EP0688025A2 - Ceramic high voltage insulator - Google Patents

Ceramic high voltage insulator Download PDF

Info

Publication number
EP0688025A2
EP0688025A2 EP95108162A EP95108162A EP0688025A2 EP 0688025 A2 EP0688025 A2 EP 0688025A2 EP 95108162 A EP95108162 A EP 95108162A EP 95108162 A EP95108162 A EP 95108162A EP 0688025 A2 EP0688025 A2 EP 0688025A2
Authority
EP
European Patent Office
Prior art keywords
voltage insulator
insulator according
trunk
insulator
thickened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95108162A
Other languages
German (de)
French (fr)
Other versions
EP0688025A3 (en
EP0688025B1 (en
Inventor
Martin Kuhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceramtec GmbH
Original Assignee
Ceramtec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramtec GmbH filed Critical Ceramtec GmbH
Publication of EP0688025A2 publication Critical patent/EP0688025A2/en
Publication of EP0688025A3 publication Critical patent/EP0688025A3/xx
Application granted granted Critical
Publication of EP0688025B1 publication Critical patent/EP0688025B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/14Supporting insulators
    • H01B17/16Fastening of insulators to support, to conductor, or to adjoining insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/38Fittings, e.g. caps; Fastenings therefor
    • H01B17/40Cementless fittings

Definitions

  • High-voltage insulators made of ceramic materials are mainly used in outdoor switchgear and overhead lines. They consist of an elongated insulating body, which is equipped with screens, for the formation of a creepage path that is adapted to the atmospheric conditions. The shields are molded onto the insulator trunk, the thickness of which is determined by the mechanical requirements. At the ends of the insulator or the insulator trunk there are metal caps, via which the force is transmitted from the insulator trunk to further components. High-voltage insulators are usually designed to be rotationally symmetrical if the asymmetry of the caps is avoided, for example, by means of individual webs; the isolator caps concentrically surround the ends of the isolator trunk.
  • the barrel diameter of the insulator decisive, but also the design of the trunk ends, the type of fastening of the metal caps to the trunk and the design and material of the metal caps as well as the type of mechanical stresses, which are principally tensile and compressive forces , Bending forces and torsional forces or combinations of these forces.
  • the constructions of the metal caps therefore depend on the prevailing type of stress.
  • the metal caps are placed on the insulator end to be reinforced and the gap between the insulator trunk and the metal cap is filled with a hardening cement material, such as different types of cement, lead or casting resin.
  • a hardening cement material such as different types of cement, lead or casting resin.
  • the insulator body ends are designed differently.
  • the ends of tensile long stabilizers (hanging insulators) are conical and glazed and are often fixed in the metal cap with a lead casting.
  • At post insulators subjected to bending and / or torsion are usually provided with cylindrical ends.
  • the ends can be rough in various ways, for example corrugated, split or corrugated.
  • Portland cement is mainly used as the cement material.
  • the bending strength of post insulators is strongly dependent on the ratio of putty depth to insulator trunk diameter.
  • Metal caps for hanging and support insulators mostly consist of galvanized cast iron, because these insulators do not require great accuracy in terms of the external dimensions.
  • the metal caps mostly consist of aluminum alloys, which have to be machined very precisely and no longer require additional corrosion protection after machining. In order to achieve the necessary precision of the insulator dimensions during the kiting of the caps, a relaxing effort for the positioning of the caps must be made.
  • the invention is therefore based on the object of providing a high-voltage insulator made of ceramic material which has precise dimensions and also maintains them, can be reinforced easily and quickly and in which no chemical reactions occur between the material components. Furthermore, the mechanical strength of the insulator material should be fully exploited with the insulator ends being as short as possible in the metal caps.
  • a rotationally symmetrical high-voltage insulator made of a ceramic material with shrink caps attached to the ends, which is characterized in that the ends of the iolator in the area of the joining surfaces are designed to be thickened by at least 1.05 times the diameter of the shank and that they are thickened thickened ends after the fire are cylindrical and machined on the front.
  • the metal cap With its cap end facing the insulator body, the metal cap can protrude beyond the thickened insulator end and can have a stop on its end face which is supported on the end face of the Iolator end.
  • a glazed channel and a phase of at least 1.5 mm high, preferably 2-5 mm high, can be provided between the metal cap and the insulator trunk and on the end faces of the insulator ends.
  • the thickened, mechanically processed insulator end and the inner surfaces of the metal caps can have a roughness R a of 0.5-100 ⁇ m, preferably 0.8-30 ⁇ m, particularly preferably 1-10 ⁇ m, and the channel can be filled with a sealant, for example silicone rubber.
  • the metal caps can be provided with flanges which have a groove for receiving a seal.
  • Metal caps can consist of cast aluminum, wrought aluminum alloys, corrosion-resistant steel materials or steel and cast materials with corrosion-protective surface coatings. Porcelain, ceramics containing aluminum oxide, zirconium silicate, cordierite and steatite materials are particularly suitable as ceramic materials.
  • Alumina porcelain was used to produce glazed, rotationally symmetrical test specimens 1 with thickened, mechanically machined ends 3, so-called shoulder bars.
  • the rod diameter d was 75 mm, the diameter D of the ends 3 95 mm.
  • the metal caps 2 consisted of a wrought aluminum alloy.
  • the ends 3 of the rods 1 were ground on the circumference and the end face after the fire and had a roughness Ra of 1.3 - to 2,5 ⁇ m.
  • the roughness R a of the metal caps 2 in the recess 6 was 1.2-1.5 ⁇ m.
  • the diameter of the recess 6 was smaller than the diameter D of the ends 3; their height H was 65 mm and the height h of the ends 3 60 mm, whereby a groove 7 is formed between the cap and the rod.
  • the metal caps were heated to 250 ° C, then placed on the ends of the rods and cooled to 25 ° C, whereby a metal-ceramic connection is formed by shrinking. Depending on the cap dimensions, a radial stress results in the ceramic, which can be calculated.
  • test specimens were subjected to a tensile test, the tensile forces F z acting in the direction of the arrow. Fracture values between 190 and 230 kN resulted, which corresponds to a tensile strength of the ceramic material of 43-52 N / mm2. These test specimens were always broken in the region of the channel 7, ie in the region of the transition from the trunk 8 to the thickened trunk end 3.
  • the test specimens were subjected to a bending strength test, the bending forces F B acting in the direction of the arrow and the relationship between radial stress and bending strength shown in FIG. 3.
  • the strength values between 50 and 100 N / mm2 come from test specimens, the breaking point of which is in the area of the shoulder 5 of the channel 7.
  • the low strength values ( ⁇ 20 N / mm2) are due to broken windows within the metal cap 2.
  • FIG. 3 shows a clear connection between bending strength and radial stress in the area of the connection point, without scattering, as observed in the prior art.
  • Figure 3 also shows that radial stresses that are> 40 N / mm2 are required for the technically interesting bending strengths. Investigations in the temperature range from -25 ° C to + 1 25 ° C, that is, a temperature interval of 150 ° confirmed the reproducibility of the measuring points in Figure 3, whereby a radial tension of 60N / mm2 was not undercut. It could thus be shown that shrink-fit metal caps on the ends of high-voltage insulators according to the features of the invention can also be used outdoors, where temperature differences in extreme climatic regions of up to 100 ° C. can be expected.
  • the trunk 8 is provided with molded shields 4.
  • the end 3 of the insulating body has a larger diameter D than the diameter d of the shank 8.
  • the length of the insulating body is brought to a precise level by grinding the outer peripheral surface of the end 3 and the end face of the end 3.
  • the metal cap 2 preferably consisting of an aluminum alloy or stainless steel, is arranged with radial tension on the ground end 3 of the insulating body.
  • the metal cap 2 can be provided with a circumferential stop 9 which rests on the end face of the end 3 of the insulating body when the insulating body is reinforced. In this way, a precise connection dimension of the isolator is achieved.
  • the assembly of the metal caps 2 is very simple. The heated metal caps are simply put on the ends of the insulator and then cool down in a few seconds to the point that the insulator can be handled immediately. After about 30 minutes, the insulator can already be checked mechanically without the metal caps setting.
  • the roughness of the joining surfaces of the shrink fit is of great importance, since the removal of the cap as a result of mechanical stress not only depends on the radial tension in the shrink fit, but also on the coefficient of friction between the joining surfaces.
  • a roughness R a of 1-10 ⁇ m has been found to be particularly advantageous in the aluminum / porcelain pairing.
  • Also of great importance in the case of hollow insulators is the sealing of components which are fastened to the porcelain hollow insulator. It has been shown that the roughness of the aluminum / porcelain pairing is 1-10 ⁇ m water- and gas-tight, so that seals 10 can also be arranged in a groove 13 in the flange 11 of the metal cap 2 (FIG. 4). However, seals 10 can also be arranged according to FIG. 5 on the end face of the end 3 of the insulating body.
  • the end 3 of the insulating body with a chamfer 12 of at least 1.5 mm in height, which includes an angle of 2-45 degrees, in particular 5-30 degrees, with the insulator axis .
  • the glazed channel 7 forms a predetermined breaking point due to its notch effect under high mechanical stress. Since the location of the predetermined breaking point from Overhang of the cap 2 depends, it is advisable to make the channel 7 as flat as possible and to provide it with a radius on the insulator trunk.
  • high-voltage insulators according to the invention can also be designed as full-body support insulators or as hanging insulators.
  • Other applications of the invention in high precision components, e.g. for switching and actuating rods for electrical high-voltage devices are possible.

