EP0686180A1 - Method of producing coke for the iron and steel industry - Google Patents

Method of producing coke for the iron and steel industry

Info

Publication number
EP0686180A1
EP0686180A1 EP94909066A EP94909066A EP0686180A1 EP 0686180 A1 EP0686180 A1 EP 0686180A1 EP 94909066 A EP94909066 A EP 94909066A EP 94909066 A EP94909066 A EP 94909066A EP 0686180 A1 EP0686180 A1 EP 0686180A1
Authority
EP
European Patent Office
Prior art keywords
coke
hydrogenation
coal
vacuum
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94909066A
Other languages
German (de)
French (fr)
Inventor
Joachim F. Meckel
Friedrich RÖSNER
Friedhelm Kerstan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Veba Oel Technologie und Automatisierung GmbH
Original Assignee
Veba Oel Technologie und Automatisierung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veba Oel Technologie und Automatisierung GmbH filed Critical Veba Oel Technologie und Automatisierung GmbH
Publication of EP0686180A1 publication Critical patent/EP0686180A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives

Definitions

  • the invention relates to a method for producing coke for the iron or steel industry, in particular cast iron reok coke.
  • This binding material is particularly indispensable when foundry coke with a high carbon content is to be produced, since then coke breeze is also used as an essential input coal component.
  • the petroleum-based pitch is comparatively expensive.
  • the invention extends, inter alia, the basis of the binders which can be used and, preferably, uses a particularly inexpensive binder which is as little harmful to health as possible.
  • the binder according to the invention leads to the same coke properties as when using so-called petropech, the binder according to the invention being considerably cheaper and containing extremely little carcinogenic ingredients.
  • the method according to the invention can also be used successfully in the production of blast furnace coke.
  • the decisive factor is the additive in conjunction with the other hydrogenation feedstocks, to which the additive is preferably added in 1 to 3% by weight, based on the entire hydrogenation feedstock.
  • This additive consists of porous carbon bodies which, in particular, consist of carbon-based material and whose inner surface area is as few as possible a few hundred, typically 300 2 m / g.
  • this additive not only has a reaction-stabilizing and quality-increasing effect on the hydrogenation products, but also acts as a constituent of the vacuum hydrogenation residue as a scaffold for the coke structure in the coking process according to the invention.
  • Porous carbon bodies can be produced in a wide variety of ways and are generally known; however, their effects on the quality of coke, in particular for the iron / steel industry in connection with the process according to the invention, were in no way foreseeable.
  • the hydrogenation of petroleum and petroleum-derived products, such as heavy oils and vacuum residues is known per se and, inter alia, in the book of hydrogenation technology "Catalytic pressure hydrogenation of coal, tars and mineral oils” by Dr. Walter Krönig, Springer-Verlag, 1950.
  • the hydrogenation conditions vary depending on the feed to be hydrogenated. In any case, it is carried out with the addition of hydrogen at elevated pressure and temperature, typical reaction conditions being 100 to 300 bar system pressure at temperatures between 200 and 500 ° C. wear.
  • This high-pressure hydrogenation is preferably carried out in a so-called bottom phase reactor.
  • the product stream leaving the bottom phase reactor consists of oils, solids and gases and is subsequently described, for. B. in a hot separator, separated into two phases, namely a top product and a bottom product.
  • the bottom product is separated from distillable oils in a subsequent vacuum column (vacuum hydrogenation residue).
  • the use of the hydrogenation residue which is obtained in the hydrogenation by the so-called VCC process is particularly preferred.
  • the latest status of the VCC process was presented at the DGMK main conference in 1990 in Weg / estal under the title "New aspects of the VCC process" by Dr. Klaus Niemann published. There is therefore no need to describe it here.
  • a large-scale VCC plant with 95% conversion processes the starting materials shown in Table 1 and produces the products shown in Table 2.
  • the feedstocks are specified in Table 3 and the products in Table 4.
  • the solidified vacuum hydrogenation residue from the vacuum column to be used according to the invention has the chemical-physical properties and grains shown in Table 5 and was subsequently used in a large-scale test on a coking plant as a binder of the input coal, consisting of a mixture of
  • Coke output could be increased by the invention; as Table 6 makes clear.
  • the binder according to the invention contains surprisingly little polycyclic aromatic hydrocarbons.
  • porous carbon body made of carbon-derived 2 material with an inner surface of about 300 m / g (practically not changed by the hydrogenation, as far as can be seen)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Coke Industry (AREA)

