EP0683356A2 - Method for operating a combustion chamber - Google Patents

Method for operating a combustion chamber Download PDF

Info

Publication number
EP0683356A2
EP0683356A2 EP95810290A EP95810290A EP0683356A2 EP 0683356 A2 EP0683356 A2 EP 0683356A2 EP 95810290 A EP95810290 A EP 95810290A EP 95810290 A EP95810290 A EP 95810290A EP 0683356 A2 EP0683356 A2 EP 0683356A2
Authority
EP
European Patent Office
Prior art keywords
fuel
zone
combustion chamber
combustion
hot gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95810290A
Other languages
German (de)
French (fr)
Other versions
EP0683356B1 (en
EP0683356A3 (en
Inventor
Rolf Dr. Althaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0683356A2 publication Critical patent/EP0683356A2/en
Publication of EP0683356A3 publication Critical patent/EP0683356A3/en
Application granted granted Critical
Publication of EP0683356B1 publication Critical patent/EP0683356B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply

Definitions

  • the present invention relates to a method according to the preamble of claim 1. It also relates to a combustion chamber for carrying out the method.
  • the invention seeks to remedy this.
  • the object of the invention is to minimize, in particular, the CO and UHC emissions in the critical range between auto-ignition and a temperature of approximately 1100 ° C. in a method and a combustion chamber of the type mentioned at the outset .
  • the burners should be divided into at least two groups.
  • the individual groups are run in series from the auto-ignition point to at least 1100 ° C.
  • the group of burners used is supplied on average with a larger amount of fuel during the starting phase; the individual burners can thus be operated more stably. If all burner groups up to a temperature level of approx. 1100 ° C have been retightened, they are then raised in parallel from this temperature level to the desired operating temperature.
  • annular combustion chamber 1 shows, as can be seen from the shaft axis 16, an annular combustion chamber 1, which essentially has the shape of a coherent annular or quasi-annular cylinder.
  • a combustion chamber can also consist of a number of axially, quasi-axially or helically arranged and individually closed combustion chambers.
  • Such ring combustion chambers are excellently suited to be operated as self-igniting combustion chambers which are placed in the flow direction between two turbines mounted on a shaft. If such an annular combustion chamber 1 is operated on self-ignition, the upstream turbine 2 is only designed for partial relaxation of the hot gases 3, so that the exhaust gases 4 downstream of this turbine 2 still flow into the inflow zone 5 of the annular combustion chamber 1 at a very high temperature.
  • This inflow zone 5 is equipped on the inside and in the circumferential direction of the channel wall 6 with a series of vortex-generating elements 100, hereinafter only called vortex generators.
  • the exhaust gases 4 are swirled by the vortex generators 100 such that no recirculation areas occur in the wake of the vortex generators 100 mentioned in the subsequent premixing section 7.
  • this premixing section 7 which is designed as a Venturi channel, a plurality of fuel lances 8 are arranged, which take over the supply of a fuel 9 and supporting air 10. These fuel lances 8 are discussed in more detail below. These media can be supplied to the individual fuel lances 8, for example, via a ring line (not shown).
  • the swirl flow triggered by the vortex generators 100 provides for a large-scale distribution of the introduced fuel 9, and possibly also the admixed supporting air 10. Furthermore, the swirl flow ensures a homogenization of the mixture of combustion air and fuel.
  • the fuel 9 injected into the exhaust gases 4 by the fuel lance 8 triggers self-ignition if these exhaust gases 4 have the specific temperature which the fuel-dependent auto-ignition is capable of triggering. If the ring combustion chamber 1 is operated with a gaseous fuel, a temperature of the exhaust gases 4 above approx. 850 ° C. must be present for the initiation of self-ignition. With such a combustion, as already appreciated above, there is a risk of a flashback. This problem is remedied by, on the one hand, designing the premixing zone 7 as a venturi channel and, on the other hand, disposing the injection of the fuel 9 in the region of the largest constriction within the premixing zone 7.
  • a combustion zone 11 follows the relatively short premixing zone 7.
  • the transition between the two zones is formed by a radial cross-sectional jump 12, which initially induces the flow cross-section of the combustion zone 11.
  • the cross-sectional jump 12 is also a flame front. In order to prevent the flame from reigniting into the interior of the premixing zone 7, the flame front must be kept stable.
  • the vortex generators 100 are designed such that no recirculation takes place in the premixing zone 7; only after the sudden widening of the cross section is the burst of the swirl flow desired.
  • the swirl flow supports the rapid re-application of the flow behind the cross-sectional jump 12, so that a high burn-out with a short overall length can be achieved by utilizing the volume of the combustion zone 11 as fully as possible.
  • a flow-like edge zone is formed during operation, in which vortex detachments occur due to the prevailing negative pressure, which then lead to stabilization of the flame front.
  • the exhaust gases 4 processed into combustion gases 11 into hot gases 14 subsequently act on a further turbine 14 acting downstream.
  • the exhaust gases 15 can then be used to operate a steam cycle, in which case the system is a combination system.
  • FIG. 2 shows a diagram in which the stepped mode of operation of the burners can be seen during the starting phase.
  • the abscissa 17 intends to symbolize the development of the burners arranged next to one another, while the ordinate 18 shows the first temperature levels approached during the starting phase.
  • the staged procedure consists in that the burners, ie the fuel lances from FIG. 1, are supplied with fuel in series during the starting phase.
  • the fuel lances 8a, 8c, etc. are put into operation and are first brought up to approximately 1100 ° C.
  • the remaining fuel lances 8b, 8d, etc. are also drawn up to the above-mentioned temperature level of approx. 1100 ° C.
  • this driving style has the additional advantage that CO and UHC emissions in particular can be significantly reduced in the critical range between 1000 ° C and 1100 ° C.
  • the staged driving style during the starting phase is not limited to 2 groups of burners.
  • the abscissa 22 shows the load range, zero being the temperature level at which the self-ignition of the mixture takes place, that is to say from about 850 ° C. in our case.
  • the ordinate 23 shows the degree of pollutant emissions.
  • Curve 24 shows the course of the pollutant emissions in a conventional, non-stepped driving style. The tip symbolizes the CO and UHC emissions in the interval between approx. 1000 ° C and approx. 1100 ° C.
  • the stepped driving style is different, as curve 25 shows.
  • a two-hump curve is recognizable here, corresponding to the stepped mode of operation with two burner groups.
  • the staged driving style can achieve emission values that are more than half smaller than the conventional driving style.