Landscapes

  • Insulators (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Electrostatic Separation (AREA)
  • Insulating Bodies (AREA)
  • Cable Accessories (AREA)
  • Discharge Heating (AREA)
  • Organic Insulating Materials (AREA)

Abstract

The invention relates to a high voltage insulator of ceramic material, which includes a longitudinal shank having molded sheds and to whose ends of the shank metal caps are shrink-fitted. The ends of the longitudinal shank are enlarged so that the diameter of the enlarged ends is at least 1.05 times the diameter of the longitudinal shank. The cylindrical surface, and the end face of the enlarged ends of the longitudinal shank are machined.

Description

Hochspannungsisolatoren aus keramischen Werkstoffen finden Verwendung hauptsächlich in Freiluftschaltanlagen und Freileitungen. Sie bestehen aus einem langestreckten Isolierkörper, der mit Schirmen ausgestattet ist, für die Ausbildung eines Kriechweges, der den atmosphärischen Bedingungen angepaßt ist. Die Schirme sind am Isolatorstrunk angeformt, dessen Dicke durch die mechanischen Anforderungen bestimmt ist. An den Enden des Isolierkörpers bzw. des Isolatorstrunkes befinden sich Metallkappen, über die die Kraftübertragung vom Isolatorstrunk zu weiterführenden Bauteilen erfolgt. Hochspannungsisolatoren sind meistens rotationssymmetrisch ausgeführt, wenn von der Asymmetrie der Kappen zum Beispiel durch einzelne Stege abgesehen wird; die Isolatorkappen umgeben konzentrisch die Enden des Isolatorstrunks. Für die Größe der mechanischen Belastbarkeit ist nicht nur der Strunkdurchmesser des Isolators entscheidend, sondern auch die Gestaltung der Strunkenden, die Art der Befestigung der Metallkappen am Strunk und die Gestaltung und der Werkstoff der Metallkappen sowie die Art der mechanischen Beanspruchungen, die prinzipiell Zugkräfte, Druckkräfte, Biegekräfte und Torsionskräfte oder Kombinationen dieser Kräfte sein können. Die Konstruktionen der Metallkappen richten sich daher nach der jeweils vorherrschenden Beanspruchungsart.High-voltage insulators made of ceramic materials are mainly used in outdoor switchgear and overhead lines. They consist of an elongated insulating body, which is equipped with screens, for the formation of a creepage path that is adapted to the atmospheric conditions. The shields are molded onto the insulator trunk, the thickness of which is determined by the mechanical requirements. At the ends of the insulator or the insulator trunk there are metal caps, via which the force is transmitted from the insulator trunk to further components. High-voltage insulators are usually designed to be rotationally symmetrical if the asymmetry of the caps is avoided, for example, by means of individual webs; the isolator caps concentrically surround the ends of the isolator trunk. For the size of the mechanical resilience, not only is the barrel diameter of the insulator decisive, but also the design of the trunk ends, the type of fastening of the metal caps to the trunk and the design and material of the metal caps as well as the type of mechanical stresses, which are principally tensile and compressive forces , Bending forces and torsional forces or combinations of these forces. The constructions of the metal caps therefore depend on the prevailing type of stress.