Abstract

Proposed is a method of producing coke for use in the manufacture of iron and steel, in particular foundry coke, by mixing charge coal and about 0.5 to 10 %, relative to the coal in the water-free and ash-free state, of a binder, and then coking the mixture. The aim is to produce coke with a relatively low reactivity, the highest possible unit density, the highest possible carbon content and the largest possible lump size. Used as the binder is a vacuum-hydrogenation residue produced in the vacuum distillation stage of the hydrogenation of short residues or heavy oils derived from crude oil, with the addition of an additive consisting of porous carbon bodies made, in particular, of material derived from coal.

Description

Verfahren zum Herstellen von Koks für die Eisen-/Stahlindustrie Process for the production of coke for the iron / steel industry
Die Erfindung betrifft ein Verfahren zum Herstellen von Koks für die Eisen-/ oder Stahlindustrie, insbesondere von Gieße¬ reikoks .The invention relates to a method for producing coke for the iron or steel industry, in particular cast iron reok coke.
Einsatzkohlen, die bereits von Hause aus ohne Beimischungen geeignet sind, einen Koks mit den gewünschten Eigenschafts¬ werten, wie einer bestimmten Stückigkeit und einem bestimm¬ ten Abriebsverhalten, zu ergeben, sind in dem notwendigen Umfang kaum verfügbar. Um die gewünschten Eigenschaftswerte zu erhalten, ist es bei der Koksherstellung, insbesondere bei der Gießereikoksherstellung bekannt, der Einsatzkohle, welche bereits ein Gemisch aus mehreren Kohlekomponenten und Koksgrus sein kann, etwa 5 % erdölstämmiges Pech, bezogen auf die wasser- und aschefreie Einsatzkohle - beizumischen.Charges which are already suitable without admixtures to give a coke with the desired property values, such as a certain lump size and a certain abrasion behavior, are hardly available to the extent necessary. In order to obtain the desired property values, it is known in coke production, in particular in foundry coke production, to add about 5% petroleum-derived pitch, based on the water-free and ash-free coal, to the feed coal, which can already be a mixture of several coal components and coke breeze .
Dieses Bindematerial ist besonders dann unverzichtbar, wenn Gießereikoks mit hohem Kohlenstoffanteil hergestellt werden soll, da dann Koksgrus als wesentliche Einsatzkohlenkompo¬ nente mitverwendet wird.This binding material is particularly indispensable when foundry coke with a high carbon content is to be produced, since then coke breeze is also used as an essential input coal component.
Das erdölstämmige Pech ist vergleichsweise teuer.The petroleum-based pitch is comparatively expensive.
Aus der US-A-4, 234, 387 ist ein Herstellungsprozess für me¬ tallurgischen Koks bekannt, bei dem ein Kokskohlengemisch mit ungünstigen Verkokungseigenschaften mit einem Bindemit¬ tel vermischt wird, welches zum Beispiel als Vakuumdestilla¬ tionsrückstand aus der Hydrierung von Schwerstölen oder Bi¬ tumen anfällt; bevorzugt wird aber der Vakuumdestillations¬ rückstand aus der Hydrierung von Bitumen aus Teersanden.From US-A-4, 234, 387 a manufacturing process for metallic coke is known, in which a coking coal mixture with unfavorable coking properties is mixed with a binding agent, which is used, for example, as a vacuum distillation residue from the hydrogenation of heavy oils or bi ¬ tumen arises; however, the vacuum distillation residue from the hydrogenation of bitumen from tar sands is preferred.