Abstract

The process is for a chamber into which hot gas flows. Fuel (8) is blown into the hot gas over several fuel flanges (9). Self-ignition then occurs. The fuel flanges are divided into at least two groups which are supplied with gas consecutively. The supply of hot gas to the groups remain constant. The flanges are heated to a temp. in the region of 1100 degrees C. All the flanges are connected up and their temp. is raised in parallel to the required operation temp. Supporting air (10) may be supplied to the flanges along with the fuel. <IMAGE>

Description

Technisches GebietTechnical field

Die vorliegende Erfindung betrifft ein Verfahren gemäss Oberbegriff des Anspruchs 1. Sie betrifft auch eine Brennkammer zur Durchführung des Verfahrens.The present invention relates to a method according to the preamble of claim 1. It also relates to a combustion chamber for carrying out the method.

Stand der TechnikState of the art

Bei Brennerkonfigurationen mit einer Vormischstrecke und einer in Abströmungsrichtung zum nachgeschalteten Brennraum freien Mündung stellt sich immer wieder das Problem, wie auf einfachste Art und Weise eine stabile Flammenfront bei extrem niedrigen Emissionswerten bewerkstelligt werden kann. Diesbezüglich sind bereits verschiedene Vorschläge bekanntgeworden, die an sich nicht zu befriedigen vermochten. Eine bis anhin bekanntgewordene Ausnahme bildet die in EP-A1-0 321 809 offenbarte Erfindung, deren Vorschläge betreffend die Flammenstabilisierung, den Wirkungsgrad und die Schadstoff-Emissionen einen Qualitätssprung darstellen.
Eine typische Feuerungsanlage, bei welcher die genannte Techniken gegen einen Flammenrückschlag versagen müssen, betrifft eine auf Selbstzündung ausgelegte Brennkammer. Hier handelt es sich in der Regel um ein weitgehend zylindrisches Rohr oder um eine Ringbrennkammer, worin ein Arbeitsgas mit einer relativ hohen Temperatur ab ca. 850°C einströmt, dort mit einem eingedüsten Brennstoff die Bildung eines selbstzündenden Gemisches eingeleitet wird. Die kalorische Aufbereitung des Arbeitsgases zu Heissgas findet allein innerhalb dieses Rohres oder dieser Ringbrennkammer statt. Handelt es sich um eine Nachbrennkammer, welche zwischen einer Hochdruck- und Niederdruck-Turbine wirkt, so ist es schon aus Platzgründen unmöglich, eine Vormischstrecke oder Vormischbrenner einzubauen sowie Hilfsmittel gegen einen Flammenrückschlag vorzusehen resp. einzubauen, weshalb bis anhin auf diese an sich attraktive Verbrennungstechnik verzichtet werden musste. Geht das Postulat dahin, eine Ringbrennkammer als Nachbrennkammer einer auf einer einzigen Welle gelagerten Gasturbogruppe vorzusehen, so ergeben sich betreffend der Minimierung der Länge dieser Brennkammer zusätzliche Probleme, welche mit der Flammenstabilisierung im Zusammenhang stehen. Selbst bei zufriedenstellender Lösung der Flammenstabilisierung ist aber der anfängliche Ausstoss verschiedener Schadstoff-Emissionen nach wie vor nicht gelöst. Der kritische Bereich liegt zwischen dem Selbstzündungsakt und einer Temperatur von ca. 1100°C. Hier werden hohe Emissionen, insbesondere in Form von CO und UHC produziert, die nicht mehr mit der Gesetzgebung vieler Länder im Einklang stehen. Erst wenn die Verbrennungstemperatur höher 1100°C liegt, ist ein guter Ausbrand bei minimierten Schadstoff-Emissionen möglich.
In burner configurations with a premixing section and a mouth that is free in the outflow direction to the downstream combustion chamber, there is always the problem of how to achieve a stable flame front with extremely low emission values in the simplest way. In this regard, various proposals have already become known which, in themselves, have not been able to be satisfied. An exception that has become known so far is the invention disclosed in EP-A1-0 321 809, whose proposals relating to flame stabilization, efficiency and pollutant emissions represent a leap in quality.
A typical furnace, in which the above-mentioned techniques have to fail against a flashback, concerns a combustion chamber designed for self-ignition. This is usually a largely cylindrical tube or an annular combustion chamber, in which a working gas flows in at a relatively high temperature from approx. 850 ° C., along with it an injected fuel initiates the formation of a self-igniting mixture. The caloric treatment of the working gas into hot gas takes place solely within this tube or this annular combustion chamber. If it is a post-combustion chamber that acts between a high-pressure and low-pressure turbine, it is already impossible for reasons of space to install a premixing section or premixing burner and to provide aids against a flashback. to install, which is why until now this attractive combustion technology had to be dispensed with. If the postulate is to provide an annular combustion chamber as an afterburning chamber of a gas turbine group mounted on a single shaft, additional problems arise with regard to minimizing the length of this combustion chamber, which are connected with flame stabilization. Even with a satisfactory solution to flame stabilization, the initial emissions of various pollutant emissions are still not resolved. The critical range lies between the auto-ignition act and a temperature of approx. 1100 ° C. High emissions are produced here, especially in the form of CO and UHC, which are no longer in line with the legislation of many countries. A good burnout with minimized pollutant emissions is only possible when the combustion temperature is higher than 1100 ° C.

