EP0696787A1 - Luftdruckkompensierte Branderkennungsvorrichtung und Verfahren - Google Patents

Luftdruckkompensierte Branderkennungsvorrichtung und Verfahren Download PDF

Info

Publication number
EP0696787A1
EP0696787A1 EP95112411A EP95112411A EP0696787A1 EP 0696787 A1 EP0696787 A1 EP 0696787A1 EP 95112411 A EP95112411 A EP 95112411A EP 95112411 A EP95112411 A EP 95112411A EP 0696787 A1 EP0696787 A1 EP 0696787A1
Authority
EP
European Patent Office
Prior art keywords
air
output signal
sensor
pressure
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95112411A
Other languages
English (en)
French (fr)
Other versions
EP0696787B1 (de
Inventor
Ernst-Werner Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wagner Alarm- und Sicherungssysteme GmbH
Original Assignee
Wagner Alarm- und Sicherungssysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wagner Alarm- und Sicherungssysteme GmbH filed Critical Wagner Alarm- und Sicherungssysteme GmbH
Publication of EP0696787A1 publication Critical patent/EP0696787A1/de
Application granted granted Critical
Publication of EP0696787B1 publication Critical patent/EP0696787B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/183Single detectors using dual technologies
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means

Definitions

  • the present invention relates to a method for detecting fires and gases in rooms or in electrical or electronic devices, in which a representative volume fraction of the room air or the cooling air flow of the device is tapped and fed to a measuring chamber with at least one detector for detecting a fire parameter, and in which the mass flow of the supplied air is monitored for changes.
  • the present invention further relates to a fire detection device for carrying out the above method, with a detector for detecting a fire parameter, to which a representative volume fraction of room or device air is supplied, and with an air flow sensor, with which the mass flow of the supplied air is monitored for changes.
  • Fire or gas detection devices are also known, for example, under the technical term "facility protection systems". Typical areas of application for fire or gas detection devices are EDP systems and in particular individual components thereof, and similar electronic devices, such as, for example, measuring, control and regulating systems, switching devices and private branch exchanges and the like.
  • the term "fire parameter" is understood to mean physical parameters which are subject to measurable changes in the vicinity of an incipient fire, e.g. the ambient temperature, the proportion of solid or liquid or gas in the ambient air (formation of smoke in the form of particles or aerosols, or steam) or the ambient radiation.
  • a fire or gas detection device to which the present invention relates branches off a representative part of the device cooling air via a pipe or duct system or actively draws in room or device air at certain points, and then guides this representative part of the measuring chamber with the detector to record a fire parameter.
  • the suction pipes are for sucking in the room or device air or ducts with suction openings.
  • thermal air flow sensors are usually used, in which the cooling of a heated sensor element is the measure of the air flow. This cooling depends on how many air molecules flow past the heated sensor element per unit of time. The output signal of the thermal air flow sensor is thus a measure of the mass flow ⁇ .
  • the air flow sensor monitors the mass flow within a bandwidth between an upper threshold and a lower threshold.
  • experience has shown that the output signal of the airflow sensor was also exposed to fluctuations in air pressure fluctuations or temperature fluctuations, so that the output signal of the airflow sensor exceeded or fell below the predetermined threshold values without the presence of a real malfunction and to avoid this effect the bandwidth between the upper one and the lower threshold had to be increased.
  • this has the disadvantage that the sensitivity of the fire detection device could not be sensitive enough to detect changes in the amount of room or device air drawn in.
  • This object is achieved according to the invention in a method with the known method steps mentioned at the outset by compensating for pressure fluctuations acting on the tapped and supplied air, in particular the atmospheric air pressure.
  • a fire detection device for carrying out the method, which, in addition to the known features mentioned at the outset, has a pressure sensor whose output signal represents the pressure acting on the air supplied, and a first compensation device for compensating the output signal of the airflow sensor as a function of the output signal of the pressure sensor.
  • volume flow V ⁇ of the tapped representative partial air quantity or its flow velocity is of interest.
  • equation (III.) By inserting equation (III.) Into equation (I.), there is a dependency on what is measured by the airflow sensor Mass flow ⁇ from the temperature T L and from the pressure p that acts on the air.