£RSrtrrßLATT REGE Dieses Bindemittel wird in Mengen von bis zu 20 Prozent, vorzugsweise zwischen 5 und 15 Prozent (bezogen auf das Kokskohlengemisch) eingesetzt. Die so hergestellten Aus¬ gangsmischungen für den Verkokungsprozeß weisen vergleichs¬ weise mäßige Dilatations- und Kontraktioπswerte auf. Je stärker die Kontraktion ist, um so größer ist jedoch die Siπterwirkung der feinteiligen Kokskohlepartikel zu Beginn des Gasaustreibens der Kokskohle, d. h. vor ihrem Erweichen. Die nachfolgende Dilatation als Folge des Blähens beim wei¬ teren Ausgasen der Kokskohle ist für den Aufbau des Koksge¬ rüstes in erheblichem Maße mitverantwortlich. Die nach die¬ sem bekannten Verfahren hergestellten Kokse haben schon des¬ halb einen vergleichsweise geringen Stabilitätsfaktor (stability factor) sowie einen vergleichsweise geringen Här¬ tefaktor (hardeness factor) - das bedeutet geringe Trommel¬ festigkeit sowie relativ hohen Abrieb.£ RSrtrrßLATT REGE This binder is used in amounts of up to 20 percent, preferably between 5 and 15 percent (based on the coking coal mixture). The starting mixtures thus produced for the coking process have comparatively moderate dilatation and contract values. However, the stronger the contraction, the greater the sintering effect of the finely divided coking coal particles at the beginning of the gas expulsion of the coking coal, ie before it softens. The subsequent dilation as a result of the expansion during the further outgassing of the coking coal is to a considerable extent responsible for the construction of the coke framework. The cokes produced by this known method therefore have a comparatively low stability factor and a comparatively low hardening factor - this means low drum strength and relatively high abrasion.
Davon ausgehend löst die Lehre des Patentanspruchs das Pro¬ blem, einen Koks für die Eisen-/Stahlindustrie mit relativ geringer Reaktionsfähigkeit, möglichst großer Stückdichte, möglichst hohem Kohlenstoffanteil und möglichst grober Stückigkeit herzustellen.Proceeding from this, the teaching of the patent claim solves the problem of producing a coke for the iron / steel industry with a relatively low reactivity, as high a piece density as possible, as high a carbon content as possible and as large a piece as possible.
Durch die Erfindung wird unter anderem die Basis der ver¬ wendbaren Bindemittel erweitert und dabei, vorzugweise, ein besonders preisgünstiges und möglichst wenig gesundheits¬ schädliches Bindemittel zum Einsatz gebracht.The invention extends, inter alia, the basis of the binders which can be used and, preferably, uses a particularly inexpensive binder which is as little harmful to health as possible.
Versuche haben ergeben, daß das erfindungsgemäße Bindemittel zu gleichwertigen Kokseigenschaften wie bei der Verwendung von sogenanntem Petropech führt, wobei das erfindungsgemäße Bindemittel erheblich preiswerter ist und äußerst wenig kar¬ zinogene Inhaltsstoffe enthält. - Grundsätzlich ist das er¬ findungsgemäße Verfahren auch bei der Herstellung von Hoch¬ ofenkoks mit Erfolg einsetzbar. Entscheidend kommt es auf das Additiv in Verbindung mit den übrigen Einsatzstoffen der Hydrierung an, denen das Additiv vorzugsweise in 1 bis 3 Gewichts-% bezogen auf den gesamten Einsatzstoff der Hydrierung zugesetzt wird. Dieses Additiv besteht aus porösen Kohlenstoffkörpern , die, insbesondere, aus kohlenstämmigem Material bestehen und deren innere Ober¬ ffllääcchhee rmröglichst einige hundert, typischer Weise 300 2. m /g beträgt .Experiments have shown that the binder according to the invention leads to the same coke properties as when using so-called petropech, the binder according to the invention being considerably cheaper and containing extremely little carcinogenic ingredients. In principle, the method according to the invention can also be used successfully in the production of blast furnace coke. The decisive factor is the additive in conjunction with the other hydrogenation feedstocks, to which the additive is preferably added in 1 to 3% by weight, based on the entire hydrogenation feedstock. This additive consists of porous carbon bodies which, in particular, consist of carbon-based material and whose inner surface area is as few as possible a few hundred, typically 300 2 m / g.
Überraschenderweise wirkt sich dieses Additiv nicht nur re¬ aktionsstabilisierend und qualitätssteigernd auf die Hy¬ drierprodukte aus, sondern wirkt als Bestandteil des Va¬ kuumhydrierrückstandes als Gerüstbildner für das Koksgerϋst im erfindungsgemäßen Verkokungsprozeß.Surprisingly, this additive not only has a reaction-stabilizing and quality-increasing effect on the hydrogenation products, but also acts as a constituent of the vacuum hydrogenation residue as a scaffold for the coke structure in the coking process according to the invention.
Poröse Kohlenstoffkörper sind in unterschiedlichster Weise herstellbar und allgemein bekannt; ihre Auswirkung auf die Qualität von Koks, insbesondere für die eisen-/stahlschaf¬ fende Industrie in Verbindung mit dem erfindungsgemäßen Pro¬ zeß waren hingegen in keiner Weise vorhersehbar.Porous carbon bodies can be produced in a wide variety of ways and are generally known; however, their effects on the quality of coke, in particular for the iron / steel industry in connection with the process according to the invention, were in no way foreseeable.
Die Hydrierung von Erdöl und erdölstämmigen Produkten, wie Schwerstölen und Vakuumrückständen ist an sich bekannt und u. a. in dem als Standardwerk geltenden Buch der Hydrier¬ technologie "Katalytische Druckhydrierung von Kohlen, Teeren und Mineralölen" von Dr. Walter Krönig, Springer-Verlag, 1950, beschrieben. Die Hydrierbedingungen schwanken je nach dem zu hydrierenden Einsatzstoff. In jedem Fall erfolgt sie unter Zugabe von Wasserstoff bei erhöhtem Druck und erhöhter Temperatur, wobei typische Reaktionsbediπgungeπ 100 bis 300 bar Systemdruck bei Temperaturen zwischen 200 und 500° C be- tragen. Bevorzugt erfolgt diese Hochdruckhydrierung in einem sogenannten Sumpfphasenreaktor . Der den Sumpfphasenreaktor verlassende Produktstrom besteht aus Ölen, Feststoff und Ga¬ sen und wird nachfolgend z. B. in einem Heißabscheider, in zwei Phasen getrennt, nämlich ein Kopfprodukt und ein Sumpf¬ produkt. Das Sumpfprodukt wird in einer nachfolgenden Vaku¬ umkolonne von destillierbaren Ölen abgetrennt (Vakuumhy- drierrückstaπd) .The hydrogenation of petroleum and petroleum-derived products, such as heavy oils and vacuum residues is known per se and, inter alia, in the book of hydrogenation technology "Catalytic pressure hydrogenation of coal, tars and mineral oils" by Dr. Walter Krönig, Springer-Verlag, 1950. The hydrogenation conditions vary depending on the feed to be hydrogenated. In any case, it is carried out with the addition of hydrogen at elevated pressure and temperature, typical reaction conditions being 100 to 300 bar system pressure at temperatures between 200 and 500 ° C. wear. This high-pressure hydrogenation is preferably carried out in a so-called bottom phase reactor. The product stream leaving the bottom phase reactor consists of oils, solids and gases and is subsequently described, for. B. in a hot separator, separated into two phases, namely a top product and a bottom product. The bottom product is separated from distillable oils in a subsequent vacuum column (vacuum hydrogenation residue).
Erfindungsgemäß besonders bevorzugt ist die Verwendung des Hydrier-Rückstandes , der bei der Hydrierung nach dem soge¬ nannten VCC-Verfahren (\/EBA-C_ombi-C_racking-Verfahren) an¬ fällt. Der neueste Stand des VCC-Verfahrens wurde anläßlich der DGMK-Haupttagung 1990 in Münster/ estfalen unter dem Ti¬ tel "Neue Aspekte zum VCC-Verfahren" von Dr. Klaus Niemann veröffentlicht. Es braucht daher hier nicht näher beschrie¬ ben zu werden.According to the invention, the use of the hydrogenation residue which is obtained in the hydrogenation by the so-called VCC process (\ / EBA-C_ombi-C_racking process) is particularly preferred. The latest status of the VCC process was presented at the DGMK main conference in 1990 in Münster / estal under the title "New aspects of the VCC process" by Dr. Klaus Niemann published. There is therefore no need to describe it here.
AusführungsbeispielEmbodiment
Eine großtechnische VCC-Anlage mit 95% Konversion verarbei¬ tet die in Tabelle 1 wiedergegebenen Einsatzstoffe und pro¬ duziert die in Tabelle 2 wiedergegebenen Produkte. Die Ein¬ satzstoffe sind in Tabelle 3 und die Produkte in Tabelle 4 näher spezifiziert. Der erfindungsgemäß zu verwendende, ver¬ festigte Vakuumhydrierrückstand aus der Vakuumkolonne weist die in Tabelle 5 wiedergegebenen chemisch-physikalischen Ei¬ genschaften und Körnungen auf und wurde nachfolgend in einem großtechnischen Versuch auf einer Kokerei als Bindemittel der Einsatzkohle, bestehend aus einer Mischung vonA large-scale VCC plant with 95% conversion processes the starting materials shown in Table 1 and produces the products shown in Table 2. The feedstocks are specified in Table 3 and the products in Table 4. The solidified vacuum hydrogenation residue from the vacuum column to be used according to the invention has the chemical-physical properties and grains shown in Table 5 and was subsequently used in a large-scale test on a coking plant as a binder of the input coal, consisting of a mixture of
32,4 % einer niederflüchtigen Kohle mit schlechten Ver¬ kokungseigenschafteπ (non coking coal) ,32.4% of a low-volatile coal with poor coking properties (non-coking coal),
48,6 % einer mittelflüchtigen Kohle mit guten Verko- kungseigeπschaften (prime coking coal) und 14,0 % Koksgrus sowie 5 Gewichts-% des Vakuumhydrier¬ rückstandes ,48.6% of a medium-volatile coal with good coking properties (prime coking coal) and 14.0% coke breeze and 5% by weight of the vacuum hydrogenation residue,
zum Herstellen von Gießereikoks beigemischt. Die Kokskohlen¬ mischung und die nach 33-stündiger Garungszeit erhaltenen Kokseigenschaften sind in Tabelle 6 wiedergegeben. Die ge¬ wonnenen Ergebnisse mit dem erfindungsgemäß verwendeten Va¬ kuumhydrierrückstand als Bindemittel (rechte Spalte der Ta¬ belle 6) wurden mit den normalen Betriebsergebnissen der Ko¬ kerei (Petropech als Bindemittel) nach dem Stand der Technik verglichen (Tabelle 6, linke Spalte) .added to make foundry coke. The coking coal mixture and the coke properties obtained after a 33-hour cooking time are shown in Table 6. The results obtained with the vacuum hydrogenation residue used as a binder according to the invention (right column of Table 6) were compared with the normal operating results of the kokerei (Petropech as a binder) according to the prior art (Table 6, left column) .
Die Verkokung erfolgte in mehreren Öfen einer großtechni¬ schen Koksofenbatterie (Bauart Otto, Kammerbreite 450 mm,The coking took place in several ovens of a large-scale coke oven battery (Otto type, chamber width 450 mm,
3 Kammerhöhe 5,10 m, Kammerlänge 13,1 m, Volumen 27,64 m ) .3 chamber height 5.10 m, chamber length 13.1 m, volume 27.64 m).
Diesem Großversuch gingen viele Kleinversuche mit dem er¬ findungsgemäßen Bindemittel und anderen Mischungsverhältnis¬ sen in der Größenordnung von 3 bis 7 % Bindemittel bezogen auf die wasser- und aschefreie Einsatzkohle voraus. Diese kleintechnische.n Versuche wurden als Optimierungs ersuche im Vergleich zum Einsatz des herkömmlichen Binders durchge¬ führt.This large-scale experiment was preceded by many small-scale experiments with the binder according to the invention and other mixing ratios in the order of 3 to 7% binder based on the water-free and ash-free coal used. These small-scale experiments were carried out as optimization requests in comparison to the use of the conventional binder.
Das Koksausbringen konnte durch die Erfindung gesteigert werden; wie die Tabelle 6 deutlich macht.Coke output could be increased by the invention; as Table 6 makes clear.
Das erfindungemaße Bindemittel enthält überraschend wenig polyzyklische aromatische Kohlenwasserstoffe. Tabelle 1The binder according to the invention contains surprisingly little polycyclic aromatic hydrocarbons. Table 1
Einsatzstofie kε/hFeed material kε / h
Vakuumrückstand 166.666 Additiv 1.667Vacuum residue 166,666 additive 1,667
Frischwasserstoff 7.042 Turbinenkondesat 12.750Fresh hydrogen 7,042 turbine condensate 12,750
Summe 188.125Total 188,125
Tabelle 2Table 2
Produkte k£/hProducts k £ / h
MD-Gas 8.384 ND-Gas 13.045 Off-Gas 18MD gas 8,384 LP gas 13,045 Off gas 18
Naphtha 24.081Naphtha 24,081
Gasöl 86.563Gas oil 86,563
Vakuumgasöl 31.525Vacuum gas oil 31,525
Vakuumhydrierrückstand 9.203 Sauerwasser 15.306Vacuum hydrogenation residue 9.203 sour water 15.306
Summe 188.125 Tabelle 3Total 188,125 Table 3
Spezifikation der EinsatzstoffeSpecification of the input materials
Vakuum-Rückstand: Arabian LightVacuum residue: Arabian Light
TBP Schnittpunkt °C 565 +TBP intersection ° C 565 +
Dichte (15 °C) kg/dm3 1,022Density (15 ° C) kg / dm3 1.022
Kohlenstoff Gew. % 84,38Carbon wt% 84.38
Wasserstoff Gew. % 10,30Hydrogen wt% 10.30
Schwefel Gew. % 4,34Sulfur wt% 4.34
Stickstoff Gew. % 0,38Nitrogen wt% 0.38
Sauerstoff Gew. % 0,6Oxygen wt% 0.6
Asche Gew. Ψc ca. 0,02Ash weight Ψc approx. 0.02
Feststoffe nicht angegebenSolids not specified
Nickel ppm. Gew. 25Nickel ppm. Weight 25
Vanadium ppm. Gew. 114Vanadium ppm. Weight 114
Eisen nicht angegebenIron not specified
Asphaltene Gew. % 10Asphaltene weight% 10
Conradson Carbon Gew. % 20,3Conradson Carbon wt% 20.3
Viskositätviscosity
50 °C cSt 150.50050 ° C cSt 150,500
100 °C cSt 1.589100 ° C cSt 1,589
Additiv: poröse Kohlenstoff körper aus kohlestämmigem 2Material mit einer inneren Oberfläche von etwa 300 m /g (wird durch die Hydrierung , soweit erkennbar, praktisch nicht verändert)Additive: porous carbon body made of carbon-derived 2 material with an inner surface of about 300 m / g (practically not changed by the hydrogenation, as far as can be seen)
FrischwasserstoffFresh hydrogen
Wasserstoff (H2) min. 99,6 Mol. %Hydrogen (H2) min. 99.6 mol%
Stickstoff (N2) max. 0,2 Mol. %Nitrogen (N2) max. 0.2 mol%
Methan (CH4) max. 0,1 Mol. %Methane (CH4) max. 0.1 mol%
Ethan (C2H6) max. 0,1 Mol. % Tabelle 4Ethane (C2H6) max. 0.1 mol% Table 4
Spezifikation der ProdukteSpecification of the products
MD/ND-Gas : interne VerwendungMD / ND gas: internal use
Naphthanaphtha
- TBP-Siedebereich C5+ -180 °C- TBP boiling range C5 + -180 ° C
- Schwefel < 20 ppm- sulfur <20 ppm
- Stickstoff < 20 ppm- nitrogen <20 ppm
- Gap Benzin/Gasöl- Gap gasoline / gas oil
(ASTM D86 95/5%) min. 15 °C(ASTM D86 95/5%) min. 15 ° C
GasölGas oil
- TBP-Siedebereich 180-343 °C- TBP boiling range 180-343 ° C
- Schwefel < 100 ppm- sulfur <100 ppm
- Wassergehalt < 50 ppm- Water content <50 ppm
- Cetanzahl > 38- Cetane number> 38
- Overlap Gasöl/Vakuumgasöl- Overlap gas oil / vacuum gas oil
(ASTM D86) 95/5 % max.30 °C(ASTM D86) 95/5% max. 30 ° C
VakuumgasölVacuum gas oil
- TBP-Siedebereich 343 °C +- TBP boiling range 343 ° C +
- Schwefel < 600 ppm- sulfur <600 ppm
- Stickstoff < 600 ppm- nitrogen <600 ppm
- Anilinpunkt —- aniline point -
- Metalle < 1 üDm- Metals <1 a.m.
verfestigter Hydrierrückstandsolidified hydrogenation residue
(enthält das eingesetzte Additiv)(contains the additive used)
- TBP-Siedebereich 524 °C +- TBP boiling range 524 ° C +
β Analyse β analysis
C 86.0 Gew. %C 86.0% by weight
H 6.0 Gew. %H 6.0% by weight
O 0.5 Gew. %O 0.5% by weight
N 1.0 Gew. %N 1.0% by weight
S 2-5 (2-4) Gew. %S 2-5 (2-4) wt%
Anorgan. Bestandteile 4.0 (2-4) Gew. %Inorgan. Components 4.0 (2-4) wt%
Feststoffe(Tuolol unlöslich) 20-40 Tabelle 5Solids (Tuolol insoluble) 20-40 Table 5
0 Chem.-phsikalische Eigenschaften 0 Chemical-physical properties
Dichte 1.300-1.500 kg/m3Density 1,300-1,500 kg / m3
(bei 15 °C)(at 15 ° C)
Schüttdichte 500-700 kg/m3Bulk density 500-700 kg / m3
Stockpunkt 150 °CPour point 150 ° C
Flammpunkt < 200 °CFlash point <200 ° C
Entzündungstemperatur < 470 °CIgnition temperature <470 ° C
Erweichungspunkt 120-160 °CSoftening point 120-160 ° C
Heizwert 36 MJ/kgCalorific value 36 MJ / kg
Brennwert 37 MJ/kgCalorific value 37 MJ / kg
Flüchtige Bestandteile 40-70 %Volatile components 40-70%
0 Körnungsaπalyse 0 grain analysis
6.3 mm ca . 6 Gew. %6.3 mm approx. 6% by weight
6.3-3.15 mm ca . 40 Gew. %6.3-3.15 mm approx. 40% by weight
3.15-2.00 mm ca . 20 Gew. %3.15-2.00 mm approx. 20% by weight
2.00-1.00 mm ca . 17 Gew. %2.00-1.00 mm approx. 17% by weight
1.00-0.5 mm ca . 5 Gew. %1.00-0.5 mm approx. 5% by weight
0.5 mm ca . 10 Gew. %0.5 mm approx. 10% by weight
LÄTT REGEL 26) RULES 26)