Darstellung der ErfindungPresentation of the invention

Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde, bei einem Verfahren und einer Brennkammer der eingangs genannten Art insbesondere die CO- und UHC-Emissionen im kritischen Bereich zwischen Selbstzündung und einer Temperatur von ca. 1100°C zu minimieren.The invention seeks to remedy this. The object of the invention, as characterized in the claims, is to minimize, in particular, the CO and UHC emissions in the critical range between auto-ignition and a temperature of approximately 1100 ° C. in a method and a combustion chamber of the type mentioned at the outset .

Es wird vorgeschlagen, die genannten Schadstoff-Emissionen durch eine stufenweise Inbetriebsetzung der vorhandenen Brenner herabzusetzen. Zu diesem Zweck sollen die Brenner auf mindestens zwei Gruppen aufgeteilt werden. Die einzelnen Gruppen werden seriell nacheinander vom Selbstzündungspunkt aus auf mindestens 1100°C gefahren.It is proposed to reduce the pollutant emissions mentioned by gradually starting up the existing burners. For this purpose, the burners should be divided into at least two groups. The individual groups are run in series from the auto-ignition point to at least 1100 ° C.

Der wesentlche Vorteil der Erfindung ist darin zu sehen, dass durch das serielle Hochfahren in ein unterkritisches Gebiet der genannte durch hohe Schadstoff-Emissionswerte charakterisierte Lastbereich, insbesondere was die CO-und UHC-Emissionswerte (UHC = ungesättigte Kohlen-Wasser-Stoffe) betrifft, signifikant überbrückt werden kann. Die zum Einsatz gelangende Gruppe von Brennern wird im Mittel während der Startphase mit einer grösseren Brennstoffmenge versorgt; die einzelnen Brenner können somit stabiler betrieben werden. Sind alle Brennergruppen bis zu einer Temperaturstufe von ca. 1100°C nachgezogen worden, so werden sie anschliessend ab dieser Temperaturstufe parallel auf die gewünschte Betriebstemperatur hochgefahren.The main advantage of the invention can be seen in the fact that as a result of the serial ramp-up in a subcritical area, the load range mentioned, which is characterized by high pollutant emission values, in particular as regards the CO and UHC emission values (UHC = unsaturated coal-water substances), can be bridged significantly. The group of burners used is supplied on average with a larger amount of fuel during the starting phase; the individual burners can thus be operated more stably. If all burner groups up to a temperature level of approx. 1100 ° C have been retightened, they are then raised in parallel from this temperature level to the desired operating temperature.

Vorteilhafte und zweckmässige Weiterbildungen der erfindungsgemässen Aufgabenstellung sind in den weiteren abhängigen Ansprüchen gekennzeichnet.Advantageous and expedient developments of the task according to the invention are characterized in the further dependent claims.

Im folgenden wird anhand der Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben.An exemplary embodiment of the invention is explained in more detail below with reference to the drawings. All elements not necessary for the immediate understanding of the invention have been omitted. Identical elements are provided with the same reference symbols in the various figures. The direction of flow of the media is indicated by arrows.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigt:

Fig. 1
eine selbstzündende Brennkammer als Ringbrennkammer konzipiert,
Fig. 2
eine diagrammässig erfasste gestufte Startphase bei einer selbstzündenden Brennkammer und
Fig. 3
eine qualitative Erfassung der Schadstoff-Emissionswerte zwischen einer nicht gestuften und einer gestuften Fahrweise während der Startphase bei einer selbstzündenden Brennkammer.
It shows:
Fig. 1
a self-igniting combustion chamber designed as an annular combustion chamber,
Fig. 2
a diagrammatically recorded staged start phase in a self-igniting combustion chamber and
Fig. 3
a qualitative recording of the pollutant emission values between a non-graded and a graded driving style during the start phase with a self-igniting combustion chamber.