Bei den bekannten Hochspannungsisolatoren - voll oder hohl ausgeführt - werden die Metallkappen auf das zu armierende Isolatorende gestülpt und der Spalt zwischen Isolatorstrunk und Metallkappe mit einem aushärtenden Kittmaterial gefüllt, wie verschiedene Zementsorten, Blei oder Gießharz. Dabei sind die Isolatorkörperenden unterschiedlich gestaltet. So sind die Enden von zugbeanspruchten Langstabilisatoren (Hängeisolatoren) konisch und glasiert ausgebildet und häufig mit einem Bleiverguß in der Metallkappe befestigt. Bei auf Biegung und/oder Torsion beanspruchten Stützisolatoren werden die Isolierkörper meistens mit zylindrischen Enden versehen. Dabei können die Enden in verschiedener Weise rauh gestaltet sein, z.B. geriffelt, gesplittet oder gewellt. Als Kittwerkstoff wird hauptsächlich Portlandzement verwendet. Die Biegefestigkeit von Stützisolatoren ist stark vom Verhältnis von Kittiefe zu Isolatorstrunkdurchmesser abhängig. Metallkappen für Hänge- und Stützisolatoren bestehen meistens aus verzinktem Gußeisen, weil bei diesen Isolatoren keine großen Genauigkeiten bei den äußeren Abmessungen verlangt werden. Bei hohen Anforderungen an die Genauigkeit der äußeren Abmessungen der Isolatoren bestehen die Metallkappen meistens aus Aluminiumlegierungen, die maschinell genauestens bearbeitet werden müssen und nach der maschinellen Bearbeitung keinen zusätzlichen Korrosionsschutz mehr benötigen. Um die notwendige Präzision der Isolatorenabmessungen während des Kittens der Kappen zu erreichen, muß ein entspannender Aufwand für die Positionierung der Kappen erbracht werden.In the known high-voltage insulators - full or hollow - the metal caps are placed on the insulator end to be reinforced and the gap between the insulator trunk and the metal cap is filled with a hardening cement material, such as different types of cement, lead or casting resin. The insulator body ends are designed differently. The ends of tensile long stabilizers (hanging insulators) are conical and glazed and are often fixed in the metal cap with a lead casting. At post insulators subjected to bending and / or torsion are usually provided with cylindrical ends. The ends can be rough in various ways, for example corrugated, split or corrugated. Portland cement is mainly used as the cement material. The bending strength of post insulators is strongly dependent on the ratio of putty depth to insulator trunk diameter. Metal caps for hanging and support insulators mostly consist of galvanized cast iron, because these insulators do not require great accuracy in terms of the external dimensions. When high demands are placed on the accuracy of the outer dimensions of the insulators, the metal caps mostly consist of aluminum alloys, which have to be machined very precisely and no longer require additional corrosion protection after machining. In order to achieve the necessary precision of the insulator dimensions during the kiting of the caps, a relaxing effort for the positioning of the caps must be made.

Nach DE-A-36 43 651 ist bekannt, die Metallkappen auf die Enden von Keramik-Kugelkopfisolatoren aufzuschrumpfen. Danach werden die Komponenten gemeinsam aufgeheizt, gefügt und gemeinsam abgekühlt, damit das keramische Werkstück keinen Schaden nimmt. Diese Art der Fügetechnik ist für Isolatoren sehr aufwendig, da insbesondere Hohlisolatoren Abmessungen im Meterbereich aufweisen können. Hier will die Erfindung Abhilfe schaffen.According to DE-A-36 43 651 it is known to shrink the metal caps onto the ends of ceramic ball head insulators. The components are then heated, joined and cooled together so that the ceramic workpiece is not damaged. This type of joining technique is very complex for insulators, since hollow insulators in particular can have dimensions in the meter range. The invention seeks to remedy this.

Der Erfindung liegt demnach die Aufgabe zugrunde, einen Hochspannungsisolator aus keramischem Werkstoff zu schaffen, der präzise Abmessungen aufweist und sie auch beibehält, einfach und schnell zu armieren ist und bei dem keine chemischen Reaktionen zwischen den Werkstoffkomponeten auftreten. Ferner soll die mechanische Festigkeit des Isolatorwerkstoffs bei möglichst kleiner Einspannlänge der Isolatorenden in die Metallkappen voll ausgenutzt werden.The invention is therefore based on the object of providing a high-voltage insulator made of ceramic material which has precise dimensions and also maintains them, can be reinforced easily and quickly and in which no chemical reactions occur between the material components. Furthermore, the mechanical strength of the insulator material should be fully exploited with the insulator ends being as short as possible in the metal caps.