  • the advantages of these solutions according to the invention are, in particular, that weather-related changes in air pressure which change the density of the representative air subset can be compensated for.
  • the advantage of the solutions according to the invention is particularly clear in the case of fire detection devices in mobile use, for example in a mountain locomotive or the like. There, the pressure differences are up to 300 hPa when there are large differences in height.
  • the more sensitive monitoring of a possible infarction of the outlet openings allows the monitoring area of a device to be enlarged, thereby achieving greater economic benefits.
  • the compensation is preferably carried out in that the output signal (actual value) of an air flow sensor for measuring the mass flow of the supplied air is corrected by the output signal of a pressure sensor.
  • a temperature sensor is accordingly provided, the output signal of which represents the temperature of the air supplied, and a second compensation device for compensating the output signal of the air flow sensor as a function of the output signal of the temperature sensor.
  • FIG. 2 shows a block diagram of a pressure-compensated air flow sensor in a fire detection device.
  • a fan 11 continuously sucks a representative volume fraction a room air or a cooling air flow of a bone and leads this to a measuring chamber (not shown) with a detector for detecting a fire parameter.
  • the air flow is monitored by a thermal air flow sensor 2 in accordance with the explanations for FIG. 1.
  • a pressure sensor 4 is provided which supplies a signal which is proportional to the absolute air pressure and which is fed to a first compensation device 6.
  • This first compensation device 6 also receives the output signal 9 of the air flow sensor.
  • the output signal 9 of the air flow sensor 2 is corrected. This compensates for the influence of the changes in air density by the air pressure both on the intake power of the fan and on the mass flow ⁇ flowing through the air flow sensor 2.
  • a temperature sensor 10 is used to compensate for the influence of temperature on the air density.
  • the output signal of the temperature sensor 10 is fed to a second compensation device 8, which receives the output signal of the first compensation device 6 as a further input signal.
  • the temperature influence on the suction power of the fan 11 and on the air flow and pressure sensors can thus be corrected.
  • the double-compensated output signal of the second compensation device 8 is first fed to an amplifier 12 and then to a matching device 13 and finally to a comparator 14.
  • the comparator 14 receives the upper threshold value 1 and the lower threshold value 3 as comparison values at two further inputs.
  • the output signal of the balancing device 13 is greater than the upper threshold value 1, there is probably a break in the intake system; If the output signal of the adjustment device 13 is less than the lower threshold value 3, there is probably a blockage in the intake system or a fan failure.
  • the area 21 of the block diagram according to FIG. 2 represents a possible further processing of the double-compensated air flow sensor signal 9.
  • Reference numeral 15 denotes the signal for a break in the intake system, and reference numeral 16 the signal for a possible blockage or fan failure.
  • These signals are fed via an OR gate 17 and a time delay element 18 to a fault display 19 and a switching relay 20 for further measures.
  • An airflow fault is indicated by the fault LED of the fault indicator 19 flashing. After a delay time that can be set via the time delay element 18 has elapsed, the display changes to a steady light and the message is forwarded via the fault relay 20 to a fire alarm control panel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Fire Alarms (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Es wird ein Verfahren zum Erkennen von Bränden oder Gasen in Räumen oder in elektrischen oder elektronischen Geräten angegeben, bei dem ein repräsentativer Volumenteil der Raumluft bzw. des Kühlluftstroms des Gerätes abgegriffen und einer Meßkammer mit wenigstens einem Detektor zur Erfassung einer Brandkenngröße zugeführt wird, und bei dem der Massenstrom der zugeführten Luft auf Änderungen überwacht wird. Mit dem Ziel, die Empfindlichkeit des Luftstromsensors, und damit die Verläßlichkeit der gesamten Branderkennungsvorrichtung erheblich zu steigern, ist erfindungsgemäß vorgesehen, daß auf die abgegriffene und zugeführte Luft einwirkende Druckschwankungen, insbesondere des atmosphärischen Luftdrucks kompensiert werden. Zur Durchführung des Verfahrens wird eine Brand- oder Gaserkennungsvorrichtung angegeben, mit einem Detektor zum Erkennen einer Brandkenngröße, dem ein repräsentativer Volumenanteil einer Raum- oder Geräteluft zugeführt wird, mit einem Luftstromsensor, mit dem der Massenstrom der zugeführten Luft auf Änderungen überwacht wird, mit einem Drucksensor, dessen Ausgangssignal den auf die zugeführte Luft einwirkenden Druck repräsentiert, und mit einer ersten Kompensationseinrichtung zum Kompensieren des Ausgangssignals des Luftstromsensors in Abhängigkeit des Ausgangssignals des Drucksensors. <IMAGE>

