous speed of the moving laser spot is influenced in the desired sense. This means that in the area of the track edges an amplitude modulation with a high degree of modulation (close to 1) must be used as a rule because of intensity increases.
  • galvanoscanners with the mirrors usually used for laser material processing do not perform other than harmonic vibrations at the required high frequencies, which, as already described, can be modulated according to the invention by superimposing several harmonic control functions so that the instantaneous speed of the moving laser spots is influenced in the desired sense.
  • the intensity distribution integrated over many modulation periods is primarily effective for workpiece machining. Their shape can now be varied by modulating the carrier vibration without changing the effective size and shape of the scanned area depicted on the workpiece surface.
  • the moment of inertia of the metal mirrors usually used in material processing has the consequence that the scanner mirror deflecting the laser beam with higher-frequency excitation ( ⁇ 100Hz) of the galvanoscanners used, regardless of the shape (time course) of the periodic excitation function (triangle, rectangular functions), grinds them into sinusoidal vibrations .
  • the galvanoscanner is excited with such harmonic oscillation profiles (sine or cosine) that can be practically implemented with respect to frequency and amplitude.
  • a harmonic overall vibration is composed of a carrier vibration B and at least one further, modulated vibration component A and / or C.
  • the track width can be set by the amplitude of the carrier oscillation (taking into account the spot diameter), while the superimposed modulated components (A and / or C) form the desired integral intensity distribution in the period.
  • FIGS. 1 to 6 serve for a better understanding, in which the modulation of the control functions according to the invention is represented by superposition.
  • FIG. 1 and 2 show, for example, composite scanner control functions.
  • the amplitude-time functions demonstrate the exclusively sine or cosine scanner control functions.
  • portions of the carrier vibration B with further modulated vibration portions A and C are shown in FIG. 1, which are composed as a harmonic overall vibration.
  • the degree of modulation m in the range from zero to one, is a measure of the modulated cycle.
  • FIG 3 the raw beam profile of a CO2 laser with the mod structure TEM20 is shown.
  • the raw laser beam 1 with a diameter of 32 mm, is focused by a focusing mirror 2 with a focal length of 400 mm and directed onto the specimen 5 via a plane mirror 3, which is attached to a galvanoscanner 4.
  • Focusing mirror 2, plane mirror 3 and galvanoscanner 4 are integrated in an oscillating mirror processing head.
  • the digital control of the galvanoscanner is realized by a host computer 6, its output signal on the data bus is subjected to a digital / analog conversion 7 and then an amplification 8 (output amplifier).
  • the desired control functions which represent the desired intensity profiles 9, here exemplified here as intensity profiles 9 a), b) and c), are generated in software with the above-mentioned parameters in accordance with the intensity profile sought.
  • the deflection of the plane mirror 3 in the oscillating mirror head is based on the output of the current amplitude value.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
EP95111747A 1994-08-25 1995-07-26 Procédé de la répartition de l'intensité du rayonnement laser pour le traitement de surfaces d'éléments Expired - Lifetime EP0698800B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4430220A DE4430220C2 (de) 1994-08-25 1994-08-25 Verfahren zur Steuerung der Laserstrahlintensitätsverteilung auf der Oberfläche zu bearbeitender Bauteile
DE4430220 1994-08-25

Publications (2)

Publication Number Publication Date
EP0698800A1 true EP0698800A1 (fr) 1996-02-28
EP0698800B1 EP0698800B1 (fr) 2001-10-17

Family

ID=6526575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95111747A Expired - Lifetime EP0698800B1 (fr) 1994-08-25 1995-07-26 Procédé de la répartition de l'intensité du rayonnement laser pour le traitement de surfaces d'éléments

Country Status (4)

Country Link
EP (1) EP0698800B1 (fr)
JP (1) JPH08103878A (fr)
AT (1) ATE207209T1 (fr)
DE (2) DE4430220C2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041995A2 (fr) * 1996-05-06 1997-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede d'usinage de pieces au laser
EP0872303A2 (fr) * 1997-04-14 1998-10-21 Schott Glas Procédé et dispositif pour découper de pièces pleines en matériau fragiles, notamment en verre
GB2534056A (en) * 2012-09-06 2016-07-13 Etxe-Tar S A Method and system for laser hardening of a surface of a journal of a crankshaft
US10864603B2 (en) 2015-03-17 2020-12-15 Ikergune A.I.E. Method and system for heat treatment of sheet metal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006020669U1 (de) 2005-11-23 2009-07-02 Homag Holzbearbeitungssysteme Ag Vorrichtung zur Beschichtung von Bauteilen
DE102009025064A1 (de) * 2009-06-10 2011-04-28 Ks Kolbenschmidt Gmbh Verfahren zur Herstellung eines Kolbens einer Brennkraftmaschine mittels induktiver Energiezufuhr und Laserbestrahlung
DE102015101263B4 (de) 2015-01-28 2016-12-15 Precitec Gmbh & Co. Kg Vorrichtung zur Materialbearbeitung mittels Laserstrahlung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE227904C (fr)
US3848104A (en) 1973-04-09 1974-11-12 Avco Everett Res Lab Inc Apparatus for heat treating a surface
US3952180A (en) 1974-12-04 1976-04-20 Avco Everett Research Laboratory, Inc. Cladding
CH616357A5 (en) 1976-05-28 1980-03-31 Siemens Ag Method of accurately machining a workpiece arranged in the working zone of a machining laser and apparatus for carrying out the method
EP0055463A2 (fr) * 1980-12-26 1982-07-07 Kabushiki Kaisha Toshiba Dispositif de chauffage
DE4017734A1 (de) * 1989-06-28 1991-01-10 Fortschritt Veb K Ansteuersystem fuer einen scannerantrieb
EP0445699A2 (fr) 1990-03-05 1991-09-11 Mazda Motor Corporation Procédé et dispositif de fabrication de surfaces trempées

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD227904A1 (de) * 1984-11-01 1985-10-02 Ilmenau Tech Hochschule Verfahren zum entrosten von teilen
DD242358B1 (de) * 1985-10-30 1988-10-26 Akad Wissenschaften Ddr Verfahren zum abbau von temperaturueberhoehungen in der laserwaermebehandlungszone

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE227904C (fr)
US3848104A (en) 1973-04-09 1974-11-12 Avco Everett Res Lab Inc Apparatus for heat treating a surface
US3952180A (en) 1974-12-04 1976-04-20 Avco Everett Research Laboratory, Inc. Cladding
CH616357A5 (en) 1976-05-28 1980-03-31 Siemens Ag Method of accurately machining a workpiece arranged in the working zone of a machining laser and apparatus for carrying out the method
EP0055463A2 (fr) * 1980-12-26 1982-07-07 Kabushiki Kaisha Toshiba Dispositif de chauffage
DE4017734A1 (de) * 1989-06-28 1991-01-10 Fortschritt Veb K Ansteuersystem fuer einen scannerantrieb
EP0445699A2 (fr) 1990-03-05 1991-09-11 Mazda Motor Corporation Procédé et dispositif de fabrication de surfaces trempées

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. VOELLMAR, W. POMPE, H. JUNGE: "Homogene Laserstrahlhaertung mittels hochfrequenter Strahloszillation", NEUE HUETTE, vol. 31.JG., November 1986 (1986-11-01), pages 414 - 418, XP000770155

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997041995A2 (fr) * 1996-05-06 1997-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procede d'usinage de pieces au laser
WO1997041995A3 (fr) * 1996-05-06 1997-12-11 Fraunhofer Ges Forschung Procede d'usinage de pieces au laser
EP0872303A2 (fr) * 1997-04-14 1998-10-21 Schott Glas Procédé et dispositif pour découper de pièces pleines en matériau fragiles, notamment en verre
EP0872303A3 (fr) * 1997-04-14 1999-12-01 Schott Glas Procédé et dispositif pour découper de pièces pleines en matériau fragiles, notamment en verre
US6112967A (en) * 1997-04-14 2000-09-05 Schott Glas Method and apparatus for cutting through a flat workpiece made of brittle material, especially glass
GB2534056A (en) * 2012-09-06 2016-07-13 Etxe-Tar S A Method and system for laser hardening of a surface of a journal of a crankshaft
GB2534056B (en) * 2012-09-06 2017-04-19 Etxe-Tar S A Method and system for laser hardening of a surface of a journal of a crankshaft
GB2520214B (en) * 2012-09-06 2017-05-03 Etxe-Tar S A Method and system for laser hardening of a surface of a workpiece
US10138528B2 (en) 2012-09-06 2018-11-27 Etxe-Tar, S.A. Method and system for laser hardening of a surface of a workpiece
US10961597B2 (en) 2012-09-06 2021-03-30 Exteotar, S.A. Method and system for laser hardening of a surface of a workpiece
US11898214B2 (en) 2012-09-06 2024-02-13 Etxe-Tar, S.A. Method and system for heat treating a workpiece
US10864603B2 (en) 2015-03-17 2020-12-15 Ikergune A.I.E. Method and system for heat treatment of sheet metal

Also Published As

Publication number Publication date
DE4430220A1 (de) 1996-02-29
JPH08103878A (ja) 1996-04-23
ATE207209T1 (de) 2001-11-15
DE4430220C2 (de) 1998-01-22
EP0698800B1 (fr) 2001-10-17
DE59509713D1 (de) 2001-11-22

Similar Documents

Publication Publication Date Title
DE102012111771B4 (de) Verfahren zur Bearbeitung eines Werkstücks unter Verwendung einer Laserbearbeitungsvorrichtung zur Herstellung eines Schneidwerkzeugs
DE2416436A1 (de) Lasersystem
DE102012008940A1 (de) Verfahren und Vorrichtung zum Fügen von mindestens zwei Werkstücken
EP4185427A1 (fr) Procédé pour déplacer un faisceau d'énergie continu et dispositif de fabrication
DE102018220336A1 (de) Vorrichtung und Verfahren zur Strahlformung und Strahlmodulation bei einer Lasermaterialbearbeitung
EP0698800B1 (fr) Procédé de la répartition de l'intensité du rayonnement laser pour le traitement de surfaces d'éléments
DE102021107366A1 (de) Laserkopf, imstande, einen Laserpunkt durch Hochfrequenz-/Ultrahochfrequenz-Mikrovibration dynamisch zu regulieren
EP0167843B1 (fr) Disposition de modulation externe de la radiation d'un laser à CO2 à puissance élevée
DE19616863C2 (de) Anordnung zur Kohärenzreduktion und Strahlhomogenisierung von Laserstrahlung hoher Leistung
WO2005080044A1 (fr) Procede servant a former un faisceau laser et procede de traitement laser
DE102013204222B4 (de) Verfahren und system zum bearbeiten eines objekts mit einem laserstrahl
DE10036146C1 (de) Verfahren zum Schneiden von Werkstücken mit einem Schneidstrahl
DE10116093C1 (de) Verfahren zum Betreiben einer Lasergravureinrichtung
DE102015112151A1 (de) Verfahren und Vorrichtung zur Laserbearbeitung eines Substrates mit mehrfacher Ablenkung einer Laserstrahlung
DE1765852B2 (de) Verfahren und Vorrichtung zur Bearbeitung von metallischen Werkstoffen mit magnetisch fokussieren Ladungsträgerstrahlen
DE19901777A1 (de) Verfahren zur Herstellung endodontischer Instrumente mittels Lasereinsatz
DE69211191T2 (de) Optische statische Verfahren und Vorrichtung zur Laserbestrahlung eines metallischen Produktes und dessen Anwendung zur magnetischen Bleichbehandlung
EP4032652A1 (fr) Usinage de matière au moyen d'un faisceau laser à dandinement
EP1625771B1 (fr) Procede pour chauffer des composants
DD291717A5 (de) Verfahren zur einstellung definierter lateraler temperaturfelder bei der lasermaterialbearbeitung
WO1991018704A1 (fr) Procede de traitement de surface de pieces au moyen d'un rayonnement laser
EP2812669B1 (fr) Procédé permettant d'obtenir un contraste au moyen d'un laser et son dispositif de mise en oeuvre
WO1991018705A1 (fr) Procede de traitement de surface de pieces au moyen d'un rayonnement laser
DE4016579A1 (de) Laser
WO2024041903A1 (fr) Système laser et procédé d'usinage laser d'une pièce

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19960608

17Q First examination report despatched

Effective date: 19991228

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 207209

Country of ref document: AT

Date of ref document: 20011115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59509713

Country of ref document: DE

Date of ref document: 20011122

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011224

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020725

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050726

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20090401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140724

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140620

Year of fee payment: 20

Ref country code: GB

Payment date: 20140721

Year of fee payment: 20

Ref country code: FR

Payment date: 20140724

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140725

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59509713

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150725

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 207209

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150725