Die Aufgabe wird durch einen rotationssymmetrischen Hochspannungsisolator aus einem keramischen Werkstoff mit an den Enden befestigten Schrumpfkappen gelöst, der dadurch gekennzeichnet ist, daß die Enden des Iolators im Bereich der Fügeflächen gegenüber dem Strunkdurchmesser um mindestens das 1,05-fache verdickt ausgeführt sind und daß diese verdickten Enden nach dem Brand zylindrisch und stirnseitig mechanisch bearbeitet sind.The object is achieved by a rotationally symmetrical high-voltage insulator made of a ceramic material with shrink caps attached to the ends, which is characterized in that the ends of the iolator in the area of the joining surfaces are designed to be thickened by at least 1.05 times the diameter of the shank and that they are thickened thickened ends after the fire are cylindrical and machined on the front.

Die Metallkappe kann mit ihrem dem Isolatorkörper zugewandten Kappenende das verdickte Isolatorende überragen und an ihrer Stirnseite einen Anschlag aufweisen, der sich auf der Stirnseite des Iolatorendes abstützt. Zwischen Metallkappe und Isolatorstrunk kann eine glasierte Rinne und an den Stirnflächen der Isolatorenden eine Phase von mindestens 1,5 mm Höhe, bevorzugt von 2-5mm Höhe, vorgesehen sein. Das verdickte, mechanisch bearbeitete Isolatorende und die Innenflächen der Metallkappen können eine Rauhigkeit Ra von 0,5-100µm, bevorzugt von 0,8-30µm, besonders bevorzugt von 1-10µm aufweisen und die Rinne mit einem Dichtungsmittel, z.B. Silikongummi ausgefüllt sein. Die Metallkappen können mit Flanschen versehen sein, die eine Nut zur Aufnahme einer Dichtung aufweisen. Metallkappen können aus Gußaluminium, Aluminium-Knetlegierungen, korrosionsbeständigen Stahlwerkstoffen oder Stahl- und Gußwerkstoffen mit korrosionsschützenden Oberflächenbeschichtungen bestehen. Als keramische Werkstoffe kommen vor allem Porzellane, aluminiumoxidhaltige Keramik, Zirkonsilicat-, Cordierit- und Steatitwerkstoffe in Betracht.With its cap end facing the insulator body, the metal cap can protrude beyond the thickened insulator end and can have a stop on its end face which is supported on the end face of the Iolator end. A glazed channel and a phase of at least 1.5 mm high, preferably 2-5 mm high, can be provided between the metal cap and the insulator trunk and on the end faces of the insulator ends. The thickened, mechanically processed insulator end and the inner surfaces of the metal caps can have a roughness R a of 0.5-100 µm, preferably 0.8-30 µm, particularly preferably 1-10 µm, and the channel can be filled with a sealant, for example silicone rubber. The metal caps can be provided with flanges which have a groove for receiving a seal. Metal caps can consist of cast aluminum, wrought aluminum alloys, corrosion-resistant steel materials or steel and cast materials with corrosion-protective surface coatings. Porcelain, ceramics containing aluminum oxide, zirconium silicate, cordierite and steatite materials are particularly suitable as ceramic materials.

Die Vorteile der Erfindung sind im wesentlichen in der einfachen Fügetechnik, der Maßhaltigkeit und der Reproduzierbarkeit der mechanischen Belastungswerte der Hochspannungsisolatoren insbesondere von Hohlisolatoren zu sehen. Für letztere ergibt sich der Vorteil einer einfacheren Abdichtbarkeit.The advantages of the invention are essentially to be seen in the simple joining technology, the dimensional accuracy and the reproducibility of the mechanical load values of the high-voltage insulators, in particular of hollow insulators. For the latter there is the advantage of easier sealing.

Im Folgenden wird die Erfindung anhand der Figuren näher erläutert.
Es zeigen

  • Figur 1 einen Prüfling für Zugversuche, teilweise geschnitten;
  • Figur 2 einen Prüfling für Biegeversuche, teilweise geschnitten;
  • Figur 3 den Zusammenhang zwischen Radialspannung und Biegefestigkeit;
  • Figur 4 einen Abschnitt eines hohlen Stützisolators geschnitten und
  • Figur 5 eine Variante zu Figur 4.
The invention is explained in more detail below with reference to the figures.
Show it
  • 1 shows a test specimen for tensile tests, partially cut;
  • Figure 2 shows a test specimen for bending tests, partially cut;
  • Figure 3 shows the relationship between radial stress and bending strength;
  • Figure 4 cut a section of a hollow post insulator and
  • 5 shows a variant of FIG. 4.

Aus Tonerdeporzellan wurden mit Glasur versehene rotationssymmetrische Prüflinge 1 mit verdickten, mechanisch bearbeiteten Enden 3, sogenannte Schulterstäbe hergestellt. Der Stabdurchmesser d betrug 75mm, der Durchmesser D der Enden 3 95mm. Die Metallkappen 2 bestanden aus einer Aluminium-Knetlegierung. Die Enden 3 der Stäbe 1 waren am Umfang und stirnseitig nach dem Brand geschliffen und wiesen eine Rauhigkeit Ra von 1,3 - 2,5µm auf. Die Rauhigkeit Ra der Metallkappen 2 in der Ausnehmung 6 betrug 1,2-1,5µm. Der Durchmesser der Ausnehmung 6 war kleiner als der Durchmesser D der Enden 3; ihre Höhe H betrug 65 mm und die Höhe h der Enden 3 60 mm, wodurch sich eine Rinne 7 zwischen Kappe und Stab ausbildet. Die Metallkappen wurden auf 250°C erwärmt, danach auf die Enden der Stäbe gestülpt und auf 25°C abgekühlt, wodurch sich eine Verbindung Metall-Keramik durch Schrumpfen bildet. Je nach Kappenabmessungen resultiert eine Radialspannung in der Keramik, die berechnet werden kann.Alumina porcelain was used to produce glazed, rotationally symmetrical test specimens 1 with thickened, mechanically machined ends 3, so-called shoulder bars. The rod diameter d was 75 mm, the diameter D of the ends 3 95 mm. The metal caps 2 consisted of a wrought aluminum alloy. The ends 3 of the rods 1 were ground on the circumference and the end face after the fire and had a roughness Ra of 1.3 - to 2,5μm. The roughness R a of the metal caps 2 in the recess 6 was 1.2-1.5 μm. The diameter of the recess 6 was smaller than the diameter D of the ends 3; their height H was 65 mm and the height h of the ends 3 60 mm, whereby a groove 7 is formed between the cap and the rod. The metal caps were heated to 250 ° C, then placed on the ends of the rods and cooled to 25 ° C, whereby a metal-ceramic connection is formed by shrinking. Depending on the cap dimensions, a radial stress results in the ceramic, which can be calculated.