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Erkennen von Bränden und Gasen in Räumen oder in elektrischen oder elektronischen Geräten, bei dem ein repräsentativer Volumenanteil der Raumluft bzw. des Kühlluftstroms des Gerätes abgegriffen und einer Meßkammer mit wenigstens einem Detektor zur Erfasung einer Brandkenngröße zugeführt wird, und bei dem der Massenstrom der zugeführten Luft auf Änderungen überwacht wird. Die vorliegende Erfindung betrifft ferner eine Branderkennungsvorrichtung zur Durchführung des vorstehenden Verfahrens, mit einem Detektor zum Erkennen einer Brandkenngröße, dem ein repräsentativer Volumenanteil einer Raum- oder Geräteluft zugeführt wird, und mit einem Luftstromsensor, mit dem der Massenstrom der zugeführten Luft auf Änderungen überwacht wird.
  • Brand- oder Gaserkennungsvorrichtungen sind beispielsweise auch unter dem Fachbegriff 'Einrichtungsschutzanlagen' bekannt. Typische Anwendungsbereiche für Brand- oder Gaserkennungsvorrichtungen sind EDV-Anlagen und insbesondere einzelne Komponenten davon, sowie ähnliche elektronische Einrichtungen, wie beispielsweise Meß-, Steuer- und Regelanlagen, Vermittlungseinrichtungen und Nebenstellenanlagen und dergleichen. Unter dem Begriff "Brandkenngröße" werden physikalische Größen verstanden, die in der Umgebung eines Entstehungsbrandes meßbaren Veränderungen unterliegen, z.B. die Umgebungstemperatur, der Feststoff- oder Flüssigkeits- oder Gasanteil in der Umgebungsluft (Bildung von Rauch in Form von Partikeln oder Aerosolen, oder Dampf) oder die Umgebungsstrahlung.
  • Eine Brand- oder Gaserkennungsvorrichtung, auf welche sich die vorliegende Erfindung bezieht, zweigt über ein Rohrleitungs- oder Kanalsystem eine repräsentative Teilmenge der Gerätekühlluft ab oder saugt an bestimmten Stellen Raum- oder Geräteluft aktiv an, und führt dann diese repräsentative Teilmenge der Meßkammer mit dem Detektor zur Erfasung einer Brandkenngröße zu. Zum Ansaugen der Raum- oder Geräteluft sind die Ansaugrohre bzw. -kanäle mit Ansaugöffnungen versehen. Eine wichtige Voraussetzung für die Erkennung eines Entstehungsbrandes im frühesten Stadium besteht darin, daß die Branderkennungsvorrichtung ununterbrochen eine ausreichende repräsentative Luftmenge ansaugen und dem Detektor in der Meßkammer zuführen kann. Es ist also wichtig, daß bei gleichbleibender Saugleistung eines Lüfters und bei einem gleichbleibendem Ansaugsystem die Strömungsgeschwindigkeit bzw. der Volumenstrom der angesaugten Raum- oder Geräteluft gleich bleibt.
  • Zur Überwachung der Strömungsgeschwindigkeit bzw. des Volumenstroms ist es aus dem allgemeinen Stand der Technik bekannt, einen Luftstromsensor zur Messung des Massenstroms ṁ der zugeführten Luftteilmenge zu überwachen. Hierzu werden üblicherweise thermische Luftstromsensoren verwendet, bei denen die Abkühlung eines beheizten Sensorelements das Maß für den Luftstrom ist. Diese Abkühlung hängt davon ab, wieviele Luftmoleküle pro Zeiteinheit an dem beheizten Sensorelement vorbeiströmen. Damit ist das Ausgangssignal des thermischen Luftstromsensors ein Maß für den Massenstrom ṁ.
  • Mittels des Luftstromsensors wird der Massenstrom innerhalb einer Bandbreite zwischen einem oberen Schwellwert und einem unteren Schwellwert überwacht. Hierbei haben allerdings Erfahrungen gezeigt, daß das Ausgangssignal des Luftstromsensors bei Luftdruckschwankungen oder Temperaturschwankungen ebenfalls Schwankungen ausgesetzt war, so daß das Ausgangssignal des Luftstromsensors die vorgegebenen Schwellwerte ohne Vorliegen eines wirklichen Störfalles über- bzw. unterschritten hat und zur Vermeidung dieses Effekts die Bandbreite zwischen dem oberen und dem unteren Schwellwert vergrößert werden mußte. Das bringt allerdings den Nachteil mit sich, daß die Empfindlichkeit der Branderkennungsvorrichtung bei der Erkennung von Änderungen der Menge der angesaugten Raum- oder Geräteluft nicht sensibel genug reagieren konnten.
  • An diesem Problem setzt die vorliegende Erfindung an, als deren Aufgabe es angesehen wurde, die Empfindlichkeit des Luftstromsensors, und damit die Verläßlichkeit der gesamten Branderkennungsvorrichtung, sowie den mit ihr abdeckbaren Überwachungsbereich weiter zu steigern.
  • Diese Aufgabe wird bei einem Verfahren mit den eingangs genannten bekannten Verfahrensschritten erfindungsgemäß dadurch gelöst, daß auf die abgegriffene und zugeführte Luft einwirkende Druckschwankungen, insbesondere des atmosphärischen Luftdrucks, kompensiert werden.
  • Die Aufgabe wird ferner durch eine Branderkennungsvorrichtung zur Durchführung des Verfahrens gelöst, die zusätzlich zu den eingangs genannten bekannten Merkmalen einen Drucksensor aufweist, dessen Ausgangssignal den auf die zugeführte Luft einwirkenden Druck repräsentiert, und eine erste Kompensationseinrichtung zum Kompensieren des Ausgangssignals des Luftstromsensors in Abhängigkeit des Ausgangssignals des Drucksensors.
  • Für die Luftstromüberwachung ist nämlich der Volumenstrom V̇ der abgegriffenen repräsentativen Luftteilmenge bzw. deren Strömungsgeschwindigkeit von Interesse. Massenstrom ṁ und Volumenstrom V sind abhängig von der Dichte ρ = m ¯ / V ¯
    Figure imgb0001
    der Luft-Teilmenge, woraus folgt: m ¯ = ρ · V ¯ .
    Figure imgb0002
  • Über die thermische Zustandsgleichung p · V = m ¯ · R L · T L
    Figure imgb0003
    folgt
    Figure imgb0004

    worin p den Luftdruck, TL die Temperatur sowie RL die Gaskonstante für die Luft repräsentieren.
  • Durch Einsetzen der Gleichung (III.) in die Gleichung (I.) ergibt sich eine Abhängigkeit des von dem Luftstromsensor gemessenen Massenstroms ṁ von der Temperatur TL und von dem Druck p, der auf die Luft wirkt.
  • Die Vorteile dieser erfindungsgemäßen Lösungen liegen insbesondere darin, daß wetterbedingte Luftdruckänderungen, welche die Dichte der repräsentativen Luft-Teilmenge verändern, kompensiert werden können. Besonders deutlich wird der Vorteil der erfindungsgemäßen Lösungen bei Branderkennungsvorrichtungen im mobilen Einsatz, beispielsweise in einer gebirgegängigen Lokomotive oder dergleichen. Dort betragen die Druckunterschiede bei großen Höhenunterschieden bis zu 300 hPa. Darüber hinaus läßt sich durch die sensiblere Überwachung eines möglichen Infarktes der Ausgangöffnungen der Überwachungsbereich eines Gerätes vergrößern, wodurch ein größerer wirtschaftlicher Nutzen erzielt wird.
  • Vorteilhafte Weiterbildungen des erfindungsgemäßen Verfahrens sind in den Unteransprüchen 2 und 3 angegeben, und zur Branderkennungsvorrichtung in dem Unteranspruch 5.
  • Die Kompensation erfolgt vorzugsweise dadurch, daß das Ausgangssignal (Ist-Wert) eines Luftstromsensors zur Messung des Massenstroms der zugeführten Luft durch das Ausgangssingal eines Drucksensors korrigiert wird.
  • Da auch die Temperatur der abgegriffenen und zugeführten Luft Auswirkungen auf das Ausgangssignal des Luftstromsensors hat, ist in vorteilhafter Weise vorgesehen, daß auch diese Temperaturschwankungen kompensiert werden.
  • In Weiterbildung der erfindungsgemäßen Branderkennungsvorrichtung ist demgemäß ein Temperatursensor vorgesehen, dessen Ausgangssignal die Temperatur der zugeführten Luft repräsentiert, und eine zweite Kompensationseinrichtung zum Kompensieren des Ausgangssignals des Luftstromsensors in Abhängigkeit des Ausgangssignals des Temperatursensors.
  • Im folgenden wird ein bevorzugtes Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert.
  • Es zeigen:
  • Figur 1
    ein Diagramm des Ausgangssignals eines Luftstromsensors über der Zeit; und
    Figur 2
    ein Blockschaltbild eines druck- und temperaturkompensierten Luftstromsensors
    Figur 1 zeigt ein Diagramm des Ausgangssignals 9 eines aus dem Stand der Technik bekannten Luftstromsensors über der Zeit t. Zur Überwachung von Störungen ist ein oberer Schwellwert 1 und ein unterer Schwellwert 3 vorgegeben. In einem Bereich 5 unterschreitet das Luftstromsensorsignal 9 den unteren Schwellwert 3, wodurch angezeigt wird, daß der Luftstrom zu gering ist. Das läßt auf eine Verstopfung der Ansaugöffnungen des Ansaugsystems oder auf eine Fehlfunktion des den Unterdruck erzeugenden Lüfters schließen. Im Bereich 7 überschreitet das Luftstromsensorsignal 9 den oberen Schwellwert 1, das heißt der Luftstrom ist zu groß, was auf einen Bruch im Ansaugsystem schließen läßt. Solange sich das Luftstromsensorsignal 9 innerhalb der durch den oberen Schwellwert 1 und den unteren Schwellwert 3 gebildeten Bandbreite bewegt, herrscht Normalbetrieb. Für eine Steigerung der Ansprechgenauigkeit des Luftstromsensors und damit der Verläßlichkeit der gesamten Branderkennungsvorrichtung ist es wünschenswert, diese Bandbreite so eng wie möglich zu halten. Das bedingt allerdings, daß durch andere Ursachen als Rohrbruch oder Verstopfung bedingte Schwankungen des Luftstromsensorsignals 9 vermieden werden. Es wurde eingangs dargelegt, daß der durch den Luftstromsensor gemessene Massenstrom ṁ von der Lufttemperatur TL und dem Luftdruck p abhängen. Zwar gibt es neben thermischen Luftstromsensoren auch andere, die beispielsweise nach einem optischen oder akustischen Prinzip arbeiten, jedoch bleibt dadurch der Einfluß der Luftdichte auf die Ansaugleistung des Lüfters bestehen.
  • Figur 2 zeigt ein Blockschaltbild eines druckkompensierten Luftstromsensors in einer Branderkennungsvorrichtung. Ein Lüfter 11 saugt kontinuierlich einen repräsentativen Volumenanteil einer Raumluft bzw. eines Kühlluftstroms eines Grätes an und führt diesen einer (nicht dargestellten) Meßkammer mit einem Detektor zur Erfassung einer Brandkenngröße zu. Der Luftstrom wird durch einen thermischen Luftstromsensor 2 gemäß den Erläuterungen zu Figur 1 überwacht. Um das Ausgangssignal 9 des Luftstromsensors 2 unabhängig von dem auf die Luft einwirkenden Druck und unabhängig von der Lufttemperatur möglichst konstant zu halten, ist ein Drucksensor 4 vorgesehen, der ein zum absoluten Luftdruck proportionales Signal liefert, das einer ersten Kompensationseinrichtung 6 zugeführt wird. Diese erste Kompensationseinrichtung 6 erhält auch das Ausgangssignal 9 des Luftstromsensors. In der ersten Kompensationseinrichtung 6 wird das Ausgangssignal 9 des Luftstromsensors 2 korrigert. Damit wird der Einfluß der Luftdichte-Änderungen durch den Luftdruck sowohl auf die Ansaugleistung des Lüfters als auch auf den Massenstrom ṁ, der den Luftstromsensor 2 durchströmt, kompensiert.
  • Zusätzlich wird in diesem bevorzugten Ausführungsbeispiel ein Temperatursensor 10 zur Kompensation des Temperatureinflusses auf die Luftdichte eingesetzt. Das Ausgangssignal des Temperatursensors 10 wird einer zweiten Kompensationseinrichtung 8 zugeführt, die als weiteres Eingangssignal das Ausgangssignal der ersten Kompensationseinrichtung 6 erhält. Damit kann der Temperatureinfluß auf die Ansaugleistung des Lüfters 11 und auf die Luftstrom- und Drucksensoren korrigiert werden. Das doppelt kompensierte Ausgangssignal der zweiten Kompensationseinrichtung 8 wird zunächst einem Verstärker 12 und danach einer Abgleicheinrichtung 13 und schließlich einem Komparator 14 zugeführt. Der Komparator 14 erhält an zwei weiteren Eingängen den oberen Schwellwert 1 und den unteren Schwellwert 3 als Vergleichswerte. Ist das Ausgangssignal der Abgleicheinrichtung 13 größer als der obere Schwellwert 1, liegt vermutlich ein Bruch des Ansaugsystems vor; ist das Ausgangssignal der Abgleicheinrichtung 13 kleiner als der untere Schwellwert 3, liegt vermutlich eine Verstopfung des Ansaugsystems oder ein Lüfterausfall vor.
  • Der Bereich 21 des Blockschaltbilds gemäß Figur 2 stellt eine mögliche Weiterverarbeitung des doppelt kompensierten Luftstromsensorsignals 9 dar. Mit der Bezugsziffer 15 ist das Signal für einen Bruch im Ansaugsystem bezeichnet, und mit der Bezugsziffer 16 das Signal für eine mögliche Verstopfung oder einen Lüfterausfall. Diese Signale werden über ein ODER-Glied 17 und über ein Zeitverzögerungsglied 18 einer Störungsanzeige 19 und einem Schaltrelais 20 für weitere Maßnahmen zugeführt. Eine Luftstromstörung wird durch Blinken der Störungs-Leuchtdiode der Störungsanzeige 19 angezeigt. Nach Ablauf einer über das Zeitverzögerungsglied 18 einstellbaren Verzögerungszeit geht die Anzeige in ein Dauerlicht über, und die Meldung wird über das Störungsrelais 20 an eine Brandmeldezentrale weitergeleitet.