Claims

Patentanspruch Claim
Verfahren zum Herstellen von Koks für die Eisen-/Stahlher- stellung, insbesondere von Gießereikoks, durch Mischen von Einsatzkohle und von etwa 0,5 bis 10 %, bezogen auf die was- ser- und aschefreie Einsatzkohle, eines Bindemittels sowie anschließendes Verkoken, bei dem als Bindemittel ein Vakuum¬ hydrierrückstand verwendet wird, der in der Vakuumdestilla¬ tion der Hydrierung anfällt, wenn erdölstämmige Vakuumrück¬ stände oder erdölstämmige Schwerstöle unter Zugabe eines aus porösen Kohlenstoffkörpern , insbesondere aus kohlenstämmigem Material, bestehenden Additivs hydriert werden. Process for the production of coke for iron / steel production, in particular foundry coke, by mixing charcoal and from about 0.5 to 10%, based on the water- and ash-free charcoal, a binder and subsequent coking which is used as the binder a vacuum hydrogenation residue which is obtained in the vacuum distillation of the hydrogenation when petroleum-derived vacuum residues or petroleum-derived heavy oils are hydrogenated with the addition of an additive consisting of porous carbon bodies, in particular of carbon-derived material.
EP94909066A 1993-02-26 1994-02-25 Method of producing coke for the iron and steel industry Withdrawn EP0686180A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4306057 1993-02-26
DE4306057A DE4306057A1 (en) 1993-02-26 1993-02-26 Method of making foundry coke
PCT/EP1994/000555 WO1994019425A1 (en) 1993-02-26 1994-02-25 Method of producing coke for the iron and steel industry

Publications (1)

Publication Number Publication Date
EP0686180A1 true EP0686180A1 (en) 1995-12-13

Family

ID=6481457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94909066A Withdrawn EP0686180A1 (en) 1993-02-26 1994-02-25 Method of producing coke for the iron and steel industry

Country Status (6)

Country Link
EP (1) EP0686180A1 (en)
JP (1) JPH08509509A (en)
AU (1) AU6206794A (en)
CA (1) CA2157052A1 (en)
DE (2) DE4306057A1 (en)
WO (1) WO1994019425A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE745161C (en) * 1939-01-01 1944-02-28 Ig Farbenindustrie Ag Process for the production of tar and solid coke
DE1696503A1 (en) * 1961-10-06 1970-05-14 Great Lakes Carbon Corp Process for the production of metallurgical coke
CA1114765A (en) * 1978-04-28 1981-12-22 Keith Belinko Production of metallurgical coke from poor coking coals using residue from processed tar sand bitumen
US4999328A (en) * 1988-06-28 1991-03-12 Petro-Canada Inc. Hydrocracking of heavy oils in presence of petroleum coke derived from heavy oil coking operations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9419425A1 *

Also Published As

Publication number Publication date
DE4306057A1 (en) 1994-09-08
CA2157052A1 (en) 1994-09-01
AU6206794A (en) 1994-09-14
JPH08509509A (en) 1996-10-08
WO1994019425A1 (en) 1994-09-01
DE4490891D2 (en) 1997-07-31

Similar Documents

Publication Publication Date Title
US4188279A (en) Shaped carbon articles
DE1935467C3 (en) Process for the production of coke from coal tar pitch by delayed coking
CA1071560A (en) Manufacture of isotropic delayed petroleum coke
DE2602383B2 (en) Process for the production of pure coke and at the same time a raw material for the production of carbon black
DE2600438A1 (en) PROCESS AND PLANT FOR THE PRODUCTION OF FUELS WITH LOW SULFUR AND ASH CONTENT
KR20170034908A (en) Integrated process to produce asphalt, petroleum green coke, and liquid and gas coking unit products
DE3237002A1 (en) METHOD FOR HYDROCRACKING HEAVY HYDROCARBON OILS UNDER A HIGH LEVEL OF CONVERSION OF PECH
DE2223382A1 (en) Method of making pitch
US4231857A (en) Process for preparing petroleum-derived binder pitch
DE2935039A1 (en) METHOD FOR PRODUCING A HIGHLY AROMATIC PECHA-LIKE CARBON VALUE
DE2404925A1 (en) METHOD OF MANUFACTURING SYNTHETIC BAKING COAL
EP0686180A1 (en) Method of producing coke for the iron and steel industry
US4234387A (en) Coking poor coking coals and hydrocracked tar sand bitumen binder
DE2643519C2 (en)
GB2135333A (en) Making coke for metallurgical purposes
DE2711105C2 (en) Process for converting coal into hydrocarbons which are liquid under normal conditions
DE1949628A1 (en) Process for the combined production of electrode pitch and a starting material for carbon black production
DD249916A1 (en) METHOD OF PRODUCING LIGHT PRODUCTS AND CONVENTIONALLY UTILIZABLE HEATING OILS FROM HEAVY METAL AND SULFUR RESOURCES
DE3107712A1 (en) HEAVY CHARCOAL BASED OIL
CN111876185A (en) Coke adhesive
DE2951116C2 (en) Improvement of the coke quality of coals with insufficient coking properties
DE1955285C3 (en) Process for the production of pitch and tar by high temperature treatment
DE898439C (en) Process for processing residues of the pressure hydrogenation of coal, tars and mineral oils or of pressure extraction products of coal
CN110804456B (en) Method and system for oil-coal co-refining
DE920089C (en) Process for the extraction of organic components from oil shale, oil lime and similar oil-bearing rocks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 19950916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL PT SE

18D Application deemed to be withdrawn

Effective date: 19970830