Gemäß Figur 1 wurden die Prüflinge einer Zerreißprüfung unterworfen, wobei die Zugkräfte Fz in Pfeilrichtung angreifen. Es ergaben sich Bruchwerte zwischen 190 und 230 kN, was einer Zugfestigkeit des Keramikwerkstoffes von 43-52 N/mm² entspricht. Der Bruch dieser Prüflinge erfolgte immer im Bereich der Rinne 7, d.h. im Bereich des Übergangs vom Strunk 8 zum verdickten Strunkende 3.According to FIG. 1, the test specimens were subjected to a tensile test, the tensile forces F z acting in the direction of the arrow. Fracture values between 190 and 230 kN resulted, which corresponds to a tensile strength of the ceramic material of 43-52 N / mm². These test specimens were always broken in the region of the channel 7, ie in the region of the transition from the trunk 8 to the thickened trunk end 3.

Gemäß Figur 2 wurden die Prüflinge einer Biegefestigkeitsprüfung unterzogen, wobei die Biegekräfte FB in Pfeilrichtung angreifen und der sich in Figur 3 dargestellte Zusammenhang zwischen Radialspannung und Biegefestigkeit ergibt. Die Festigkeitswerte zwischen 50 und 100 N/mm² stammen von Prüflingen, deren Bruchstelle im Bereich der Schulter 5 der Rinne 7 ist. Die niedrigen Festigkeitswerte (<20 N/mm²) sind auf Scheibenbrüche innerhalb der Metallkappe 2 zurückzuführen.According to FIG. 2, the test specimens were subjected to a bending strength test, the bending forces F B acting in the direction of the arrow and the relationship between radial stress and bending strength shown in FIG. 3. The strength values between 50 and 100 N / mm² come from test specimens, the breaking point of which is in the area of the shoulder 5 of the channel 7. The low strength values (<20 N / mm²) are due to broken windows within the metal cap 2.

Figur 3 zeigt einen eindeutigen Zusammenhang zwischen Biegefestigkeit und Radialspannung im Bereich der Verbindungstelle, ohne daß Streuungen auftraten, wie nach dem Stand der Technik beobachtet. Figur 3 zeigt ferner, daß für die technisch interessanten Biegefestigkeiten Radialspannungen benötigt werden, die >40 N/mm² sind. Untersuchungen im Temperaturbereich von -25°C bis + 1 25°C , also einem Temperaturintervall von 150° bestätigten die Reproduzierbarkeit der Meßpunkte in Figur 3, wobei eine Radialspannung von 60N/mm² nicht unterschritten wurde. Damit konnte gezeigt werden, daß aufgeschrumpfte Metallkappen auf die Enden von Hochspannungsisolatoren gemäß den Merkmalen der Erfindung auch im Freien eingesetzt werden können, wo Temperaturdifferenzen in extremen Klimagebieten von bis zu 100°C zu erwarten sind.FIG. 3 shows a clear connection between bending strength and radial stress in the area of the connection point, without scattering, as observed in the prior art. Figure 3 also shows that radial stresses that are> 40 N / mm² are required for the technically interesting bending strengths. Investigations in the temperature range from -25 ° C to + 1 25 ° C, that is, a temperature interval of 150 ° confirmed the reproducibility of the measuring points in Figure 3, whereby a radial tension of 60N / mm² was not undercut. It could thus be shown that shrink-fit metal caps on the ends of high-voltage insulators according to the features of the invention can also be used outdoors, where temperature differences in extreme climatic regions of up to 100 ° C. can be expected.

Bei dem in Figur 4 dargestellten Hohlisolator aus Porzellan ist der Strunk 8 mit angeformten Schirmen 4 versehen. Das Ende 3 des Isolierkörpers weist einen größeren Durchmesser D auf als der Durchmesser d des Strunkes 8 auf. Durch Schleifen der äußeren Umfangfläche des Endes 3 und der Stirnseite des Endes 3 wird die Länge des Isolierkörpers auf ein präzises Maß gebracht. Die Metallkappe 2, vorzugsweise aus einer Aluminiumlegierung oder aus Edelstahl bestehend, ist mit radialer Spannung auf dem geschliffenen Ende 3 des Isolierkörpers angeordnet. Die Metallkappe 2 kann mit einem umlaufenden Anschlag 9 versehen werden, der bei der Armierung des Isolierkörpers auf der Stirnfläche des Endes 3 des Isolierkörpers aufliegt. Auf diese Weise wird ein präzises Anschlußmaß des Isolators erreicht. Die Montage der Metallkappen 2 ist sehr einfach. Die aufgeheizten Metallkappen werden einfach auf die Enden des Isolierkörpers aufgesteckt und kühlen dann in einigen Sekunden soweit ab, daß der Isolator sofort gehandhabt werden kann. Nach etwa 30 Minuten kann der Isolator bereits mechanisch geprüft werden, ohne daß ein Setzen der Metallkappen auftritt.In the porcelain hollow insulator shown in FIG. 4, the trunk 8 is provided with molded shields 4. The end 3 of the insulating body has a larger diameter D than the diameter d of the shank 8. The length of the insulating body is brought to a precise level by grinding the outer peripheral surface of the end 3 and the end face of the end 3. The metal cap 2, preferably consisting of an aluminum alloy or stainless steel, is arranged with radial tension on the ground end 3 of the insulating body. The metal cap 2 can be provided with a circumferential stop 9 which rests on the end face of the end 3 of the insulating body when the insulating body is reinforced. In this way, a precise connection dimension of the isolator is achieved. The assembly of the metal caps 2 is very simple. The heated metal caps are simply put on the ends of the insulator and then cool down in a few seconds to the point that the insulator can be handled immediately. After about 30 minutes, the insulator can already be checked mechanically without the metal caps setting.

Von großer Bedeutung sind die Rauhigkeiten der Fügeflächen des Schrumpfsitzes, da das Abziehen der Kappe in Folge mechanischer Beanspruchung nicht nur von der Radialspannung im Schrumpfsitz abhängt, sondern auch vom Reibbeiwert zwischen den Fügeflächen. Als besonders vorteilhaft hat sich eine Rauhigkeit Ra von 1-10µm bei der Paarung Aluminium/Porzellan herausgestellt. Von großer Bedeutung bei Hohlisolatoren ist auch die Abdichtung zu Bauteilen, die an dem Hohlisolator aus Porzellan befestigt werden. Es hat sich gezeigt, daß Rauhigkeiten der Paarung Aluminium/Porzellan von 1-10µm wasser- und gasdicht sind, so daß Dichtungen 10 auch in einer Nut 13 im Flansch 11 der Metallkappe 2 angeordnet werden können (Figur 4). Dichtungen 10 können jedoch auch gemäß Figur 5 auf der Stirnseite des Endes 3 des Isolierkörpers angeordnet werden.The roughness of the joining surfaces of the shrink fit is of great importance, since the removal of the cap as a result of mechanical stress not only depends on the radial tension in the shrink fit, but also on the coefficient of friction between the joining surfaces. A roughness R a of 1-10 μm has been found to be particularly advantageous in the aluminum / porcelain pairing. Also of great importance in the case of hollow insulators is the sealing of components which are fastened to the porcelain hollow insulator. It has been shown that the roughness of the aluminum / porcelain pairing is 1-10 μm water- and gas-tight, so that seals 10 can also be arranged in a groove 13 in the flange 11 of the metal cap 2 (FIG. 4). However, seals 10 can also be arranged according to FIG. 5 on the end face of the end 3 of the insulating body.

Für den Fügevorgang ist es zweckmäßig wie in Figur 5 dargestellt, das Ende 3 des Isolierkörpers mit einer Fase 12 von mindestens 1,5 mm Höhe zu versehen, die einen Winkel von 2-45 Grad, insbesondere von 5-30 Grad mit der Isolatorachse einschließt.For the joining process, it is expedient, as shown in FIG. 5, to provide the end 3 of the insulating body with a chamfer 12 of at least 1.5 mm in height, which includes an angle of 2-45 degrees, in particular 5-30 degrees, with the insulator axis .

Die eingehenden Untersuchungen der Schrumpfverbindung mit dem Isolatorende haben gezeigt, daß unter allen Umständen jegliche Bewegung zwischen dem Isolator und der Metallkappe vermieden werden muß. Um diese Bedingung auch für den Bereich zu erfüllen, wo der Ort der höchsten mechanischen Beanspruchung für den Isolierwerkstoff liegt, nämlich im Übergangsbereich Ende 3 - Strunk 8, ist es zweckmäßig, die Höhe H der Kappe 2 größer zu wählen als die Höhe h des Isolierkörperendes 3. Die sich dabei bildende Rinne 7 kann zur Vermeidung von Wasserlachenbildung mit einem Einkomponentensilikonkautschuk ausgefüllt werden. Silikonkautschuke auf Acetoxy-Essigsäurebasis haften hervorragend auf Aluminium und glasiertem Porzellan.The detailed investigations of the shrink connection with the insulator end have shown that under all circumstances any movement between the insulator and the metal cap must be avoided. In order to meet this condition also for the area where the location of the highest mechanical stress for the insulating material is, namely in the transition area end 3 - shank 8, it is advisable to choose the height H of the cap 2 larger than the height h of the end of the insulating body 3. The groove 7 which forms in this case can be filled with a one-component silicone rubber to avoid water puddles. Silicone rubbers based on acetoxy-acetic acid adhere well to aluminum and glazed porcelain.

Die glasierte Rinne 7 bildet wegen ihrer Kerbwirkung bei hoher mechanischer Beanspruchung eine Sollbruchstelle. Da die Lage der Sollbruchstelle vom Überstand der Kappe 2 abhängt, ist es zweckmäßig die Rinne 7 möglichst flach zu gestalten und mit einem Radius am Isolatorstrunk zu versehen.The glazed channel 7 forms a predetermined breaking point due to its notch effect under high mechanical stress. Since the location of the predetermined breaking point from Overhang of the cap 2 depends, it is advisable to make the channel 7 as flat as possible and to provide it with a radius on the insulator trunk.

Die Erfindung wurde am Beispiel des Hohlisolators näher erläutert, weil sie hier am vorteilhaftesten anwendbar ist. Selbstverständlich können Hochspannungsisolatoren gemäß der Erfindung auch als Vollkörper-Stützisolatoren oder als Hängeisolatoren ausgeführt werden. Andere Anwendungen der Erfindung bei Bauteilen höchster Präzision, z.B. bei Schalt- und Betätigungsstangen für elektrische Hochspannungseinrichtungen, sind möglich.The invention was explained in more detail using the example of the hollow insulator because it can be used most advantageously here. Of course, high-voltage insulators according to the invention can also be designed as full-body support insulators or as hanging insulators. Other applications of the invention in high precision components, e.g. for switching and actuating rods for electrical high-voltage devices are possible.