Claims (5)

  1. Verfahren zum Erkennen von Bränden und Gasen in Räumen oder in elektrischen oder elektronischen Geräten, bei dem ein repräsentativer Volumenanteil der Raumluft bzw. des Kühlluftstroms des Gerätes abgegriffen und einer Meßkammer mit wenigstens einem Detektor zur Erfassung einer Brandkenngröße zugeführt wird, und bei dem der Massenstrom der zugeführten Luft auf Änderungen überwacht wird,
    dadurch gekennzeichnet,
    daß auf die abgegriffene und zugeführte Luft einwirkende Druckschwankungen, insbesondere des atmosphärischen Luftdrucks, kompensiert werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß das Ausgangssignal (Ist-Wert) eines Luftstromsensors (2) zur Messung des Massenstroms der zugeführten Luft durch das Ausgangssignal eines Drucksensor (4) korrigiert wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    daß auf die abgegriffene und zugeführte Luft einwirkende Temperaturschwankungen kompensiert werden.
  4. Branderkennungsvorrichtung zur Durchführung des Verfahrens gemäß einem der Ansprüche 1 bis 3,
    mit einem Detektor zum Erkennen einer Brandkenngröße, dem ein repräsentativer Volumenanteil einer Raum- oder Geräteluft zugeführt wird, und mit einem Luftstromsensor (2), mit dem der Massenstrom der zugeführten Luft auf Änderungen überwacht wird,
    gekennzeichnet durch
    einen Drucksensor (4), dessen Ausgangssignal den auf die zugeführte Luft einwirkenden Druck repräsentiert, und eine erste Kompensationseinrichtung (6) zum Kompensieren des Ausgangssignals des Luftstromsensors (2) in Abhängigkeit des Ausgangssignals des Drucksensors (4).
  5. Vorrichtung nach Anspruch 4,
    gekennzeichnet durch
    einen Temperatursensor (10), dessen Ausgangssignal die Temperatur der zugeführten Luft repräsentiert, und eine zweite Kompensationseinrichtung (8) zum Kompensieren des Ausgangssignals des Luftstromsensors (2) in Abhängigkeit des Ausgangssignals des Temperatursensors (10).
EP95112411A 1994-08-12 1995-08-07 Branderkennungsvorrichtung und -verfahren mit luftdruckkompensierter Luftstromerfassung Expired - Lifetime EP0696787B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4428694A DE4428694C2 (de) 1994-08-12 1994-08-12 Luftdruckkompensierte Branderkennungsvorrichtung und Verfahren
DE4428694 1994-08-12

Publications (2)

Publication Number Publication Date
EP0696787A1 true EP0696787A1 (de) 1996-02-14
EP0696787B1 EP0696787B1 (de) 1999-06-16

Family

ID=6525604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95112411A Expired - Lifetime EP0696787B1 (de) 1994-08-12 1995-08-07 Branderkennungsvorrichtung und -verfahren mit luftdruckkompensierter Luftstromerfassung

Country Status (3)

Country Link
EP (1) EP0696787B1 (de)
AT (1) ATE181438T1 (de)
DE (2) DE4428694C2 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964378A1 (de) * 1998-02-24 1999-12-15 F F SEELEY NOMINEES PTY. Ltd Feuermelder
EP1056062A2 (de) * 1999-05-27 2000-11-29 Securiton AG Brandmelder und Verfahren zur Branddetektion
EP1638062A1 (de) * 2004-09-09 2006-03-22 HEKATRON Technik GmbH Ansaugender Brandmelder und Verfahren zu dessen Betrieb
EP2407946A1 (de) 2010-07-15 2012-01-18 Siemens Schweiz AG Erkennen von Verstopfungen und Unterbrüchen bei einem Ansaug-rauchmelder (ASD)
EP3023953A1 (de) * 2014-11-19 2016-05-25 Honeywell International Inc. System und verfahren zur luftstromüberwachung für umgebungen mit variablem luftstrom
EP4109429A1 (de) 2021-06-21 2022-12-28 Carrier Corporation Betrieb einer aspirativen brandmeldeanlage
USD990330S1 (en) 2021-06-01 2023-06-27 Honeywell International Inc. Detector housing
US11721189B2 (en) 2021-06-01 2023-08-08 Honeywell International Inc. Aspirating smoke detector device
US11761875B2 (en) 2021-06-01 2023-09-19 Honeywell International Inc. Adjusting for air flow temperature changes in an aspirating smoke detector
US11867532B2 (en) 2021-06-01 2024-01-09 Honeywell International Inc. Aspirating smoke detector packaging
US11900776B2 (en) 2021-06-01 2024-02-13 Honeywell International Inc. Lid of an aspirating smoke detector device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006055617A1 (de) * 2006-11-24 2008-05-29 Funa Gmbh Brandschutzsysteme für technische Anlagen
EP3907484B1 (de) 2020-05-08 2023-08-30 Carrier Corporation Detektion von leckagen in einem ansaugbrandmeldesystem
US11605916B2 (en) 2021-06-01 2023-03-14 Honeywell International Inc. Sealed electrical connector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551215A1 (fr) * 1983-08-30 1985-03-01 Securiton Ag Dispositif de surveillance de la vitesse du flux d'un gaz dans un canal
DE3109224C2 (de) 1981-03-05 1986-09-18 Auergesellschaft Gmbh, 1000 Berlin Schaltungsanordnung zum Nachweis von Gasanteilen in einer zu überwachenden Gasatmosphäre
EP0197371A1 (de) 1985-03-20 1986-10-15 Siemens Aktiengesellschaft Brandmeldeanlage mit einem Absaugsystem
US4764758A (en) 1987-07-01 1988-08-16 Environment/One Corporation Incipient fire detector II
EP0418409A1 (de) 1989-09-19 1991-03-27 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Berücksichtigung klimatischer Umgebungseinflüsse auf automatische Brandmelder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109224C2 (de) 1981-03-05 1986-09-18 Auergesellschaft Gmbh, 1000 Berlin Schaltungsanordnung zum Nachweis von Gasanteilen in einer zu überwachenden Gasatmosphäre
FR2551215A1 (fr) * 1983-08-30 1985-03-01 Securiton Ag Dispositif de surveillance de la vitesse du flux d'un gaz dans un canal
DE3331203A1 (de) 1983-08-30 1985-03-14 Securiton AG, Zollikofen, Bern Vorrichtung zur ueberwachung der geschwindigkeit eines gasstromes in einem kanal
EP0197371A1 (de) 1985-03-20 1986-10-15 Siemens Aktiengesellschaft Brandmeldeanlage mit einem Absaugsystem
US4764758A (en) 1987-07-01 1988-08-16 Environment/One Corporation Incipient fire detector II
EP0418409A1 (de) 1989-09-19 1991-03-27 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Berücksichtigung klimatischer Umgebungseinflüsse auf automatische Brandmelder

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0964378A1 (de) * 1998-02-24 1999-12-15 F F SEELEY NOMINEES PTY. Ltd Feuermelder
EP1056062A2 (de) * 1999-05-27 2000-11-29 Securiton AG Brandmelder und Verfahren zur Branddetektion
EP1056062A3 (de) * 1999-05-27 2002-02-20 Securiton AG Brandmelder und Verfahren zur Branddetektion
EP1638062A1 (de) * 2004-09-09 2006-03-22 HEKATRON Technik GmbH Ansaugender Brandmelder und Verfahren zu dessen Betrieb
EP2407946A1 (de) 2010-07-15 2012-01-18 Siemens Schweiz AG Erkennen von Verstopfungen und Unterbrüchen bei einem Ansaug-rauchmelder (ASD)
WO2012007434A1 (de) 2010-07-15 2012-01-19 Siemens Schweiz Ag Erkennen von verstopfungen und unterbrüchen bei einem ansaug-rauchmelder (asd)
AU2011278441B2 (en) * 2010-07-15 2013-09-12 Siemens Schweiz Ag Detection of blockages and interruptions with an aspirating smoke detector (ASD)
US9134716B2 (en) 2010-07-15 2015-09-15 Siemens Schweiz Ag Detection of blockages and interruptions with an aspirating smoke detector (ASD)
EP3023953A1 (de) * 2014-11-19 2016-05-25 Honeywell International Inc. System und verfahren zur luftstromüberwachung für umgebungen mit variablem luftstrom
US9959726B2 (en) 2014-11-19 2018-05-01 Honeywell International Inc. System and method of airflow monitoring for variable airflow environments
USD990330S1 (en) 2021-06-01 2023-06-27 Honeywell International Inc. Detector housing
US11721189B2 (en) 2021-06-01 2023-08-08 Honeywell International Inc. Aspirating smoke detector device
US11761875B2 (en) 2021-06-01 2023-09-19 Honeywell International Inc. Adjusting for air flow temperature changes in an aspirating smoke detector
US11867532B2 (en) 2021-06-01 2024-01-09 Honeywell International Inc. Aspirating smoke detector packaging
US11900776B2 (en) 2021-06-01 2024-02-13 Honeywell International Inc. Lid of an aspirating smoke detector device
EP4109429A1 (de) 2021-06-21 2022-12-28 Carrier Corporation Betrieb einer aspirativen brandmeldeanlage

Also Published As

Publication number Publication date
DE4428694C2 (de) 1996-06-20
ATE181438T1 (de) 1999-07-15
DE4428694A1 (de) 1996-02-22
EP0696787B1 (de) 1999-06-16
DE59506207D1 (de) 1999-07-22

Similar Documents

Publication Publication Date Title
EP0696787A1 (de) Luftdruckkompensierte Branderkennungsvorrichtung und Verfahren
DE102009011007B4 (de) Verfahren und Vorrichtung zur Regelung eines Klimasystems für Datenverarbeitungsanlagen
EP2296969B1 (de) Luftfahrzeugleitungsüberwachungssystem und -verfahren
DE112007000765B4 (de) Aerosolpartikelsenosr mit Axiallüfter
DE10164293A1 (de) Verfahren und Vorrichtung zum Messen des Sauerstoffgehaltes
DE202005015397U1 (de) Vorrichtung zur Bestimmung der Oberflächenfeuchte eines Messobjekts
WO2012007434A1 (de) Erkennen von verstopfungen und unterbrüchen bei einem ansaug-rauchmelder (asd)
EP1389331A1 (de) Selbstansaugende brandmeldeeinrichtung
DE102005021909A1 (de) Schnüffellecksucher mit Quarzfenstersensor
EP1638062B1 (de) Ansaugender Brandmelder und Verfahren zu dessen Betrieb
DE3818784C2 (de) Verfahren zur Kompensation der Feuchtigkeitsabhängigkeit bei einer Photoionisations-Gasanalyse und Detektor zur Durchführung des Verfahrens
DE3109224A1 (de) Elektronische messanordnung fuer einen in einem messgertaet untergebrachten sensor
DE3433459A1 (de) Einrichtung/detektionsgeraet zur frueherkennung von brand und ueberhitzung, an/aufgebaut auf gehaeusen/schraenken, die eingebaute elektrische/elektronische und sonstige anlagen umschliessen
EP0880766B1 (de) Verfahren zur luftstromüberwachung in einer branderkennungsvorrichtung sowie branderkennungsvorrichtung zur durchführung des verfahrens
EP0774742B1 (de) Branddetektor
EP1634014B1 (de) Verfahren zur überwachung einer öl-und luftschmiereinrchtung mit hilfe eines schlierensensors
DE19924400C1 (de) Brandmelder und Verfahren zur Branddetektion
DE3123279A1 (de) Verfahren zur frueherkennung eines brandes sowie brandmelder
EP0890834A2 (de) Verfahren und Gerätesystem zur kontinuierlichen Ermittlung der Staubkonzentration in strömenden Gasen
EP0880765B1 (de) Verfahren und vorrichtung zum detektieren von entstehungsbränden
EP0197371A1 (de) Brandmeldeanlage mit einem Absaugsystem
DE19960437A1 (de) Vorrichtung und Verfahren zur Messung der Strömungsgeschwindigkeit eines Gases
DE4113695A1 (de) Kontinuierlich betriebener gasanalysator
CH647879A5 (de) Ionisationsdetektor zum feststellen von rauch.
DE10251891A1 (de) Vorrichtung zur Bestimmung von Strömungsgrößen sowie Verfahren zum Betrieb einer solchen Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

17P Request for examination filed

Effective date: 19960209

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980825

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990616

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990616

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19990616

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990616

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990616

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990616

REF Corresponds to:

Ref document number: 181438

Country of ref document: AT

Date of ref document: 19990715

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BRAUN & PARTNER PATENT-, MARKEN-, RECHTSANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59506207

Country of ref document: DE

Date of ref document: 19990722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990831

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990916

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990916

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19990616

BERE Be: lapsed

Owner name: WAGNER ALARM- UND SICHERUNGSSYSTEME G.M.B.H.

Effective date: 19990831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100823

Year of fee payment: 16

Ref country code: AT

Payment date: 20100812

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110824

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: WAGNER GROUP GMBH, DE

Free format text: FORMER OWNER: WAGNER ALARM- UND SICHERUNGSSYSTEME GMBH, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: WAGNER GROUP GMBH, DE

Effective date: 20120216

Ref country code: FR

Ref legal event code: CD

Owner name: WAGNER GROUP GMBH, DE

Effective date: 20120216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59506207

Country of ref document: DE

Effective date: 20120301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 181438

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120906

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902