Wege zur Ausführung der Erfindung, gewerbliche VerwertbarkeitWays of carrying out the invention, commercial usability

Fig. 1 zeigt, wie aus der Wellenachse 16 hervorgeht, eine Ringbrennkammer 1, welche im wesentlich die Form eines zusammenhängenden annularen oder quasi-annularen Zylinders aufweist. Darüber hinaus kann eine solche Brennkammer auch aus einer Anzahl axial, quasi-axial oder schraubenförmig angeordneter und einzeln in sich abgeschlossener Brennräume bestehen. Solche Ringbrennkammern eignen sich vorzüglich, als selbstzündende Brennkammern betrieben zu werden, welche in Strömungsrichtung zwischen zwei auf einer Welle gelagerten Turbinen plaziert sind. Wird eine solche Ringbrennkammer 1 auf Selbstzündung betrieben, so ist die stromauf wirkende Turbine 2 nur auf eine Teilentspannung der Heissgase 3 ausgelegt, womit die Abgase 4 stromab dieser Turbine 2 noch mit einer recht hohen Temperatur in die Zuströmzone 5 der Ringbrennkammer 1 strömen. Diese Zuströmzone 5 ist innenseitig und in Umfangsrichtung der Kanalwand 6 mit einer Reihe von wirbelerzeugenden Elementen 100, im folgenden nur noch Wirbel-Generatoren genannt, bestückt. Die Abgase 4 werden durch die Wirbel-Generatoren 100 derart verdrallt, dass in der anschliessenden Vormischstrecke 7 keine Rezirkulationsgebiete im Nachlauf der genannten Wirbel-Generatoren 100 auftreten.1 shows, as can be seen from the shaft axis 16, an annular combustion chamber 1, which essentially has the shape of a coherent annular or quasi-annular cylinder. In addition, such a combustion chamber can also consist of a number of axially, quasi-axially or helically arranged and individually closed combustion chambers. Such ring combustion chambers are excellently suited to be operated as self-igniting combustion chambers which are placed in the flow direction between two turbines mounted on a shaft. If such an annular combustion chamber 1 is operated on self-ignition, the upstream turbine 2 is only designed for partial relaxation of the hot gases 3, so that the exhaust gases 4 downstream of this turbine 2 still flow into the inflow zone 5 of the annular combustion chamber 1 at a very high temperature. This inflow zone 5 is equipped on the inside and in the circumferential direction of the channel wall 6 with a series of vortex-generating elements 100, hereinafter only called vortex generators. The exhaust gases 4 are swirled by the vortex generators 100 such that no recirculation areas occur in the wake of the vortex generators 100 mentioned in the subsequent premixing section 7.

In Umfangsrichtung dieser als Venturikanal ausgebildete Vormischstrecke 7 sind mehrere Brennstofflanzen 8 disponiert, welche die Zuführung eines Brennstoffes 9 und einer Stützluft 10 übernehmen. Auf diese Brennstofflanzen 8 wird weiter unten näher eingegangen. Die Zuführung dieser Medien zu den einzelnen Brennstofflanzen 8 kann bespielsweise über eine nicht gezeigte Ringleitung vorgenommen werden. Die von den Wirbel-Generatoren 100 ausgelöste Drallströmung sorgt für eine grossräumige Verteilung des eingebrachten Brennstoffes 9, allenfalls auch der zugemischten Stützluft 10. Des weiteren sorgt die Drallströmung für eine Homogenisierung des Gemisches aus Verbrennungsluft und Brennstoff. Der durch die Brennstofflanze 8 in die Abgase 4 eingedüste Brennstoff 9 löst eine Selbstzündung aus, soweit diese Abgase 4 jene spezifische Temperatur aufweisen, welche die brennstoffabhängige Selbstzündung auszulösen vermag. Wird die Ringbrennkammer 1 mit einem gasförmigen Brennstoff betrieben, muss für die Inizierung einer Selbstzündung eine Temperatur der Abgase 4 ab ca. 850°C vorliegen. Bei einer solchen Verbrennung besteht, wie bereits oben gewürdigt, an sich die Gefahr eines Flammenrückschlages. Dieses Problem wird behoben, indem einerseits die Vormischzone 7 als Venturikanal ausgebildet wird, andererseits indem die Eindüsung des Brennstoffes 9 im Bereich der grössten Einschnürung innerhalb der Vormischzone 7 disponiert wird. Durch die Verengung in der Vormischzone 7 wird die Turbulenz durch die Anhebung der Axialgeschwindigkeit vermindert, was die Rückschlaggefahr durch die Verminderung der turbulenten Flammengeschwindigkeit minimiert wird. Andererseits wird die grossräumige Verteilung des Brennstoffes 9 weiterhin gewährleistet, da die Umfangskomponente der von den Wirbel-Generatoren 100 stammenden Drallströmung nicht beeinträchtigt wird. Hinter der relativ kurz gehaltenen Vormischzone 7 schliesst sich eine Verbrennungszone 11 an. Der Uebergang zwischen der beiden Zonen wird durch einen radialen Querschnittssprung 12 gebildet, der zunächst den Durchflussquerschnitt der Verbrennungszone 11 induziert. In der Ebene des Querschnittssprunges 12 stellt sich auch eine Flammenfront ein. Um eine Rückzündung der Flamme ins Innere der Vormischzone 7 zu vermeiden muss die Flammenfront stabil gehalten werden. Zu diesem Zweck werden die Wirbel-Generatoren 100 so ausgelegt, dass in der Vormischzone 7 noch keine Rezirkulation stattfindet; erst nach der plötzlichen Querschnittserweiterung ist das Aufplatzen der Drallströmung erwünscht. Die Drallströmung unterstützt das schnelle Wiederanlegen der Strömung hinter dem Querschnittssprung 12, so dass durch die möglichst vollständige Ausnutzung des Volumens der Verbrennungszone 11 ein hoher Ausbrand bei kurzer Baulänge erzielt werden kann. Innerhalb dieses Querschnittssprunges 12 bildet sich während des Betriebes eine strömungsmässige Randzone, in welcher durch den dort vorherrschenden Unterdruck Wirbelablösungen entstehen, welche dann zu einer Stabilisierung der Flammenfront führen. Die in der Verbrennungszone 11 aufbereiteten Abgase 4 zu Heissgasen 14 beaufschlagen anschliessend eine weitere stromab wirkende Turbine 14. Die Abgase 15 können anschliessend zum Betrieb eines Dampfkreislaufes herangezogen werden, wobei im letztgenannten Fall die Anlage dann eine Kombianlage ist.In the circumferential direction of this premixing section 7, which is designed as a Venturi channel, a plurality of fuel lances 8 are arranged, which take over the supply of a fuel 9 and supporting air 10. These fuel lances 8 are discussed in more detail below. These media can be supplied to the individual fuel lances 8, for example, via a ring line (not shown). The swirl flow triggered by the vortex generators 100 provides for a large-scale distribution of the introduced fuel 9, and possibly also the admixed supporting air 10. Furthermore, the swirl flow ensures a homogenization of the mixture of combustion air and fuel. The fuel 9 injected into the exhaust gases 4 by the fuel lance 8 triggers self-ignition if these exhaust gases 4 have the specific temperature which the fuel-dependent auto-ignition is capable of triggering. If the ring combustion chamber 1 is operated with a gaseous fuel, a temperature of the exhaust gases 4 above approx. 850 ° C. must be present for the initiation of self-ignition. With such a combustion, as already appreciated above, there is a risk of a flashback. This problem is remedied by, on the one hand, designing the premixing zone 7 as a venturi channel and, on the other hand, disposing the injection of the fuel 9 in the region of the largest constriction within the premixing zone 7. The narrowing in the premixing zone 7 reduces the turbulence by increasing the axial speed, which minimizes the risk of kickback by reducing the turbulent flame speed. On the other hand, the large-scale distribution of the fuel 9 is still guaranteed, since the peripheral component of the swirl flow originating from the vortex generators 100 is not impaired. A combustion zone 11 follows the relatively short premixing zone 7. The transition between the two zones is formed by a radial cross-sectional jump 12, which initially induces the flow cross-section of the combustion zone 11. In the plane the cross-sectional jump 12 is also a flame front. In order to prevent the flame from reigniting into the interior of the premixing zone 7, the flame front must be kept stable. For this purpose, the vortex generators 100 are designed such that no recirculation takes place in the premixing zone 7; only after the sudden widening of the cross section is the burst of the swirl flow desired. The swirl flow supports the rapid re-application of the flow behind the cross-sectional jump 12, so that a high burn-out with a short overall length can be achieved by utilizing the volume of the combustion zone 11 as fully as possible. Within this cross-sectional jump 12, a flow-like edge zone is formed during operation, in which vortex detachments occur due to the prevailing negative pressure, which then lead to stabilization of the flame front. The exhaust gases 4 processed into combustion gases 11 into hot gases 14 subsequently act on a further turbine 14 acting downstream. The exhaust gases 15 can then be used to operate a steam cycle, in which case the system is a combination system.

Fig. 2 zeigt ein Diagramm, worin die gestufte Fahrweise der Brenner während der Startphase ersichtlich ist. Die Abszisse 17 will die Abwicklung der nebeneinander angeordneten Brenner versinnbildlichen, während die Ordinate 18 die ersten angefahrenen Temperaturstufen während der Startphase zeigen. Die gestufte Fahrweise besteht darin, dass die Brenner, d.h. die Brennstofflanzen aus Fig. 1, während der Startphase seriell mit Brennstoff versorgt werden. In einer ersten Stufe 19 werden die Brennstofflanzen 8a, 8c, etc. in Betrieb genommen, und zunächst bis auf ca. 1100°C vorgezogen. Anschliessend, bei zweistufiger Fahrweise, werden die restlichen Brennstofflanzen 8b, 8d, etc. ebenfalls bis zum genannten Temperaturniveau von ca. 1100°C nachgezogen. Sobald alle Brenner auf diese neue Temperaturstufe 20 gebracht sind, werden sie dann gemeinsam, d.h. parallel auf die gewünschte Betriebstemperaturstufe 21 hochgefahren. Da die gestuft in Betrieb genommenen Brenner jeweils mit einer grösseren Brennstoffmenge gefahren werden, gelingt es, den Bereich mit hohen Emissionenwerten, wie oben bereits erwähnt, fetter zu durchfahren, wodurch die Brenner zunächst stabiler betrieben werden können. Diese Fahrweise hat aber noch den zusätzlichen Vorteil, dass insbesondere auf die CO- und UHC-Emissionen im kritischen Bereich zwischen 1000°C und 1100°C signifikant herabgesetzt werden können. Die gestufte Fahrweise während der Startphase ist nicht auf 2 Gruppen von Brennern beschränkt.FIG. 2 shows a diagram in which the stepped mode of operation of the burners can be seen during the starting phase. The abscissa 17 intends to symbolize the development of the burners arranged next to one another, while the ordinate 18 shows the first temperature levels approached during the starting phase. The staged procedure consists in that the burners, ie the fuel lances from FIG. 1, are supplied with fuel in series during the starting phase. In a first stage 19, the fuel lances 8a, 8c, etc. are put into operation and are first brought up to approximately 1100 ° C. Then, in a two-stage mode of operation, the remaining fuel lances 8b, 8d, etc. are also drawn up to the above-mentioned temperature level of approx. 1100 ° C. As soon as all burners are brought to this new temperature level 20, they will then together, ie ramped up to the desired operating temperature level 21 in parallel. Since the burners, which are put into operation in stages, are each run with a larger amount of fuel, the area with high emission values, as already mentioned above, can be run richer, as a result of which the burners can initially be operated more stably. However, this driving style has the additional advantage that CO and UHC emissions in particular can be significantly reduced in the critical range between 1000 ° C and 1100 ° C. The staged driving style during the starting phase is not limited to 2 groups of burners.

Fig. 3 zeigt eine qualitative Gegenüberstellung betreffend die Schadstoff-Emissionen zwischen einer nicht gestuften und einer gestuften Fahrweise. Im Diagramm zeigt die Abszisse 22 den Lastbereich, wobei als Null jenes Temperaturniveau gemeint ist, bei welchem die Selbstzündung des Gemisches stattfindet, also in unserem Fall ab ca. 850°C. Die Ordinate 23 zeigt den Grad der Schadstoff-Emissionen. Die Kurve 24 zeigt den Verlauf der Schadstoff-Emissionen bei einer konventionellen, nicht gestuften Fahrweise. Die Spitze versinnbildlich den CO- und UHC-Ausstoss im Intervall zwischen ca. 1000°C und ca. 1100°C. Anders die gestufte Fahrweise, wie die Kurve 25 zeigt. Erkenntlich ist hier ein Zweibuckelverlauf, entsprechend der gestuften Fahrweise mit zwei Brennergruppen. Grössenordnung lassen sich mit der gestuften Fahrweise Emissionswerte erzielen, die über die Hälfte kleiner gegenüber der herkömmlichen Fahrweise sind.3 shows a qualitative comparison regarding the pollutant emissions between a non-staged and a staged driving style. In the diagram, the abscissa 22 shows the load range, zero being the temperature level at which the self-ignition of the mixture takes place, that is to say from about 850 ° C. in our case. The ordinate 23 shows the degree of pollutant emissions. Curve 24 shows the course of the pollutant emissions in a conventional, non-stepped driving style. The tip symbolizes the CO and UHC emissions in the interval between approx. 1000 ° C and approx. 1100 ° C. The stepped driving style is different, as curve 25 shows. A two-hump curve is recognizable here, corresponding to the stepped mode of operation with two burner groups. On the order of magnitude, the staged driving style can achieve emission values that are more than half smaller than the conventional driving style.

BezugszeichenlisteReference list

11
RingbrennkammerAnnular combustion chamber
22nd
Turbineturbine
33rd
HeissgaseHot gases
44th
AbgaseExhaust gases
55
Zuströmzone, Kanal der ZuströmzoneInflow zone, channel of the inflow zone
66
Kanalwand der ZuströmzoneCanal wall of the inflow zone
77
VormischzonePremixing zone
8 8a-8d etc.8 8a-8d etc.
BrennstofflanzenFuel lances
99
Brennstofffuel
1010th
StützluftSupport air
1111
VerbrennungszoneCombustion zone
1212th
QuerschnittssprungCross-sectional jump
1313
HeissgaseHot gases
1414
Turbineturbine
1515
AbgaseExhaust gases
1616
WellenachseShaft axis
1717th
Abszisseabscissa
1818th
Ordinateordinate
1919th
Erste StufeFirst stage
2020th
Neue gemeinsame StufeNew common level
2121
BetriebstemperaturstufeOperating temperature level
2222
Abszisseabscissa
2323
Ordinateordinate
2424th
Schadstoff-Emissionskurve, konventionell betriebenPollutant emission curve, operated conventionally
2525th
Schadstoff-Emissionskurve, gestuft betriebenPollutant emission curve, operated in stages
100100
Wirbel-GeneratorenVortex generators

Claims (4)

Verfahren zum Betrieb einer Brennkammer, in welche ein Heissgas einströmt, und in welcher durch Eindüsung eines Brennstoffes über mehrere Brennstofflanzen in das Heissgas eine Selbstzündung ausgelöst wird, dadurch gekennzeichnet, dass die Brennstofflanzen (8) in mindestens zwei Gruppen aufgeteilt werden, dass die einzelnen Gruppen (8a, 8c, ...; 8b, 8d, ...) bei gleichbleibender Heissgasströmung nacheinander mit Brennstoff (9) gespiesen werden und jeweils auf eine Temperaturstufe im Bereich von 1100°C vorgezogen werden, dass anschliessend von dieser Temperaturstufe aus alle Brennstofflanzen (8) parallel auf die gewünschte Betriebstemperatur hochgefahren werden.Method for operating a combustion chamber into which a hot gas flows and in which self-ignition is triggered by injecting a fuel into the hot gas via a plurality of fuel lances, characterized in that the fuel lances (8) are divided into at least two groups such that the individual groups (8a, 8c, ...; 8b, 8d, ...) are supplied with fuel (9) one after the other while the hot gas flow remains constant and are each brought up to a temperature level in the range of 1100 ° C, so that from this temperature level all fuel lances can be started (8) run up in parallel to the desired operating temperature. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Brennstofflanzen (8) mit Brennstoff (9) und mit einer Stützluft (10) betrieben werden.Method according to claim 1, characterized in that the fuel lances (8) are operated with fuel (9) and with supporting air (10). Brennkammer zur Durchführung des Verfahrens nach Anspruch 1, wobei die Brennkammer im wesentlichen aus einer Zuströmzone und einer Verbrennungszone besteht, wobei beide Zonen nacheinander geschaltet sind, dadurch gekennnzeichnet, dass die Zuströmzone (5) Wirbel-Generatoren (100) aufweist, von denen über den Umfang des durchströmten Kanals mehrere nebeneinander angeordnet sind, dass sich stromab der Zuströmzone (5) eine Vormischzone (7) anschliesst, in welche über eine Anzahl in Umfangsrichtung angeordneter Brennstofflanzen (8) ein gasförmiger und/oder flüssiger Brennstoff (9) als Sekundärströmung in eine gasförmige Hauptströmung (4) eindüsbar ist, dass zwischen Vormischzone (7) und Verbrennungszone (11) ein Querschnittssprung (12) vorhanden ist, der den anfänglichen Strömungsquerschnitt der Verbrennungszone (11) induziert.Combustion chamber for carrying out the method according to claim 1, wherein the combustion chamber consists essentially of an inflow zone and a combustion zone, both zones being connected in series, characterized in that the inflow zone (5) has vortex generators (100), of which over the The circumference of the channel through which flowed several Arranged downstream of the inflow zone (5) is a pre-mixing zone (7), into which a gaseous and / or liquid fuel (9) can be injected as a secondary flow into a gaseous main flow (4) via a number of fuel lances (8) arranged in the circumferential direction is that between the premixing zone (7) and the combustion zone (11) there is a cross-sectional jump (12) which induces the initial flow cross section of the combustion zone (11). Brennkammer nach Anspruch 3, dadurch gekennnzeichnet, dass die Vormischzone (7) ein venturiförmiger Kanal ist.Combustion chamber according to claim 3, characterized in that the premixing zone (7) is a venturi-shaped channel.
EP95810290A 1994-05-19 1995-05-03 Method for operating a combustion chamber and combustion chamber Expired - Lifetime EP0683356B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4417536 1994-05-19
DE4417536A DE4417536A1 (en) 1994-05-19 1994-05-19 Process for operating a combustion chamber

Publications (3)

Publication Number Publication Date
EP0683356A2 true EP0683356A2 (en) 1995-11-22
EP0683356A3 EP0683356A3 (en) 1997-06-18
EP0683356B1 EP0683356B1 (en) 2001-01-17

Family

ID=6518481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810290A Expired - Lifetime EP0683356B1 (en) 1994-05-19 1995-05-03 Method for operating a combustion chamber and combustion chamber

Country Status (5)