Claims (9)

Rotationssymmetrischer Hochspannungsisolator aus keramischem Werkstoff, bestehend aus einem Strunk mit angeformten Schirmen, an dessen Enden Metallkappen durch Schrumpfsitz befestigt sind, dadurch gekennzeichnet, daß die Enden 3 des Isolierkörpers im Bereich der Fügeflächen gegenüber dem Strunkdurchmesser (d) um mindestens das 1,05-fache verdickt ausgeführt sind und daß die verdickten Enden (3) zylindrisch und stirnseitig mechanisch bearbeitet sind.Rotationally symmetrical high-voltage insulator made of ceramic material, consisting of a trunk with molded shields, at the ends of which metal caps are fastened by a shrink fit, characterized in that the ends 3 of the insulating body in the area of the joining surfaces are at least 1.05 times larger than the trunk diameter (d) are thickened and that the thickened ends (3) are cylindrical and machined on the end face. Hochspannungsisolator nach Anspruch 1, dadurch gekennzeichnet, daß die Metallkappe (2) mit ihrem dem Isolierkörper zugewandten Kappenende das verdickte Isolierkörperende (3) überragt.High-voltage insulator according to claim 1, characterized in that the metal cap (2) with its cap end facing the insulating body projects beyond the thickened insulating body end (3). Hochspannungsisolator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß an den Kappen stirnseitig ein Anschlag (9) vorgesehen ist, der sich auf der Stirnseite des Endes (3) abstützt.High-voltage insulator according to Claim 1 or 2, characterized in that a stop (9) is provided on the end face of the caps and is supported on the end face of the end (3). Hochspannungsisolator nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine glasierte Rinne (7) zwischen Metallkappe (2) und Isolatorstrunk (8) vorgesehen ist.High-voltage insulator according to Claim 1 or 2, characterized in that a glazed channel (7) is provided between the metal cap (2) and the insulator trunk (8). Hochspannungsisolator nach Anspruch 1, 2 oder 4, dadurch gekennzeichnet, daß eine Fase (12) von mindestens 1,5 mm, bevorzugt von 2-5mm Höhe an den Stirnflächen der Enden 3 vorgesehen ist.High-voltage insulator according to Claim 1, 2 or 4, characterized in that a chamfer (12) of at least 1.5 mm, preferably of 2-5 mm in height, is provided on the end faces of the ends 3. Hochspannungsisolator nach den Ansprüchen 1, 2, 4 oder 5, dadurch gekennzeichnet, daß die verdickten Isolatorenden (3) eine Rauhigkeit Ra von 0,5-100µm, bevorzugt von 0,8-30µm, besonders bevorzugt von 1-10µm aufweisen.High-voltage insulator according to Claims 1, 2, 4 or 5, characterized in that the thickened insulator ends (3) have a roughness R a of 0.5-100 µm, preferably 0.8-30 µm, particularly preferably 1-10 µm. Hochspannungsisolator nach den Ansprüchen 1, 2, 4 ,5 oder 6, dadurch gekennzeichnet, daß die Rinne (7) zwischen Kappe (2) und Isolatorstrunk (8) mit einem Dichtungsmittel ausgefüllt ist.High-voltage insulator according to Claims 1, 2, 4, 5 or 6, characterized in that the channel (7) between the cap (2) and the insulator trunk (8) is filled with a sealing agent. Hochspannungsisolator nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Metallkappe (2) mit einem Flansch (11) versehen ist, der eine Nut (13) zur Aufnahme einer Dichtung (10) aufweist.High-voltage insulator according to claims 1 to 7, characterized in that the metal cap (2) is provided with a flange (11) which has a groove (13) for receiving a seal (10). Hochspannungsisolator nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß die Metallkappen (2) aus Gußaluminium, Aluminium/Knetlegierung, korrosionsbeständigen Stahlwerkstoffen oder Stahl- und Gußwerkstoffen mit korrosionsschützenden Oberflächenbeschichtungen bestehen.High-voltage insulator according to Claims 1 to 8, characterized in that the metal caps (2) consist of cast aluminum, aluminum / wrought alloy, corrosion-resistant steel materials or steel and cast materials with corrosion-protective surface coatings.
EP95108162A 1994-06-17 1995-05-29 Ceramic high voltage insulator Expired - Lifetime EP0688025B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4421343A DE4421343A1 (en) 1994-06-17 1994-06-17 High voltage ceramic insulator
DE4421343 1994-06-17

Publications (3)

Publication Number Publication Date
EP0688025A2 true EP0688025A2 (en) 1995-12-20
EP0688025A3 EP0688025A3 (en) 1996-01-10
EP0688025B1 EP0688025B1 (en) 1998-08-05

Family

ID=6520910

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95108162A Expired - Lifetime EP0688025B1 (en) 1994-06-17 1995-05-29 Ceramic high voltage insulator

Country Status (8)

Country Link
US (1) US5977487A (en)
EP (1) EP0688025B1 (en)
JP (1) JPH087684A (en)
AT (1) ATE169422T1 (en)
BR (1) BR9502815A (en)
CA (1) CA2152029A1 (en)
DE (2) DE4421343A1 (en)
ZA (1) ZA954979B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995739A1 (en) * 2007-05-23 2008-11-26 ABB Technology AG HV isolator and cooling element for this HV isolator
CN111599543A (en) * 2020-06-29 2020-08-28 江西省萍乡电瓷电器厂 Insulator with adjustable height

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2765385B1 (en) * 1997-06-26 2003-12-05 Gec Alsthom T & D Sa COMPOSITE INSULATOR HANGER
IT1299049B1 (en) * 1998-04-08 2000-02-07 Abb Research Ltd ISOLATOR ESPECIALLY FOR ELECTRICAL TRANSMISSION AND DISTRIBUTION LINES, HAVING IMPROVED RESISTANCE TO THE
US6229094B1 (en) * 1998-11-16 2001-05-08 Hubbell Incorporated Torque prevailing crimped insulator fitting
AU4278501A (en) * 2000-03-29 2001-10-08 Ngk Insulators, Ltd. Method for manufacturing polymer insulator and its end part machining apparatus
US6367774B1 (en) 2000-04-19 2002-04-09 Flowserve Corporation Element having ceramic insert and high-strength element-to-shaft connection for use in a valve
US6522256B2 (en) * 2000-05-16 2003-02-18 Southern Electric Equipment Hybrid current and voltage sensing system
JP4376174B2 (en) * 2004-12-01 2009-12-02 日本碍子株式会社 Polymer SP insulator
WO2013104983A1 (en) * 2012-01-13 2013-07-18 Trench Limited Method of manufacture of porcelain insulator structures and method and assembly for affixing metal flanges to porcelain insulators
EP2637180A1 (en) * 2012-03-06 2013-09-11 ABB Technology Ltd A post insulator
CN102689745B (en) * 2012-05-14 2015-05-13 平高集团有限公司 Package structure and packaging method of post insulators
CN105914674B (en) * 2016-06-07 2018-04-03 浙江华蕴海洋工程技术服务有限公司 A kind of cable protection pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643651A1 (en) 1986-12-17 1988-06-30 Steuer Mess Regel Armaturen Gm Process for the production of a shrink joint between at least two workpieces comprising materials with different expansion coefficients

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1031453A (en) * 1910-09-27 1912-07-02 Clouth Rhein Gummiwarenfabrik Insulator.
US1769262A (en) * 1926-06-30 1930-07-01 Condit Electrical Mfg Corp Oil-filled bushing
DE696142C (en) * 1936-05-24 1940-09-14 Porzellanfabrik Kahla Insulator, especially solid core insulator, with metal caps fastened through
US2924644A (en) * 1953-04-20 1960-02-09 Cox John Edward Electrical insulator links
DE1130024B (en) * 1957-11-15 1962-05-24 Siemens Ag Attachment of metal fittings to ceramic insulators
GB1009571A (en) * 1961-03-01 1965-11-10 Pilkington Brothers Ltd Improvements in or relating to electrical insulators
GB8312892D0 (en) * 1983-05-11 1983-06-15 Raychem Ltd Electrical insulator
JP2664616B2 (en) * 1993-03-25 1997-10-15 日本碍子株式会社 Airtight structure of non-ceramic insulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3643651A1 (en) 1986-12-17 1988-06-30 Steuer Mess Regel Armaturen Gm Process for the production of a shrink joint between at least two workpieces comprising materials with different expansion coefficients

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1995739A1 (en) * 2007-05-23 2008-11-26 ABB Technology AG HV isolator and cooling element for this HV isolator
CN111599543A (en) * 2020-06-29 2020-08-28 江西省萍乡电瓷电器厂 Insulator with adjustable height

Also Published As

Publication number Publication date
EP0688025A3 (en) 1996-01-10
DE4421343A1 (en) 1995-12-21
EP0688025B1 (en) 1998-08-05
ZA954979B (en) 1996-02-21
JPH087684A (en) 1996-01-12
ATE169422T1 (en) 1998-08-15
BR9502815A (en) 1996-02-06
DE59503054D1 (en) 1998-09-10
US5977487A (en) 1999-11-02
CA2152029A1 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
EP0688025B1 (en) Ceramic high voltage insulator
DE102006003576B4 (en) Surge arrester with cage design
EP0545038B1 (en) Surge arrester
DE3034579A1 (en) HIGH VOLTAGE OUTDOOR PLASTIC INSULATOR AND METHOD FOR THE PRODUCTION THEREOF
EP1883934A1 (en) Surge arrester with a cage embodiment
DE3704410C2 (en)
EP0457081A1 (en) Insulator
EP0660480B1 (en) Supporting insulator
DE2551856A1 (en) STRUCTURE FOR TRANSMISSION OF TRAINING VOLTAGES
DE2448705C2 (en) Termination insulator set for electrical power cables
EP0807310B1 (en) Insulator with cemented joint and process for producing it
DE4335697C2 (en) Process for the production of a high vacuum tight but low stress joint
EP0676842B1 (en) Supporting insulator
DD139962A3 (en) METHOD FOR PRODUCING A PLASTIC INSULATOR
EP0092548B1 (en) Composite insulator
EP1421661B1 (en) Discoid support insulator for a three-phase encapsulated high-voltage installation
EP0064652A2 (en) Anchoring element for fibre-compound materials
DE2624325A1 (en) Through bushing joining ducts with dissimilar dielectrics - are contoured to give constant electric stress on both sides
DE19523074A1 (en) Support insulator
DE2323967A1 (en) CONNECTOR FOR AN ELECTRICAL CONNECTION
DE102017217163B4 (en) Electrical equipment and manufacturing process for electrical equipment
EP0197178B1 (en) Production method for pistons of brittle material
DE3017253C2 (en) High voltage bushing
DE2302640C3 (en) spark plug
DE7434254U (en) Termination insulator set for electrical power cables made of impregnated glass fibers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI PT SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI PT SE

17P Request for examination filed

Effective date: 19960710

17Q First examination report despatched

Effective date: 19960910

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CERAMTEC AG INNOVATIVE CERAMIC ENGINEERING

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19980805

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980805

REF Corresponds to:

Ref document number: 169422

Country of ref document: AT

Date of ref document: 19980815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59503054

Country of ref document: DE

Date of ref document: 19980910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981105

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19980805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020416

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020502

Year of fee payment: 8

Ref country code: AT

Payment date: 20020502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020513

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020527

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020723

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030531

BERE Be: lapsed

Owner name: *CERAMTEC A.G. INNOVATIVE CERAMIC ENGINEERING

Effective date: 20030531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST