EP0685828B1 - Datenübertragung von einer Feststation zu einem bewegten Körper - Google Patents

Datenübertragung von einer Feststation zu einem bewegten Körper Download PDF

Info

Publication number
EP0685828B1
EP0685828B1 EP95108628A EP95108628A EP0685828B1 EP 0685828 B1 EP0685828 B1 EP 0685828B1 EP 95108628 A EP95108628 A EP 95108628A EP 95108628 A EP95108628 A EP 95108628A EP 0685828 B1 EP0685828 B1 EP 0685828B1
Authority
EP
European Patent Office
Prior art keywords
data
bit
data word
stored
word
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95108628A
Other languages
English (en)
French (fr)
Other versions
EP0685828A1 (de
Inventor
Heinrich Prof. Dipl.-Ing. Schüssler
Dieter Dipl.-Ing.(Fh) Barbian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schuessler Heinrich Prof Dipl-Ing
Schuessler Juergen
Original Assignee
Schuessler Heinrich Prof Dipl-Ing
Schuessler Juergen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE9409056U external-priority patent/DE9409056U1/de
Priority claimed from DE19944445248 external-priority patent/DE4445248A1/de
Application filed by Schuessler Heinrich Prof Dipl-Ing, Schuessler Juergen filed Critical Schuessler Heinrich Prof Dipl-Ing
Publication of EP0685828A1 publication Critical patent/EP0685828A1/de
Application granted granted Critical
Publication of EP0685828B1 publication Critical patent/EP0685828B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/06Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
    • G08G5/065Navigation or guidance aids, e.g. for taxiing or rolling
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096716Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information does not generate an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/09675Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where a selection from the received information takes place in the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station

Definitions

  • the invention relates to a data transmission device for transmitting a data word from a fixed station to a moving body with at least one data transmission unit located along the movement path for transmitting a transmission signal and a data receiver unit located on a moving body for receiving the transmission signals and with at least one storage unit contained in the data receiver unit for Storage of the data, at least one data evaluation unit contained in the data receiver unit for evaluating the data and at least one display unit contained in the data receiver unit for displaying the data.
  • the invention further relates to a corresponding method for transmitting data and the use of the data transmission device and the method for the automatic detection of signals.
  • IR Infrared
  • IR Infrared
  • Such transmission systems are particularly advantageous if several independent systems are used in parallel in the environment.
  • Other transmission media such as the high-frequency signals up to frequencies of a few hundred MHz, can practically not be used for such transmission links, since - when using several transmitters with the same frequency - decoupling of the signals is practically impossible. But even at different frequencies, the use of high-frequency signals is not always possible if electromagnetic interference fields are present in the local environment (WO 86/02637).
  • pulse code modulation is often used in IR transmission systems.
  • One area of application for such data transmission devices is the automatic detection of signals for road traffic and for the reproduction of these signals in motor vehicles.
  • the purpose of such devices is to enable the driver of a motor vehicle to call up the traffic signs in his motor vehicle that are valid in the section of road he is traveling on (DE-U-94 09 056).
  • a device for receiving and transmitting information between fixed and movable stations for determining and transmitting climate and road information is known, the at least one data transmission unit located along the movement path for transmitting a transmission signal and a data receiver unit located on a moving body for receiving the transmission signal and with at least one memory unit contained in the data receiver unit for storing the data and a data evaluation unit for evaluating the data (EP-A-0 575 907).
  • the invention has for its object to provide a data transmission device by means of infrared light, with which a relatively small amount of data can be transmitted from a fixed station to a moving body, a distinction being made between two directions of movement of the body, which in the data word refer to their Validity as direction bits are recognizable.
  • the transmitted data word contains at least one direction bit characterizing the direction of movement of the body and at least one direction change bit that takes into account changes in the direction of movement and at least one evaluation bit, and that the data transmitter and receiver units also have pulse-pause modulation working infrared transmitting and receiving devices are equipped.
  • the decisive advantage of the data transmission device is that instead of the pulse code modulation usually used, the pulse-pause modulation is used, and that at the same time a direction coding is contained in the data word to be transmitted.
  • Another decisive advantage of the data transmission device is that the pulse-pause modulation of the transmitting part and the Power supply part of the data transmission unit can be considerably relieved, since the pulse breaks are synonymous with less current and thus less power.
  • This advantage is particularly important if, for example, the data transmission unit is powered independently of the mains from a battery or an accumulator outdoors. If, for example, a rechargeable battery is used as the power source for the data transmitter, which in turn is buffered via solar cells, the use of pulse-pause modulation also reduces the effort in terms of the required number of solar cells.
  • the data transmission device takes into account changes in the direction of movement of the body, as a result of which only data words are processed in the data receiver unit which are valid according to the direction of movement of the body and its associated direction coding.
  • An embodiment of the invention consists in that the transmitted data word contains two direction bits characterizing the direction of movement of the body and a direction change bit as well as at least one evaluation bit.
  • the data word to be transmitted can be transmitted cyclically by the data transmission unit as a continuous signal.
  • the direction bit contained in the data word can be adopted and can be stored in the data receiver unit as a direction bit if the direction change bit is not set in the data word.
  • the direction bit not set in the data word can be invertedly accepted and stored in the data receiver unit.
  • the evaluation bits can be transferred to a buffer in the memory unit and evaluated by the evaluation unit if the direction bit contained in the data word and the direction bit stored in the data receiver unit are the same, and the evaluation bits contained in the data word differ in at least one bit from the data stored in the buffer, regardless of whether the direction change bit is set in the data word.
  • a further development of the invention consists in the fact that the transfer of the evaluation bits into the buffer can be triggered by a transfer pulse.
  • the stored direction bit and all displays of the evaluation bits can be deleted.
  • a further development of the method consists in the fact that the takeover of the evaluation bits into the buffer is triggered by a takeover pulse.
  • the use of the data transmission device or the method for transmitting data in a device for automatically recording taxi information at airports and for reproducing the taxi information in aircraft is also in accordance with the invention.
  • the 1 shows the data transmission unit with an integrated circuit 1, which converts a data word present in parallel at the inputs 2, which are designated D1 to D10, into a serial data stream.
  • the data word is converted into a sequence of individual pulses, with the state logic "0" being assigned a short pause between two individual pulses and the state logic "1" being assigned a long pause between two individual pulses.
  • the break ratio here is 1: 1.8.
  • the output 3 of the integrated circuit controls the infrared transmitter diode 5 via the amplifier stage 4, which in turn emits the serial data stream as a single pulse sequence.
  • the internal clock frequency of the IC is determined with the RC element 6. A favorable value for this is, for example, 500 kHz.
  • the duration of a single pulse is equal to the period of the clock frequency (here: 2 ⁇ s).
  • the duration of the pulse pause for logic "0" is 10 clock periods (here: 20 ⁇ s), and the duration of the pulse pause for logic "1" is 18 clock periods (here: 36 ⁇ s).
  • Bit pattern 7 shows an example of a 10-bit data word consisting of 11 pulses. If the continuous signal operating mode is selected for the integrated circuit 1, the transmission of the data word is repeated cyclically, with a pause between the transmissions of the data words of 8192 clock pulses. The time intervals between the data word transmissions are therefore approx. 17 ms.
  • FIG. 2 shows the data receiver unit with an integrated circuit 8, which receives the serial data word via the infrared sensor 9 and supplies it to the IC 8.
  • the internal clock frequency of the IC 8 is set with the RC element 10. It corresponds to the same frequency as that of the data transmitter IC 1. If the data receiver unit has received a complete data word, the 10 bits of the data word are converted back by the IC 8 from a serial data word into a parallel data word and sent to the outputs D1 to D10 11 created.
  • a strobe pulse 12 enables the data word to be accepted.
  • 3 shows the directional decoding of the data receiver unit according to the invention. It consists of the direction logic 13, the two flip-flops 14A, 14B for storing the direction bits, 3 AND elements 15 for linking the logic output variables RS ', T2' and T1 'with the strobe pulse and an OR element 16 to darken the display part, which will be explained later.
  • the left column of the table numbers the possible combinations of the input variables from 1 to 32.
  • the following explanations are limited to the input combinations that can occur in the area of the data transmission system according to the invention.
  • the input combinations that cannot occur can be recognized by the fact that the associated output variables are marked with a cross as "don't care terms".
  • the input states of numbers 5 and 9 mean that the data receiver unit has not yet received a data word from the time it was started up. If the data receiver unit now receives a data word in which the direction bit D1 is set, the direction bit D1 is loaded into the directional flip-flop 14A with the clock T1 or, at No. 9, the direction bit D2 with the clock T2 is loaded into the directional Flip-flop 14B. In both cases, the evaluation bits D4 to D10 17 are loaded with the takeover pulse Ü 18 from the data receiver unit IC 8 into the buffer memory 19 and released with the enable signal F 20 to the displays 21 and 25.
  • the input states of numbers 6 and 11 mean that a direction bit is already stored in the data receiver unit and the same direction bit is contained in the received data word, as a result of which the takeover pulse Ü 18 allows the evaluation bits D4 to D10 17 to be taken over. This occurs when the data receiver unit receives a data word that is valid for it.
  • the input states with the numbers 7, 10, 23 and 26 mean that the stored direction bit and the direction bit transmitted in the data word are not identical, as a result of which the received data word is not accepted and is not evaluated. In these cases, the data word is intended for receivers in which the direction of movement of their bodies does not match the direction of movement of the body that has stored this direction bit.
  • the input states with the numbers 21 and 25 mean that both the direction change bit D3 and a direction bit are set in the data word.
  • the evaluation bits 17 are accepted in the data receiver unit with the takeover pulse 18 and the direction bit which has not been transmitted is then inverted and stored in the corresponding flip-flop. This occurs when the direction bit is to be changed without a direction bit being stored in the data receiver unit.
  • the input states with the numbers 22 and 27 mean that both direction change bit D3 and a direction bit are set in the data word. Since the stored direction bit and the direction bit are identical in the data word, the evaluation bits 17 can be adopted. Thereafter, a pulse is sent to both directional flip-flops 14A, 14B via T1 and T2, whereby their outputs are reversed and the change in the stored direction bit is completed. This occurs when the stored direction bit is to be changed due to the change in the direction of movement of the body.
  • Equations with discrete digital switching elements are shown in FIGS. 7 to 9. Due to the freely programmable logic modules (Generic Array Logic, GALS) available today, the equations for T2 ', T1', RS 'and Ü can be constructed with a module of this series . D flip-flops 14A, 14B are used to store the direction bits.
  • GALS freely programmable logic modules
  • FIG. 5 shows the circuit for transferring the evaluation bits D4 to D10 17 from the receiver IC 8 into the buffer memory 19.
  • Each evaluation bit is compared with an equivalence element 22 to ensure that it is identical to the bit stored in the buffer memory 19 and applied to the outputs 23.
  • the outputs of the 7 equivalence elements are combined via a Nand element 24.
  • the AND gate 25 combines the output signal of the Nand gate with the takeover pulse Ü 18 and the strobe pulse 12 of the data receiver unit IC 8.
  • 6 shows the circuit for evaluating and displaying the evaluation bits.
  • the assignment of the evaluation bits is arbitrary.
  • the circuit shown here corresponds to the evaluation and display part of the second application example, which will be explained later.
  • 6 shows the evaluation logic 24 for code conversion of the data Q4 to Q7 23A from binary to BCD, so that a 3-digit decimal number from 10 to 130 can be displayed in steps of 10 with 7-segment displays 21.
  • the data Q8 to Q10 23B are used for signaling 25.
  • the driver stages 26 are AND elements for dark control of the display elements 21 and 25 with the enable signal F 20 and deliver the required current in the event of ad approval.
  • the taxiway of the landing aircraft is direction A
  • the taxiways of the starting aircraft are direction B.
  • All aircraft have a data receiver unit 8 according to the invention.
  • the data receiver unit 8 was switched on immediately before the data transmitter 35 according to the invention was reached.
  • the direction bit D1 is set in the data word of the transmitter 35 and the letter R is encoded in the evaluation bits D4 to D10 17.
  • the direction bit A is stored in the direction flip-flop 14A of the data receiver unit 8 and at the same time the coded information R is transferred to the display part with the takeover pulse 18 and with the release signal 20 on the display Data receiver unit 8 displayed.
  • the direction bit A is also set in the data word of the data transmission unit 36, but the evaluation bits contain the direction information L since the direction bit of the data transmission unit and the stored direction bit in the data receiver unit match and the evaluation bits contained in the data word are different from the stored data in the buffer the current evaluation bits are loaded into the buffer and the information L is displayed.
  • the data word of which does not contain a direction bit but contains the set direction change bit. If the data receiver unit receives this data word, the directional flip-flops 14A, 14B in the data receiver unit are deleted, as a result of which all signals are released via the enable signal F. Ads go dark.
  • Aircraft 31 and 32 also have data transmission units according to the invention, in the data word of which direction bit D2, corresponding to direction B, is set.
  • the data words of the transmitters 37 and 38 contain both the direction bit D2 and the coded information R as the direction of movement, which are adopted and displayed by the data receiver units of both aircraft 31 and 32.
  • the direction bit D2 is also set in the data word of the transmitter 39, but the evaluations bis coded contain the information L, which is taken over by the data receiver units of the aircraft 31 and 32.
  • the direction flip-flops of the data receiver unit are deleted and the displays are darkened, since there is no direction bit in the data word 40, but the direction change bit is set.
  • the advantage of the data transmission device according to the invention can be seen particularly in the fact that in areas in which transmitters with different directional codes are present, the data receiver units always receive and evaluate only the data word which is valid due to its directional coding.
  • a motorway exit is shown schematically in the lower part of FIG. 10. It is assumed that a vehicle leaves the direction of travel 41 and changes to the lane 42. Since the lane 41 is defined as direction A, all data words which are sent by the data transmission unit, which are located along the lane 41, contain the set direction bit D1.
  • the information that is encoded in the evaluation bits contains data relating to road traffic, e.g. B. Speed limits from 10 km / h to 130 km / h in increments of 10 km / h.
  • the evaluation bits Q4 to Q7 23A, binary coded, are provided for this amount of data.
  • the evaluation bits Q8 to Q10 23B can also be used for other information relating to road traffic, e.g. B. No overtaking.
  • the logic 24 shown in FIG. 6 serves to perform the code conversion binary to the BCD. If a vehicle now leaves the freeway 41 by turning right onto the freeway 42, whose direction of travel B is by definition assigned to direction bit D2, the direction bit stored in the data receiver unit must also be changed from A to B. This change can be carried out with the data transmission device according to the invention by additionally setting the direction change bit D3 in the data word of the data transmission unit 43, in addition to the direction bit D1 valid for the direction of travel 41.
  • both directional flip-flops 14A, 14B receive a clock pulse via T1 and T2 in the data receiver unit, whereby both flip-flops change their state. In this way, the change in the directional flip-flops 14A, 14B is completed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Communication System (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Dc Digital Transmission (AREA)

Description

  • Die Erfindung betrifft eine Datenübertragungseinrichtung zur Übertragung eines Datenwortes von einer Feststation zu einem bewegten Körper mit mindestens einer entlang der Bewegungsstrecke befindlichen Datensendeeinheit zur Aussendung eines Sendesignals und einer an einem bewegten Körper befindlichen Datenempfängereinheit zum Empfangen der Sendesignale sowie mit mindestens einer in der Datenempfängereinheit enthaltenen Speichereinheit zum Speichern der Daten, mindestens einer in der Datenempfängereinheit enthaltenden Datenauswerteeinheit zum Auswerten der Daten und mindestens einer in der Datenempfängereinheit enthaltenen Anzeigeeinheit zum Anzeigen der Daten. Die Erfindung betrifft weiterhin ein entsprechendes Verfahren zur Übertragung von Daten und die Verwendung der Datenübertragungseinrichtung und des Verfahrens zur automatischen Erfasssung von Signalen.
  • Datenübertragungssysteme sind in unterschiedlichen Bauformen bekannt und vielfach dort eingesetzt, wo ein Teil des Übertragungssystems frei beweglich ist sowie die zu überbrückende Entfernung sich auf wenige Meter beschränkt. Insbesondere im Bereich der automatischen Laufwegsteuerung von Transporteinrichtungen haben sich Infrarot-(IR)-Übertragungssysteme bewährt. Von besonderem Vorteil sind solche Übertragungssysteme dann, wenn in der Umgebung mehrere, von einander unabhängige Systeme parallel eingesetzt werden. Andere Übertragungsmedien, wie zum Beispiel die hochfrequenten Signale bis zu Frequenzen von einigen hundert MHz, lassen sich für solche Übertragungsstrecken praktisch nicht nutzen, da - beim Einsatz mehrerer Sender mit gleicher Frequenz - eine Entkopplung der Signale praktisch nicht möglich ist. Aber auch bei unterschiedlichen Frequenzen ist nicht immer der Einsatz hochfrequenter Signale möglich, wenn in der örtlichen Umgebung elektromagnetische Störfelder vorhanden sind (WO 86/02637).
  • Bezüglich der Übertragungsart wird bei IR-Übertragungssystemen oft die Puls-Code-Modulation eingesetzt.
  • Außer den zu übertragenden Daten sind eine nicht geringe Anzahl von systemeigenen Synchronisationszeichen, wie Start-Bit, Rücksetz-Bit, mit zu übertragen. So sind z.B. für die relativ geringe Datenmenge von 4 Bit zusätzlich 6 Bit zur Steuerung des 4-Bit-Datenwortes erforderlich (DE-A-31 46 251).
  • Sind größere Datenmengen zu übertragen, müssen relativ lange Übertragungszeiten in Kauf genommen werden. Durch Datenaufteilung in mehrere Blöcke und paralleler statt serieller Übertragung, läßt sich die Übertragungszeit zwar verkürzen, bedingt aber einen größeren Schaltungsaufwand, da mehrere Datensender und mehrere Datenempfängereinheiten für Parallelbetrieb erforderlich sind (DE-C-36 15 825).
  • Ein Anwendungsgebiet für derartige Datenübertragungseinrichtungen ist die automatische Erfasssung von Signalen für den Straßenverkehr und zur Wiedergabe dieser Signale in Kraftfahrzeugen. Derartige Vorrichtungen haben zur Aufgabe, es dem Fahrer eines Kraftfahrzeuges zu ermöglichen, die in dem von ihm befahrenen Straßenabschnitt geltenden Verkehrszeichen in seinem Kraftfahrzeug abzurufen (DE-U-94 09 056).
  • Eine Vorrichtung zum Empfangen und Übertragen von Information zwischen festen und beweglichen Stationen zum Ermitteln und Übertragen von Klima- und Straßeninformationen ist bekannt, die mindestens eine entlang der Bewegungsstrecke befindliche Datensendeeinheit zur Aussendung eines Sendesignals und eine an einem bewegten Körper befindlichen Datenempfängereinheit zum Empfangen des Sendesignals sowie mit mindestens einer in der Datenempfängereinheit enthaltenen Speichereinheit zum Speichern der Daten und einer Datenauswerteeinheit zum Auswerten der Daten, aufweist (EP-A- 0 575 907).
  • Um das zu übertragene Datenwort mit nur einer Datensendeeinheit von einer Feststation zu eine an einem bewegten Körper befindlichen Datenempfängereinheit zu übertragen, die Übertragungszeit durch Einsparung von Steuerzeichen zu verkürzen, und zusätzlich in das Datenwort seine Gültigkeit bezüglich der Bewegungsrichtung des Körpers codiert mit zu übertragen, mußte ein neues Übertragungsverfahren erfunden werden, das die Nachteile bekannter Systeme vermeidet.
  • Ausgehend vom Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Datenübertragungseinrichtung mittels Infrarotlicht zu schaffen, mit der eine relativ geringe Datenmenge von einer Feststation zu einem bewegten Körper übertragen werden kann, wobei zwischen zwei Bewegungsrichtungen des Körpers unterschieden wird, die im Datenwort bezüglich ihrer Gültigkeit als Richtungsbits erkennbar sind. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das übertragene Datenwort mindestens ein die Bewegungsrichtung des Körpers kennzeichnendes Richtungsbit und mindestens ein Änderungen der Bewegungsrichtung berücksichtigendes Richtungsänderungsbit sowie mindestens ein Auswertebit enthält, und daß die Daten-Sende- und -Empfängereinheiten mit in Puls-Pausen-Modulation arbeitenden Infrarot-Sende- und Empfangseinrichtungen ausgestattet sind.
  • Der entscheidende Vorteil der erfindungsgemäßen Datenübertragungseinrichtung besteht darin, daß statt der üblicherweise eingesetzten Puls-Code-Modulation, die Puls-Pausen-Modulation eingesetzt wird, und daß gleichzeitig in dem zu übertragenden Datenwort eine Richtungscodierung enthalten ist.
  • Ein weiterer entscheidender Vorteil der erfindungsgemäßen Datenübertragungseinrichtung besteht darin, daß durch die Puls-Pausen-Modulation der Sendeteil und der Stromversorgungsteil der Datensendeeinheit erheblich entlastet werden, da die Puls-Pausen gleichbedeutend mit weniger Strom und damit weniger Leistung zu setzen sind. Dieser Vorteil kommt insbesondere dann zu tragen, wenn z.B. die Datensendeeinheit netzunabhängig im Freien aus einer Batterie oder einem Akkumulator gespeist wird. Wird beispielsweise für den Datensender ein Akku als Stromquelle eingesetzt, der seinerseits über Solarzellen gepuffert ist, so reduziert sich durch den Einsatz der Puls-Pausen-Modulation auch der Aufwand hinsichtlich der erforderlichen Anzahl von Solarzellen.
  • Es ist ein besonderer Vorteil der Datenübertragungseinrichtung gemäß der Erfindung, daß die Datenübertragungseinrichtung Änderungen der Bewegungsrichtung des Körpers berücksichtigt, wodurch nur Datenwörter in der Datenempfängereinheit verarbeitet werden, die entsprechend der Bewegungsrichtung des Körpers und ihrer zugeordneten Richtungscodierung Gültigkeit haben.
  • Eine Ausbildung der Erfindung besteht darin, daß im übertragenen Datenwort zwei die Bewegungsrichtung des Körpers kennzeichnenden Richtungsbits und ein Richtungsänderungsbit sowie mindestens ein Auswertebit enthalten sind.
  • Erfindungsgemäß ist vorgesehen, daß das zu übertragende Datenwort von der Datensendeeinheit zyklisch als Dauersignal aussendbar ist.
  • Vorteilhaft ist, daß beim Empfang eines Datenworts in Datenempfängereinheitn, in denen noch kein Richtungsbit gespeichert ist, das im Datenwort enthaltene Richtungsbit übernehmbar und in der Datenempfängereinheit als Richtungsbit speicherbar ist, wenn im Datenwort das Richtungsänderungsbit nicht gesetzt ist.
  • Es liegt im Rahmen der Erfindung, daß beim Empfang eines Datenworts, in dem sowohl Richtungsbit als auch Richtungsänderungsbit gesetzt sind, in Datenempfängereinheiten, in denen noch kein Richtungsbit gespeichert ist, in der Datenempfängereinheit das im Datenwort nicht gesetzte Richtungsbit invertiert übernehmbar und speicherbar ist.
  • Weiterhin ist es zweckmäßig, daß beim Empfang eines Datenwortes in Datenempfängereinheiten, in denen bereits ein Richtungsbit gesetzt ist, die Auswertebits in einen Zwischenspeicher der Speichereinheit übernehmbar und von der Auswerteeinheit auswertbar sind, wenn das im Datenwort enthaltene Richtungsbit und das in der Datenempfängereinheit gespeicherte Richtungsbit gleich sind, und die im Datenwort enthaltenen Auswertebits sich in mindestens einem Bit von den im Zwischenspeicher gespeicherten Daten unterscheiden, unabhängig davon, ob im Datenwort das Richtungsänderungsbit gesetzt ist.
  • Eine Weiterbildung der Erfindung besteht darin, daß die Übernahme der Auswertebits in den Zwischenspeicher durch einen Übernahme-Impuls auslösbar ist.
  • Erfindungsgemäß ist, daß beim Empfang eines Datenworts, bei dem das Richtungsänderungsbit-, jedoch kein Richtungsbit gesetzt ist, in Datenempfängereinheiten, in denen ein Richtungsbit gespeichert ist, das gespeicherte Richtungsbit und alle Anzeigen der Auswertebits löschbar sind.
  • Vorteilhaft ist, daß beim Empfang eines Datenworts, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, in Datenempfängereinheiten, in denen kein Richtungsbit gespeichert ist, das Datenwort nicht übernehmbar ist.
  • Das erfindungsgemäße Verfahren zur Übertragung eines Datenwortes von einer Feststation zu einem bewegten Körper, wobei entlang der Bewegungsstrecke mindestens eine Datensendeeinheit zur Aussendung eines Sendesignals und einer an dem bewegten Körper befindlichen Datenempfängereinheit zum Empfangen der Sendesignale sowie in der Datenempfängereinheit mindestens eine Speichereinheit zum Speichern der Daten, mindestens eine Datenauswerteeinheit und mindestens eine Anzeigeeinheit zum Anzeigen der Daten angeordnet sind, ist gekennzeichnet durch folgende Verfahrensschritte:
    • das zu übertragende Datenwort besteht aus mindestens einem, die Bewegungsrichtung des Körpers kennzeichnenden Richtungsbit, einem Änderungen der Bewegungsrichtung berücksichtigenden Richtungsänderungsbit sowie mindestens einem Auswertebit und wird zyklisch ausgesandt,
    • beim Empfang eines Datenwortes in Datenempfängereinheiten, in denen noch kein Richtungsbit gespeichert ist, wird das im Datenwort enthaltene Richtungsbit übernommen und im Datenempfänger als Richtungsbit gespeichert, wenn im Datenwort das Richtungsänderungsbit nicht gesetzt ist,
    • beim Empfang eines Datenwortes, in dem sowohl Richtungsbit als auch Richtungsänderungsbit gesetzt sind, in Datenempfängereinheiten, in denen noch kein Richtungsbit gespeichert ist, wird das im Datenwort nicht gesetzte Richtungsbit invertiert übernommen und gespeichert,
    • beim Empfang eines Datenwortes in Datenempfängereinheiten, in denen bereits ein Richtungsbit gesetzt ist, werden nur dann die Auswertebits in einen Zwischenspeicher übernommen und von der Auswerteeinheit ausgewertet, wenn das im Datenwort enthaltene Richtungsbit und das in der Datenempfängereinheit gespeicherte Richtungsänderungsbit gleich sind, und sich die im Datenwort enthaltenen Auswertebits in mindestens einem Bit von den im Zwischenspeicher gespeicherten Daten unterscheiden, unabhängig davon, ob im Datenwort das Richtungsänderungsbit gesetzt ist,
    • beim Empfang eines Datenwortes, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, werden in Datenempfängereinheiten, in denen ein Richtungsbit gespeichert ist, das gespeicherte Richtungsbit und alle Anzeigen der Auswertebits gelöscht,
    • beim Empfang eines Datenwortes, bei dem das Richtungsänderungsbit, jedoch kein Richtungsbit gesetzt ist, wird in Datenempfängereinheiten, in denen kein Richtungsbit gespeichert ist, das Datenwort nicht übernommen und nicht ausgewertet.
  • Eine Weiterbildung des Verfahrens besteht darin, daß die Übernahme der Auswertebits in den Zwischenspeicher durch einen Übernahme-Impuls ausgelöst wird.
  • Erfindungsgemäß ist auch die Verwendung der Datenübertragungseinrichtung oder des Verfahrens zur Übertragung von Daten in einer Vorrichtung zur automatischen Erfassung von Signalen für den Straßenverkehr und zur Wiedergabe dieser Signale in Kraftfahrzeugen.
  • Erfindungsgemäß ist weiterhin die Verwendung der Datenübertragungseinrichtung oder des Verfahrens zur Übertragung von Daten in einer Vorrichtung zur automatischen Erfassung von Rollinformationen auf Flughäfen und zur Wiedergabe der Rollinformationen in Flugzeugen.
  • Einzelheiten und Vorteile einer beispielhaften erfindungsgemäßen Datenübertragungseinrichtung werden nachfolgend anhand von Zeichnungen näher erläutert.
  • Es zeigen:
  • Fig. 1
    schematisch die in Puls-Pausen-Modulation arbeitende Datensendeeinheit am Beispiel eines 10-Bit-Datenwortes;
    Fig. 2
    schematisch die in Puls-Pausen-Modulation arbeitende Datenempfängereinheit;
    Fig. 3
    schematisch die Schaltung, der in der Datenempfängereinheit enthaltenen Richtungsdecodierung;
    Fig. 4
    die Wahrheitstabelle zu der in der Richtungsdecodierung enthaltenen Richtungslogik;
    Fig. 5
    die Schaltung zur Übernahme der im Datenwort enthaltenen Auswertebits;
    Fig. 6
    die Schaltung zur Decodierung der Auswertebits mit dem Anzeigeteil;
    Fig. 7
    ein Beispiel zur Realisierung, der in der Wahrheitstabelle (Fig. 4) enthaltenen Ausgangsgröße T1' mit digitalen Schaltgliedern;
    Fig. 8
    Beispiel zur Realisierung der in der Wahrheitstabelle (Fig. 4) enthaltenen Ausgangsgröße T2' mit digitalen Schaltgliedern;
    Fig. 9
    Beispiel zur Realisierung der in der Wahrheitstabelle (Fig. 4) enthaltenen Ausgangsgrößen RS' und Ü mit digitalen Schaltgliedern;
    Fig. 10
    zwei Zeichnungen zu den beiden Anwendungsbeispielen der erfindungsgemäßen Datenübertragungseinrichtung.
  • Im einzelnen zeigt Fig. 1 die Datensendeeinheit mit einem integrierten Schaltkreis 1, der ein an den Eingängen 2, die mit D1 bis D10 bezeichnet sind, parallel anliegendes Datenwort in einen seriellen Datenstrom umwandelt. Hierbei wird das Datenwort in eine Folge von Einzelimpulsen umgewandelt, wobei dem Zustand logisch "0" eine kurze Pause zwischen zwei Einzelimpulsen und dem Zustand logisch "1" eine lange Pause zwischen zwei Einzelimpulsen zugeordnet wird. Das Pausenverhältnis beträgt hier 1 : 1,8. Der Ausgang 3 der integrierten Schaltung steuert über die Verstärkerstufe 4 die Infrarotsendediode 5, die ihrerseits den seriellen Datenstrom als Einzelimpulsfolge abstrahlt. Mit dem RC-Glied 6 wird die interne Taktfrequenz des ICs festgelegt. Ein günstiger Wert hierfür ist beispielsweise 500 KHz. Die Dauer eines Einzelimpulses ist gleich der Periodendauer der Taktfrequenz (hier: 2µs). Die Dauer der Puls-Pause für logisch "0" beträgt 10 Taktperioden (hier: 20µs), und die Dauer der Puls-Pause für logisch "1" beträgt 18 Taktperioden (hier: 36µs). Das Bitmuster 7 zeigt ein Beispiel eines 10-Bit-Datenwortes, das aus 11 Impulsen besteht. Wird bei der integrierten Schaltung 1 die Betriebsart Dauersignal gewählt, so wiederholt sich die Aussendung des Datenwortes zyklisch, wobei sich zwischen den Aussendungen der Datenwörter eine Pause von 8192 Taktimpulsen einstellt. Die Zeitabstände der Datenwortaussendungen betragen demnach ca. 17 ms.
  • Die 10 Bit des Datenwortes sind wie folgt definiert:
  • D1
    Richtungsbit für Bewegungsrichtung A des Körpers
    D2
    Richtungsbit für Bewegungsrichtung B des Körpers
    D3
    Richtungsänderungsbit
    D4 bis D10
    Auswertebits.
  • Im einzelnen zeigt Fig. 2 die Datenempfängereinheit mit einem integrierten Schaltkreis 8, der über den Infrarot-Sensor 9 das serielle Datenwort empfängt und dem IC 8 zuführt. Mit dem RC-Glied 10 wird die interne Taktfrequenz des ICs 8 eingestellt. Sie entspricht der gleichen Frequenz, wie die des Datensenders ICs 1. Hat die Datenempfängereinheit ein komplettes Datenwort empfangen, so werden die 10 Bit des Datenwortes von dem IC 8 wieder von einem seriellen Datenwort in ein paralleles Datenwort zurückgewandelt und an die Ausgänge D1 bis D10 11 angelegt. Ein Strobe-Impuls 12 gibt die Übernahme des Datenwortes frei.
  • In Fig. 3 ist die erfindungsgemäße Richtungsdecodierung des Datenempfängereinheit dargestellt. Sie besteht aus der Richtungslogik 13, den beiden Flip-Flops 14A, 14B zur Speicherung der Richtungsbits, 3 Und-Gliedern 15 zur Verknüpfung der Logik-Ausgangsgrößen RS', T2' und T1' mit dem Strobe-Impuls und einem Oder-Glied 16 zur Dunkelsteuerung des Anzeigeteils, welches später erläutert wird.
  • Es bedeuten im einzelnen:
  • D3
    Richtungsänderungsbit vom Ausgang der Datenempfängereinheit 8
    D1
    Richtungsbit für Bewegungsrichtung A des Körpers
    D2
    Richtungsbit für Bewegungsrichtung B des Körpers
    ST
    Strobe-Impuls vom Ausgang der Datenempfängereinheit 8 zur Datenfreigabe
    T1
    Takt für Flip-Flop 14A der Bewegungsrichtung A
    T2
    Takt für Flip-Flop 14B der Bewegungsrichtung B
    RS
    Reset zum Rücksetzen der beiden Flip-Flops 14A, 14B
    QA
    gespeichertes Richtungsbit für Bewegungsrichtung A
    QB
    gespeichertes Richtungsbit für Bewegungsrichtung B
    Ü
    Übernahme-Impuls 18 zur Übernahme der Auswertebits D 4 bis D 10 17 in den Zwischenspeicher 19
    F
    Freigabesignal 20 zur Anzeige der Auswertebits bzw. zur Dunkelsteuerung der Anzeigen 21 und 25.
  • Der Zusammenhang der Eingangsvariablen D1, D2, D3, QA und QB mit den Ausgangsvariablen T2', T1', RS' und Ü ist in der Wahrheitstabelle (Fig. 4) zusammengestellt.
  • Die linke Spalte der Tabelle numeriert die möglichen Kombinationen der Eingangsvariablen von 1 bis 32. Die folgenden Erläuterungen beschränken sich auf die Eingangskombinationen, die im Bereich des erfindungsgemäßen Datenübertragungssystems auftreten können. Die Eingangskombinationen, die nicht auftreten können, sind daran zu erkennen, daß die dazugehörigen Ausgangsvariablen als "don't care terms" mit einem Kreuz gekennzeichnet sind.
  • Im Folgenden werden die Eingangskombinationen der Richtungslogik erläutert, die im Betrieb auftreten können. Anschließend erfolgt ein Ausführungsbeispiel zur Umsetzung der aus der Wahrheitstabelle gefundenen Gleichungen mit Hilfe diskreter digitaler Schaltglieder.
  • Die Eingangszustände der Nummern 5 und 9 bedeuten, daß die Datenempfängereinheit ab dem Zeitpunkt ihrer Inbetriebnahme noch kein Datenwort empfangen hat. Empfängt nun die Datenempfängereinheit ein Datenwort, bei dem das Richtungsbit D1 gesetzt ist, so wird mit dem Takt T1 das Richtungsbit D1 in das Richtungs-Flip-Flop 14A geladen bzw. bei Nr. 9 das Richtungsbit D2 mit dem Takt T2 in das Richtungs-Flip-Flop 14B. In beiden Fällen werden die Auswertebits D4 bis D10 17 mit dem Übernahme-Impuls Ü 18 von der Datenempfängereinheit IC 8 in den Zwischenspeicher 19 geladen und mit dem Freigabesignal F 20 zu den Anzeigen 21 und 25 freigegeben.
  • Die Eingangszustände der Nummern 6 und 11 bedeuten, daß ein Richtungsbit in der Datenempfängereinheit bereits gespeichert ist und im empfangenen Datenwort das gleiche Richtungsbit enthalten ist, wodurch der Übernahme-Impuls Ü 18 eine Übernahme der Auswertebits D4 bis D10 17 erlaubt. Dieser Fall tritt ein, wenn die Datenempfängereinheit ein für ihn gültiges Datenwort empfängt.
  • Die Eingangszustände mit den Nummern 7, 10, 23 und 26 bedeuten, daß das gespeicherte Richtungsbit und das im Datenwort übertragene Richtungsbit nicht identisch sind, wodurch das empfangene Datenwort nicht übernommen und nicht ausgewertet wird. In diesen Fällen ist das Datenwort für Empfänger bestimmt, bei denen die Bewegungsrichtung ihrer Körper nicht mit der Bewegungsrichtung des Körpers übereinstimmt, der dieses Richtungsbit gespeichert hat.
  • Die Eingangszustände mit den Nummern 21 und 25 bedeuten, daß im Datenwort sowohl das Richtungsänderungsbit D3 und ein Richtungsbit gesetzt sind. Da jedoch die Datenempfängereinheit seit einer Inbetriebnahme noch kein Datenwort empfangen hatte, was an den ungesetzten Richtungs-Flip-Flops 14A, 14B zu erkennen ist, werden in der Datenempfängereinheit die Auswertebits 17 mit dem Übernahme-Impuls 18 übernommen und danach das nicht übertragene Richtungsbit invertiert und im entsprechenden Flip-Flop gespeichert. Dieser Fall tritt ein, wenn das Richtungsbit geändert werden soll, ohne daß in der Datenempfängereinheit ein Richtungsbit gespeichert war.
  • Die Eingangszustände mit den Nummern 22 und 27 bedeuten, daß im Datenwort sowohl Richtungsänderungsbit D3 und ein Richtungsbit gesetzt sind. Da das gespeicherte Richtungsbit und das Richtungsbit im Datenwort identisch sind, ist eine Übernahme der Auswertebits 17 erlaubt. Danach ergeht über T1 und T2 ein Impuls an beide Richtungs-Flip-Flops 14A, 14B, wodurch ihre Ausgänge sich umkehren und die Änderung des gespeicherten Richtungsbits vollzogen ist. Dieser Fall tritt ein, wenn das gespeicherte Richtungsbit geändert werden soll, aufgrund der Änderung der Bewegungsrichtung des Körpers.
  • Die Eingangszustände mit den Nummern 17, 18 und 19 bedeuten, daß unabhängig davon, ob in der Datenempfängereinheit ein Richtungsbit gespeichert ist, alle Anzeigen dunkel gesteuert werden sollen und in den Fällen der Nummern 18 und 19 beide Flip-Flops 14A, 14B über RS gelöscht werden. Dieser Fall tritt ein, wenn der bewegte Körper seinen Zielpunkt erreicht hat, bei dem die gespeicherten und angezeigten Daten ihre Gültigkeit verlieren.
    Die Übertragung der Wahrheitstabelle (Fig. 4) in KV-Diagramme liefert - unter Berücksichtigung von Schaltnetzvereinfachungen - folgende Gleichungen: T2' = (D3*((D1*QB)+(D2*QB)))+((D3*D2)*(QB*QA))
    Figure imgb0001
    T1' = (D3*((D1*QA)+(D2*QA)))+((D3*D2)*(QB*QA))
    Figure imgb0002
    RS' = ((D2*D1)*D3)*(QA+QB)
    Figure imgb0003
    Ü = (D2*QA)+(D1*QB)
    Figure imgb0004
    mit
    • * Und-Verknüpfung
    • + Oder-Verknüpfung
    • ― Negation
  • Die Umsetzung o.a. Gleichungen mit diskreten digitalen Schaltgliedern zeigen die Fig. 7 bis Fig. 9. Aufgrund der heute verfügbaren frei programmierbaren Logikbausteine (Generic Array Logic, GALS) lassen sich die Gleichungen für T2', T1', RS' und Ü mit einem Baustein dieser Serie aufbauen. Zur Speicherung der Richtungsbits sind D-Flip-Flops 14A, 14B, eingesetzt.
  • Fig. 5 zeigt die Schaltung zur Übernahme der Auswertebits D4 bis D10 17 vom Empfänger IC 8 in die Zwischenspeicher 19. Jedes Auswertebit wird mit einem Äquivalenz-Glied 22 auf Gleichheit mit dem im Zwischenspeicher 19 gespeicherten und an den Ausgängen 23 anliegenden Bit verglichen. Die Ausgänge der 7 Äquivalenz-Glieder sind über ein Nand-Glied 24 zusammengefaßt. Das Und-Glied 25 verknüpft das Ausgangssignal des Nand-Gliedes mit dem Übernahme-Impuls Ü 18 und dem Strobe-Impuls 12 der Datenempfängereinheit IC 8. Sind ein oder mehrere Auswertebits 17 verschieden von den gespeicherten Daten Q4 bis Q10 und liegen gleichzeitig ein Strobe-Impuls 12 und ein Übernahme-Impuls 18 am Eingang des Und-Gliedes an, so ergeht ein Takt-Impuls an alle Takteingänge der Zwischenspeicher Flip-Flops 19, wodurch die Auswertebits 17 übernommen werden und an den Ausgängen Q4 bis Q10 23 zur Auswertung bereitgestellt werden. In allen anderen Fällen ergeht keine Übernahme der Auswertebits in die Zwischenspeicher.
  • Fig. 6 zeigt die Schaltung zur Auswertung und Anzeige der Auswertebits. Die Belegung der Auswertebits ist beliebig. Die hier dargestellte Schaltung entspricht dem Auswerte- und Anzeigeteil des zweiten Anwendungsbeispiels, das später erläutert wird. Im einzelnen zeigt Fig. 6 die Auswertelogik 24 zur Codeumwandlung der Daten Q4 bis Q7 23A von binär zu BCD, so daß eine 3-stellige-Dezimalzahl von 10 bis 130 in 10er-Schritten mit 7-Segment-Anzeigen 21 angezeigt werden kann. Die Daten Q8 bis Q10 23B werden zur Signalisierung 25 genutzt. Die Treiberstufen 26 sind Und-Glieder zur Dunkelsteuerung der Anzeigeelemente 21 und 25 mit dem Freigabesignal F 20 und liefern im Falle der Anzeigenfreigabe den erforderlichen Strom.
    Die Anwendung der erfindungsgemäßen Datenübertragungseinrichtung wird an den beiden folgenden Beispielen erläutert:
  • Anwendungsbeispiel 1
  • In Fig. 10 ist im oberen Teil schematisch ein Flughafen mit der Start- und Landebahn 27, einem landenden Flugzeug 28, seinem Rollweg 29 und seiner Spur zur Parkposition 30 dargestellt. Zur Einweisung des Flugzeuges in seine Parkposition wird die erfindungsgemäße Datenübertragungseinreichtung benutzt. Zwei weitere Flugzeuge 31 und 32 sollen mit der erfindungsgemäßen Datenübertragungseinrichtung aus ihrer Parkpositionen zur Startbahn geführt werden. Die zu übertragende Information besteht aus den Rollanweisungen:
    • R = nächste Zubringerstraße rechts abbiegen
    • L = nächste Zubringerstraße links abbiegen
    • G = geradeaus.
  • Der Rollweg des landenden Flugzeuges sei Richtung A, die Rollwege der startenden Flugzeuge seien Richtung B. An allen Flugzeugen befindet sich eine Datenempfängereinheit 8 gemäß der Erfindung. Im Falle des landenden Flugzeuges sei die Datenempfängereinheit 8 unmittelbar vor Erreichen des erfindungsgemäßen Datensenders 35 eingeschaltet worden. Im Datenwort des Senders 35 ist das Richtungsbit D1 gesetzt und in den Auswertebits D4 bis D10 17 sei codiert der Buchstabe R enthalten. Sobald die Datenempfängereinheit das Datenwort des Datensenders 35 empfängt, wird das Richtungsbit A im Richtungs-Flip-Flop 14A der Datenempfängereinheit 8 gespeichert und gleichzeitig wird mit dem Übernahme-Impuls 18 die codierte Information R dem Anzeigeteil übergeben und mit dem Freigabesignal 20 auf dem Display der Datenempfängereinheit 8 angezeigt. Im Datenwort der Datensendeeinheit 36 ist ebenfalls das Richtungsbit A gesetzt, jedoch enthalten die Auswertebits codiert die Richtungsinformation L. Da das Richtungsbit der Datensendeeinheit und das gespeicherte Richtungsbit in der Datenempfängereinheit übereinstimmen und die im Datenwort enthaltenen Auswertebits verschieden von den gepeicherten Daten im Zwischenspeicher sind, werden die aktuellen Auswertebits in den Zwischenspeicher geladen und die Information L zur Anzeige gebracht. Am Zielpunkt 30 befindet sich ebenfalls eine erfindungsgemäße Datensendeeinheit, deren Datenwort kein Richtungsbit, jedoch das gesetzte Richtungsänderungsbit enthält. Empfängt die Datenempfängereinheit dieses Datenwort, so werden die in der Datenempfängereinheit befindlichen Richtungs-Flip-Flops 14A, 14B gelöscht, wodurch über das Freigabesignal F alle Anzeigen dunkel geschaltet werden. In den Flugzeugen 31 und 32 befinden sich ebenfalls erfindungsgemäße Datensendeeinheiten, in deren Datenwort das Richtungsbit D2, entsprechend der Richtung B, gesetzt ist. Die Datenwörter der Sender 37 und 38 enthalten sowohl das Richtungsbit D2, als auch die codierte Information R als Bewegungsrichtung, die von den Datenempfängereinheiten beider Flugzeuge 31 und 32 übernommen und angezeigt werden. Im Datenwort des Senders 39 ist ebenfalls das Richtungsbit D2 gesetzt, jedoch enthalten die Auswertebis codiert die Information L, die von den Datenempfängereinheiten der Flugzeuge 31 und 32 übernommen werden. Am Zielpunkt 40 werden die Richtungs-Flip-Flops der Datenempfängereinheit gelöscht und die Anzeigen dunkel gesteuert, da im Datenwort 40 kein Richtungsbit, jedoch das Richtungsänderungsbit gesetzt ist. Der Vorteil der erfindungsgemäßen Datenübertragungseinrichtung ist besonders darin zu sehen, daß in Bereichen, in denen Sender mit verschiedenen Richtungscodierungen vorhanden sind, die Datenempfängereinheiten stets nur das Datenwort empfangen und auswerten, das aufgrund ihrer Richtungscodierung Gültigkeit hat.
  • Anwendungsbeispiel 2
  • In Fig. 10 ist im unteren Teil schematisch eine Autobahnabfahrt dargestellt. Es wird angenommen, daß ein Fahrzeug die Fahrtrichtung 41 verläßt und auf die Fahrspur 42 wechselt. Da die Fahrspur 41 als Richtung A definiert ist, enthalten alle Datenwörter, die von der Datensendeeinheit, die sich entlang der Fahrspur 41 befinden, gesendet werden, das gesetzte Richtungsbit D1. Die Information, die codiert in den Auswertebits enthalten ist, beinhaltet hier den Straßenverkehr betreffende Daten, z. B. Geschwindigkeitsbeschränkungen von 10 km/h bis 130 km/h in Schritten von 10 km/h. Für diese Datenmenge sind die Auswertebits Q4 bis Q7 23A, binär codiert, vorgesehen.
  • Die Auswertebits Q8 bis Q10 23B können auch für andere, den Straßenverkehr betreffende Informationen, z. B. Überholverbot, genutzt werden. Die in Fig. 6 dargestellte Logik 24 dient dazu, die Code-Umwandlung binär zur BCD durchzuführen. Verläßt nun ein Fahrzeug die Autobahn 41 durch Abbiegen nach rechts auf die Autobahn 42, deren Fahrtrichtung B definitionsgemäß dem Richtungsbit D2 zugeordnet ist, so muß auch das in der Datenempfängereinheit gespeicherte Richtungsbit von A nach B geändert werden. Mit der erfindungsgemäßen Datenübertragungseinrichtung läßt sich diese Änderung durchführen, indem im Datenwort der Datensendeeinheit 43, außer dem für die Fahrtrichtung 41 gültigen Richtungsbit D1, zusätzlich das Richtungsänderungsbit D3 gesetzt ist. Daraufhin erhalten in der Datenempfängereinheit beide Richtungs-Flip-Flops 14A, 14B über T1 und T2 einen Taktimpuls, wodurch beide Flip-Flops ihren Zustand ändern. Auf diese Weise ist die Änderung der Richtungs-Flip-Flops 14A, 14B vollzogen.

Claims (13)

  1. Datenübertragungseinrichtung zur Übertragung eines Datenwortes von einer Feststation zu einem bewegten Körper mit mindestens einer entlang der Bewegungsstrecke befindlichen Datensendeeinheit (5) zur Aussendung eines Sendesignals und einer an einem bewegten Körper befindlichen Datenempfängereinheit zum Empfangen der Sendesignale sowie mit mindestens einer in der Datenempfängereinheit enthaltenen Speichereinheit zum Speichern der Daten, mindestens einer in der Datenempfängereinheit enthaltenden Datenauswerteeinheit zum Auswerten der Daten und mindestens einer in der Datenempfängereinheit enthaltenen Anzeigeeinheit zum Anzeigen der Daten, dadurch gekennzeichnet, daß das übertragene Datenwort mindestens ein die Bewegungsrichtung des Körpers kennzeichnendes Richtungsbit (D1, D2) und mindestens ein Änderungen der Bewegungsrichtung berücksichtigendes Richtungsänderungsbit (D3) sowie mindestens ein Auswertebit (D4-D10) enthält, und daß die Datensende- und -empfängereinheiten mit in Puls-Pausen-Modulation arbeitenden Infrarot-Sende- und -Empfängereinrichtungen ausgestattet sind.
  2. Datenübertragungseinrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß im übertragenen Datenwort zwei die Bewegungsrichtung des Körpers kennzeichnende Richtungsbits (D1, D2) und ein Richtungsänderungsbit (D3) sowie mindestens ein Auswertebit (D4-D10) enthalten sind.
  3. Datenübertragungseinrichtung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das zu übertragende Datenwort von der Datensendeeinheit (5) zyklisch als Dauersignal aussendbar ist.
  4. Datenübertragungseinrichtung gemäß Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß beim Empfang eines Datenworts in Datenempfängereinheiten, in denen noch kein Richtungsbit (D1, D2) gespeichert ist, das im Datenwort enthaltene Richtungsbit (D1, D2) übernehmbar und in der Datenempfängereinheit als Richtungsbit (D1, D2) speicherbar ist, wenn im Datenwort das Richtungsänderungsbit (D3) nicht gesetzt ist.
  5. Datenübertragungseinrichtung gemäß Anspruch 1 bis 4, dadurch gekennzeichnet, daß beim Empfang eines Datenworts, in dem sowohl Richtungsbit (D1, D2) als auch Richtungsänderungsbit (D3) gesetzt sind, in Datenempfängereinheiten, in denen noch kein Richtungsbit (D1, D2) gespeichert ist, in der Datenempfängereinheit das im Datenwort nicht gesetzte Richtungsbit (D1, D2) invertiert übernehmbar und speicherbar ist.
  6. Datenübertragungseinrichtung gemäß Anspruch 1 bis 5, dadurch gekennzeichnet, daß beim Empfang eines Datenwortes in Datenempfängereinheiten, in denen bereits ein Richtungsbit (D1, D2) gesetzt ist, die Auswertebits (D4-D10) in einen Zwischenspeicher (19) der Speichereinheit übernehmbar und von der Auswerteeinheit auswertbar sind, wenn das im Datenwort enthaltene Richtungsbit (D1, D2) und das in der Datenempfängereinheit gespeicherte Richtungsbit (D1, D2) gleich sind, und die im Datenwort enthaltenen Auswertebits (D4-D10) sich in mindestens einem Bit von den im Zwischenspeicher (19) gespeicherten Daten unterscheiden, unabhängig davon, ob im Datenwort das Richtungsänderungsbit (D3) gesetzt ist.
  7. Datenübertragungseinrichtung gemäß Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Übernahme der Auswertebits (D4-D10) in den Zwischenspeicher (19) durch einen Übernahme-Impuls (18) auslösbar ist.
  8. Datenübertragungseinrichtung gemäß Anspruch 1 bis 7, dadurch gekennzeichnet, daß beim Empfang eines Datenworts, bei dem das Richtungsänderungsbit (D3), jedoch kein Richtungsbit (D1, D2) gesetzt ist, in Datenempfängereinheiten, in denen ein Richtungsbit (D1, D2) gespeichert ist, das gespeicherte Richtungsbit (D1, D2) und alle Anzeigen der Auswertebits (D4-D10) löschbar sind.
  9. Datenübertragungseinrichtung gemäß Anspruch 1 bis 8, dadurch gekennzeichnet, daß beim Empfang eines Datenworts, bei dem das Richtungsänderungsbit (D3), jedoch kein Richtungsbit (D1, D2) gesetzt ist, in Datenempfängereinheiten, in denen kein Richtungsbit (D1, D2) gespeichert ist, das Datenwort nicht übernehmbar ist.
  10. Verfahren zur Übertragung eines Datenwortes von einer Feststation zu einem bewegten Körper, wobei entlang der Bewegungsstrecke mindestens eine Datensendeeinheit zur Aussendung eines Sendesignals und einer an dem bewegten Körper befindlichen Datenempfängereinheit zum Empfangen der Sendesignale sowie in der Datenempfängereinheit mindestens eine Speichereinheit zum Speichern der Daten, mindestens eine Datenauswerteeinheit und mindestens eine Anzeigeeinheit zum Anzeigen der Daten angeordnet sind, gekennzeichnet durch folgende Verfahrensschritte:
    • das zu übertragende Datenwort besteht aus mindestens einem, die Bewegungsrichtung des Körpers kennzeichnenden Richtungsbit (D1, D2), einem Änderungen der Bewegungsrichtung berücksichtigenden Richtungsänderungsbit (D3) sowie mindestens einem Auswertebit (D4-D10) und wird zyklisch ausgesandt,
    • beim Empfang eines Datenwortes in Datenempfängereinheiten (9), in denen noch kein Richtungsbit (D1, D2) gespeichert ist, wird das im Datenwort enthaltene Richtungsbit (D1, D2) übernommen und in
    der Datenempfangseinheit als Richtungsbit (D1, D2) gespeichert, wenn im Datenwort das Richtungsänderungsbit (D3) nicht gesetzt ist,
    • beim Empfang eines Datenwortes, in dem sowohl Richtungsbit (D1, D2) als auch Richtungsänderungsbit (D3) gesetzt sind, in Datenempfängereinheiten, in denen noch kein Richtungsbit (D1, D2) gespeichert ist, wird das im Datenwort nicht gesetzte Richtungsbit (D1, D2) invertiert übernommen und gespeichert,
    • beim Empfang eines Datenwortes in Datenempfängereinheiten, in denen bereits ein Richtungsbit (D1, D2) gesetzt ist, werden nur dann die Auswertebits (D4-D10) in einen Zwischenspeicher (19) übernommen und von der Auswerteeinheit ausgewertet, wenn das im Datenwort enthaltene Richtungsbit (D1, D2) und das in der Datenempfangseinheit (9) gespeicherte Richtungsänderungsbit (D3) gleich sind, und sich die im Datenwort enthaltenen Auswertebits (D4-D10) in mindestens einem Bit von den im Zwischenspeicher (19) gespeicherten Daten unterscheiden, unabhängig davon, ob im Datenwort das Richtungsänderungsbit (D3) gesetzt ist,
    • beim Empfang eines Datenwortes, bei dem das Richtungsänderungsbit (D3), jedoch kein Richtungsbit (D1, D2) gesetzt ist, werden in Datenempfängereinheiten, in denen ein Richtungsbit (D1, D2) gespeichert ist, das gespeicherte Richtungsbit (D1, D2) und alle Anzeigen der Auswertebits (D4-D10) gelöscht,
    • beim Empfang eines Datenwortes, bei dem das Richtungsänderungsbit (D3), jedoch kein Richtungsbit (D1, D2) gesetzt ist, wird in Datenempfängereinheiten, in denen kein Richtungsbit (D1, D2) gespeichert ist, das Datenwort nicht übernommen und nicht ausgewertet.
  11. Verfahren gemäß Anspruch 10, dadurch gekennzeichnet, daß die Übernahme der Auswertebits (D4-D10) in den Zwischenspeicher (19) durch einen Übernahme-Impuls (18) ausgelöst wird.
  12. Verwendung der Datenübertragungseinrichtung gemäß Anspruch 1 bis 9 oder des Verfahrens zur Übertragung von Daten gemäß Anspruch 10 oder 11 in einer Vorrichtung zur automatischen Erfassung von Signalen für den Straßenverkehr und zur Wiedergabe dieser Signale in Kraftfahrzeugen.
  13. Verwendung der Datenübertragungseinrichtung gemäß Anspruch 1 bis 9 oder des Verfahrens zur Übertragung von Daten gemäß Anspruch 10 oder 11 in einer Vorrichtung zur automatischen Erfassung von Rollinformationen auf Flughäfen und zur Wiedergabe der Rollinformationen in Flugzeugen.
EP95108628A 1994-06-03 1995-06-06 Datenübertragung von einer Feststation zu einem bewegten Körper Expired - Lifetime EP0685828B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE9409056U DE9409056U1 (de) 1994-06-03 1994-06-03 Vorrichtung zur automatischen Erfassung von Signalen für den Straßenverkehr und zur Wiedergabe dieser Signale in Kraftfahrzeugen
DE9409056U 1994-06-03
DE19944445248 DE4445248A1 (de) 1994-12-19 1994-12-19 Infrarot-Datenübertragung von einer Feststation zu einem bewegten Körper
DE4445248 1994-12-19

Publications (2)

Publication Number Publication Date
EP0685828A1 EP0685828A1 (de) 1995-12-06
EP0685828B1 true EP0685828B1 (de) 1997-08-13

Family

ID=25943008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95108628A Expired - Lifetime EP0685828B1 (de) 1994-06-03 1995-06-06 Datenübertragung von einer Feststation zu einem bewegten Körper

Country Status (4)

Country Link
EP (1) EP0685828B1 (de)
AT (1) ATE156923T1 (de)
DE (1) DE59500498D1 (de)
ES (1) ES2105817T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2143416B1 (es) * 1998-04-30 2000-12-16 Garcia Gregorio Rosique Sistema de alerta por haz infrarojo para vehiculos terrestres.
DE20111039U1 (de) * 2001-06-29 2001-09-06 Tsr Verkehrsman Systeme Holdin Verkehrssystem und Empfangseinrichtung zur Erfassung und Darstellung den Straßenverkehr betreffender Informationen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3911916A1 (de) * 1988-10-26 1990-05-10 Telefunken Systemtechnik Verfahren zur erkennung von verkehrszeichen, vorzugsweise im strassenverkehr
DE4005397A1 (de) * 1990-02-21 1991-08-22 Bayerische Motoren Werke Ag Datenuebertragungs-funksystem fuer kraftfahrzeuge sowie funk-sende- und/oder empfangsgeraet eines kraftfahrzeugs
EP0521846A1 (de) * 1991-07-04 1993-01-07 Roto Frank Eisenwarenfabrik Aktiengesellschaft Drahtloses Anzeigesystem für Fahrzeuge
IT1254595B (it) * 1992-06-26 1995-09-28 Securvia Italia Srl Sistema per la rice-trasmissione di informazioni tra stazioni fisse e mobili.
DE9409056U1 (de) * 1994-06-03 1994-08-11 Schüssler, Heinrich, Dipl.-Ing., 66333 Völklingen Vorrichtung zur automatischen Erfassung von Signalen für den Straßenverkehr und zur Wiedergabe dieser Signale in Kraftfahrzeugen

Also Published As

Publication number Publication date
ES2105817T3 (es) 1997-10-16
EP0685828A1 (de) 1995-12-06
DE59500498D1 (de) 1997-09-18
ATE156923T1 (de) 1997-08-15

Similar Documents

Publication Publication Date Title
DE2814938C2 (de) Wegleitvorrichtung für Straßenfahrzeuge
DE2631543C2 (de)
DE2326859B2 (de) Anordnung zur auswertung von informationen, die fahrzeuge betreffen
DE19508043C1 (de) Steueranordnung für Verkehrssignale
DE19647461C2 (de) Einrichtung zur Erfassung von Eisenbahnfahrzeugen
EP3206929A1 (de) Verfahren zur fahrassistenz unter berücksichtigung einer signalanlage
DE3742707A1 (de) Verfahren zum automatischen abgeben von verkehrsinformationen und vorrichtung zur durchfuehrung des verfahrens
EP0817151B1 (de) Verfahren, fahrzeugseitige und stationäre Einrichtung zur individuellen Warnung vor Verkehrsstörungen
EP0685828B1 (de) Datenübertragung von einer Feststation zu einem bewegten Körper
DE3005101C2 (de)
DE19515809A1 (de) Informations- und Identifikationseinrichtung für Verkehrssysteme
DE3733582A1 (de) Autonomes geschwindigkeits-kontroll-speicher-system
DE2846197A1 (de) System zur individuellen zielfuehrung von kraftfahrzeugen
DE4445248A1 (de) Infrarot-Datenübertragung von einer Feststation zu einem bewegten Körper
DE2318259C3 (de) Verfahren und Vorrichtung zur Steuerung eines Verkehrsleitsystems
DE2350039A1 (de) Strassenverkehrsfernmeldesystem
DD262836A1 (de) Verfahren zur energiesparenden steuerung von in aufeinanderfolge verkehrenden schienengebundenen verkehrsmitteln
DE2223413B2 (de) Steuereinrichtung fuer fahrzeuge
DE3345707A1 (de) Sicherheitseinrichtung
DE4340148A1 (de) Bakensender mit Aufweckzone
EP1410363B1 (de) Verkehrssytem und empfangseinrichtung zur erfassung und darstellung den strassenverkehr betreffender informationen
DE2247275C2 (de) Anordnung bei eisenbahnanlagen mit linienfoermiger informationsuebertragung zwischen zug und strecke
DE2830672A1 (de) Einrichtung zur zugsicherung in eisenbahnanlagen mit kontinuierlicher signaluebertragung zwischen den schienenfahrzeugen und einer ortsfesten station
DE29610136U1 (de) Bedarfsabhängige Beeinflussung von Lichtzeichenanlagen ermöglicht freie Fahrt für Rettungswagen
DE19654659A1 (de) Straßenschildsystem mit Funksender zur aktiven Regelung der Geschwindigkeit von Kraftfahrzeugen, inklusive eines Funkempfängers und einer Elektronik zur Regelung der Geschwindigkeit in einem Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19951124

17Q First examination report despatched

Effective date: 19960306

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

REF Corresponds to:

Ref document number: 156923

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970818

REF Corresponds to:

Ref document number: 59500498

Country of ref document: DE

Date of ref document: 19970918

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2105817

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040611

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040617

Year of fee payment: 10

Ref country code: DE

Payment date: 20040617

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040622

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040623

Year of fee payment: 10

Ref country code: BE

Payment date: 20040623

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040625

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20040628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040630

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050606

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050606

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050606

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050606

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050607

BERE Be: lapsed

Owner name: *SCHUSSLER JURGEN

Effective date: 20050630

Owner name: *SCHUSSLER HEINRICH

Effective date: 20050630