Country Link
US (1) US5609017A (en)
EP (1) EP0683356B1 (en)
JP (1) JPH07318008A (en)
CN (1) CN1116697A (en)
DE (2) DE4417536A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545311B4 (en) * 1995-12-05 2006-09-14 Alstom Method for operating a combustion chamber equipped with premix burners
EP1096201A1 (en) * 1999-10-29 2001-05-02 Siemens Aktiengesellschaft Burner
JP4508474B2 (en) * 2001-06-07 2010-07-21 三菱重工業株式会社 Combustor
CN100434796C (en) * 2006-11-13 2008-11-19 中国第一冶金建设有限责任公司 Construction method for burner, air channels, gas flues inside furnace wall of heating furnace in heat storage type
CN102175085A (en) * 2010-12-29 2011-09-07 天津二十冶建设有限公司 Method for pouring and constructing whole furnace wall of heating furnace with heat-accumulating-type nozzle
EP3081862B1 (en) * 2015-04-13 2020-08-19 Ansaldo Energia Switzerland AG Vortex generating arrangement for a pre-mixing burner of a gas turbine and gas turbine with such vortex generating arrangement
CN104896511B (en) * 2015-05-29 2017-03-22 北京航空航天大学 Fuel oil premixed apparatus for low emission combustion chamber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434289A (en) * 1966-01-28 1969-03-25 Man Turbo Gmbh Fuel supply for afterburner
US3600891A (en) * 1969-12-18 1971-08-24 United Aircraft Corp Variable area nozzle
FR2392231A1 (en) * 1977-05-23 1978-12-22 Inst Francais Du Petrole GAS TURBINE WITH A COMBUSTION CHAMBER BETWEEN THE STAGES OF THE TURBINE
US4373325A (en) * 1980-03-07 1983-02-15 International Harvester Company Combustors
DE3534268A1 (en) * 1985-09-26 1987-04-02 Deutsche Forsch Luft Raumfahrt Surface designed to avoid flow separation on a body around which a fluid flows
EP0620362A1 (en) * 1993-04-08 1994-10-19 ABB Management AG Gasturbine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2716863A (en) * 1950-07-04 1955-09-06 Onera (Off Nat Aerospatiale) Continuous flow and internal combustion engines, and in particular turbojets or turbo-props
US3691762A (en) * 1970-12-04 1972-09-19 Caterpillar Tractor Co Carbureted reactor combustion system for gas turbine engine
US3958416A (en) * 1974-12-12 1976-05-25 General Motors Corporation Combustion apparatus
US4215535A (en) * 1978-01-19 1980-08-05 United Technologies Corporation Method and apparatus for reducing nitrous oxide emissions from combustors
US4246757A (en) * 1979-03-27 1981-01-27 General Electric Company Combustor including a cyclone prechamber and combustion process for gas turbines fired with liquid fuel
CH674561A5 (en) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
JP2772955B2 (en) * 1988-07-08 1998-07-09 株式会社日本ケミカル・プラント・コンサルタント Fuel mixer for combustor
JPH0579629A (en) * 1991-09-19 1993-03-30 Hitachi Ltd Combustion device and operation thereof
US5263325A (en) * 1991-12-16 1993-11-23 United Technologies Corporation Low NOx combustion
US5487274A (en) * 1993-05-03 1996-01-30 General Electric Company Screech suppressor for advanced low emissions gas turbine combustor
GB9325708D0 (en) * 1993-12-16 1994-02-16 Rolls Royce Plc A gas turbine engine combustion chamber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434289A (en) * 1966-01-28 1969-03-25 Man Turbo Gmbh Fuel supply for afterburner
US3600891A (en) * 1969-12-18 1971-08-24 United Aircraft Corp Variable area nozzle
FR2392231A1 (en) * 1977-05-23 1978-12-22 Inst Francais Du Petrole GAS TURBINE WITH A COMBUSTION CHAMBER BETWEEN THE STAGES OF THE TURBINE
US4373325A (en) * 1980-03-07 1983-02-15 International Harvester Company Combustors
DE3534268A1 (en) * 1985-09-26 1987-04-02 Deutsche Forsch Luft Raumfahrt Surface designed to avoid flow separation on a body around which a fluid flows
EP0620362A1 (en) * 1993-04-08 1994-10-19 ABB Management AG Gasturbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF PROPULSION AND POWER, Bd. 3, Nr. 2, M{rz 1987, NEW YORK,NY,USA, Seiten 179-186, XP002029816 BAHR: "Technology for the design of high temperature rise combustors" *

Also Published As

Publication number Publication date
CN1116697A (en) 1996-02-14
EP0683356B1 (en) 2001-01-17
DE59508963D1 (en) 2001-02-22
US5609017A (en) 1997-03-11
DE4417536A1 (en) 1995-11-23
JPH07318008A (en) 1995-12-08
EP0683356A3 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
EP0576697B1 (en) Combustor chamber for a gas turbine
EP0781967B1 (en) Annular combustion chamber for gas turbine
EP0571782B1 (en) Gasturbine combustor and operating method
DE19615910B4 (en) burner arrangement
EP0870990B1 (en) Gas turbine with toroidal combustor
EP1754002B1 (en) Staged premix burner with an injector for liquid fuel
EP1654496B1 (en) Burner and method for operating a gas turbine
EP0481111B1 (en) Gas-turbine combustion chamber
EP0924470B1 (en) Premix combustor for a gas turbine
WO2009068425A1 (en) Premix burner for a gas turbine
EP0687860A2 (en) Self igniting combustion chamber
EP0521325B1 (en) Combustion chamber
DE4415315A1 (en) Power plant
EP0801268A2 (en) Gas turbine combustor
EP0401529A1 (en) Gas turbine combustion chamber
EP0718561A2 (en) Combustor
WO1999004196A1 (en) Arrangement of burners for heating installation, in particular a gas turbine combustion chamber
CH679692A5 (en)
EP1510755B1 (en) Burner with lance and staged fuel supply.
EP0683356B1 (en) Method for operating a combustion chamber and combustion chamber
EP0483554B1 (en) Method for minimising the NOx emissions from a combustion
EP0602396B1 (en) Method of operating a heat generator
DE4404389A1 (en) Combustion chamber with auto-ignition
EP0543155B1 (en) Method for a low-pollutant combustion in a power plant boiler
EP0866269B1 (en) Boiler for heat generation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASEA BROWN BOVERI AG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19971114

17Q First examination report despatched

Effective date: 19990715

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB ALSTOM POWER (SCHWEIZ) AG

RTI1 Title (correction)

Free format text: METHOD FOR OPERATING A COMBUSTION CHAMBER AND COMBUSTION CHAMBER

RTI1 Title (correction)

Free format text: METHOD FOR OPERATING A COMBUSTION CHAMBER AND COMBUSTION CHAMBER

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM POWER (SCHWEIZ) AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010117

REF Corresponds to:

Ref document number: 59508963

Country of ref document: DE

Date of ref document: 20010222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010412

Year of fee payment: 7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010327

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010507

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010509

Year of fee payment: 7

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST