EP0681095B1 - Méthode et dispositif pour le montage d'un catalysateur de gaz d'échappement - Google Patents

Méthode et dispositif pour le montage d'un catalysateur de gaz d'échappement Download PDF

Info

Publication number
EP0681095B1
EP0681095B1 EP95106547A EP95106547A EP0681095B1 EP 0681095 B1 EP0681095 B1 EP 0681095B1 EP 95106547 A EP95106547 A EP 95106547A EP 95106547 A EP95106547 A EP 95106547A EP 0681095 B1 EP0681095 B1 EP 0681095B1
Authority
EP
European Patent Office
Prior art keywords
tubular section
sectional area
cross
catalyzer
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95106547A
Other languages
German (de)
English (en)
Other versions
EP0681095A1 (fr
Inventor
Walter Dr. Stoepler
Thomas Buckel
Joachim Schraml
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leistritz AG and Co Abgastechnik
Original Assignee
Leistritz AG and Co Abgastechnik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leistritz AG and Co Abgastechnik filed Critical Leistritz AG and Co Abgastechnik
Publication of EP0681095A1 publication Critical patent/EP0681095A1/fr
Application granted granted Critical
Publication of EP0681095B1 publication Critical patent/EP0681095B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2857Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets being at least partially made of intumescent material, e.g. unexpanded vermiculite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/02Fitting monolithic blocks into the housing

Definitions

  • a housing In the field of exhaust gas catalytic converter technology for automobiles there are basically three basic types of catalytic converters, namely housing catalytic converters, wound catalytic converters and tubular catalytic converters.
  • a housing In the case of the housing catalysts, a housing generally consists of two shell-shaped housing parts, into which a catalyst body, for example a monolith made of a ceramic material, is inserted. For final assembly, the housing parts are placed on top of one another with monoliths in place and welded together. There is a gap between the ceramic body and the housing, in which a storage mat for fixing the catalyst body lies in the housing.
  • pre-assembled tubes are divided into individual tube sections.
  • One or more catalyst bodies are inserted into such a pipe section.
  • the catalyst bodies are previously covered with at least one layer of a storage mat.
  • conical funnels form the catalyst inlet and outlet (e.g. DE-A-2 248 442).
  • the present invention relates to a method and a device for assembling an exhaust gas catalytic converter of the latter type.
  • exhaust gas systems it is desirable to be able to use the entire available cross section of the pipe sections for the exhaust gas flow.
  • the most obvious way to do this is to use metal catalyst bodies. These catalyst bodies are also metallic Exhaust system pipes welded. As a result of the very similar coefficient of expansion of the catalyst material and the pipe section material, this poses practically no problems with the expansions and shrinkages occurring during operation.
  • a storage mat is therefore arranged between the catalyst body (hereinafter referred to as "monoliths" for the sake of simplicity) and the inner wall of the tube section.
  • This storage mat is usually a mineral fiber mat in which expanded mica flakes are embedded.
  • the mounting mat fixes the monolith in the pipe section that forms the housing of the catalyst.
  • the storage mat must also compensate for the different expansion of the monolith and pipe section when heated.
  • the expanded mica platelets in the so-called swelling mats serve this purpose. They split water irreversibly when the catalytic converter heats up to the operating temperature and change to an expanded state.
  • the annular space present between the outer surface of the monolith and the inner wall of the pipe section must be dimensioned exactly.
  • the mat must also be designed so that it generates the desired restoring forces after installation.
  • the basis weight and the thickness of the mat in the unassembled state the cross-sectional area of the monolith and the clear width or the inner cross-sectional area of the pipe section are matched to one another.
  • the cross-sectional area of the monolith and the inner cross-sectional area of the pipe section also define the ring cross-sectional area of the annular space between the monolith and the inner wall of the pipe section.
  • the volume of the annular space or its annular cross-sectional area may only have a certain permissible tolerance range.
  • a deviation from the nominal value of the ring cross-sectional area is due to the fact that the monoliths, the bearing mats and the pipe sections cannot be manufactured with absolute dimensional accuracy, but instead have manufacturing tolerances.
  • the annular space can become too large so that the storage mat is not compressed to the necessary extent and is therefore too small Spreading effect in the annulus and thus exerting too little holding force on the monolith.
  • an excessively narrow annular gap can result from the addition of tolerances. This is also undesirable because it can cause the surface pressure of the storage mat to reach impermissible values, which under certain circumstances can result in destruction of at least the regions of the monolith near the surface.
  • the object of the invention is therefore to propose a method and a device with which the disadvantages mentioned are avoided.
  • a corresponding adjustment of the inner cross-sectional area of the pipe section assigned to the checked monolith is then carried out. If the setpoint deviation is positive, ie if the cross-sectional area of the monolith is too large, the annular space between the monolith and the inner wall of the pipe section would be too narrow. Accordingly, the pipe section must be widened or its inner cross-sectional area enlarged in order to obtain the predetermined annular space volume or the predetermined ring cross-sectional area. If, on the other hand, the setpoint deviation is negative, the ring cross-sectional area or the annular space or the distance between the inner wall of the pipe section and the outer surface of the monolith would be correspondingly too large.
  • the inner cross-sectional area of the pipe section would have to be reduced.
  • the tolerance range of the monoliths can be virtually completely compensated for.
  • a change in the target ring cross-sectional area can therefore only be made the tolerances of the inner cross-sectional area of the pipe section and the thickness or weight of the storage mat.
  • the target cross-sectional area of the monolith is selected so that it is the smallest possible cross-sectional area within the manufacturing tolerance range.
  • the advantage of this measure is that the adaptation of the inner cross-sectional area of the pipe section only in the positive direction, i.e. by expansion. A widening is technically easier to carry out than a narrowing of the pipe section or of its inner cross-sectional area.
  • the nominal inner cross-sectional area of the prefabricated pipe sections is chosen so that the desired nominal ring cross-sectional area results with the smallest possible monolith tolerance.
  • the smallest possible monolith cross-sectional area is therefore the reference point for determining the setpoint deviation. This can therefore only be positive and accordingly only has to be compensated for by increasing the internal cross-sectional area of the pipe section.
  • a preferred device for increasing the inner cross section of the pipe section is specified.
  • This device is an expanding mandrel that can be retracted into the pipe section and has a plurality of lateral expanding strips that can be moved radially outward.
  • the pipe section can be expanded in a simple manner with these spreading strips. With such a spreading device, cross-sectional shapes of the pipe sections deviating from the circular cross-sectional shape can also be achieved.
  • the catalytic converter housings it is often undesirable for the catalytic converter housings to have a circular cross-sectional shape.
  • the housing, in this case the pipe sections must be deformed accordingly.
  • the expanding mandrel is inserted into the pipe section and its lateral expanding strips are moved radially outwards to different degrees.
  • the extension path of the spreading strips is controlled by suitable control devices so that the desired outline shape, for example a square or triangular one, is achieved without the inner cross-sectional area of the pipe section changing.
  • the monoliths must have a corresponding cross-sectional shape. The compensation of the monolith tolerances is then carried out in the manner described above.
  • the displacement force of a monolith package is measured within the pipe section.
  • the displacement force is a measure of the holding effect or spreading effect of the storage mat and ultimately the size of the ring cross-sectional area.
  • a deviation in a positive or negative direction from a predetermined desired displacement force indicates that the fixing of the monolith in the pipe section by the mounting mat is not optimal.
  • the deviations from the nominal displacement force are due to the tolerances of the pipe section and the bearing mat.
  • the measurement of the displacement force thus serves as a quality control. Exhaust gas catalysts, in which the monolith is fixed in the pipe section with an insufficient holding force, can be easily identified and sorted out in this way.
  • the holding force of the support mat can be optimized by adapting the nominal inner cross-sectional area of the next pipe section to be filled with a monolith package, that is, increasing or decreasing it, depending on the size and sign of the deviation from the displacement force.
  • the displacement force for the monolith package or the holding force of the storage mat correlated therewith can be set to a certain predetermined value or range of values.
  • not every batch of storage mat is like the other. Different thicknesses or weights per unit area can occur.
  • the resulting different holding forces can, however, be effectively compensated for by the described measurement of the deviation from the displacement force. Tolerances of the inner cross-sectional area of the pipe sections can also be compensated in this way.
  • the measure according to claim 9 facilitates the assignment of a monolith with a specific setpoint deviation to a correspondingly adapted pipe section. Such an assignment can be made, for example, by measuring a monolith intended for pressing into a specific pipe section immediately before pressing in, i.e. its cross-sectional area is determined and then the pipe section is adjusted.
  • the measure provided in claim 9 allows the tolerance ranges or the setpoint deviations of the monoliths to be determined independently of the assembly process and the measured monoliths to be temporarily stored.
  • each monolith is provided with a coding reflecting the setpoint deviation of its cross-sectional area
  • the setpoint deviation can be taken from the coding of the monolith after the removal of a monolith from the intermediate storage and a corresponding adjustment of the pipe section assigned to the monolith can be carried out.
  • the coding is advantageously a machine-readable bar code. The reading can then take place fully automatically, independently of an operator.
  • the method according to the invention and the device according to the invention can in principle be applied to all catalyst bodies which are to be fixed with a certain holding force in a tube section serving as a housing.
  • the invention is preferably directed to monoliths consisting of ceramic material.
  • Claim 12 specifies an advantageous way of determining or measuring the cross-sectional area of monoliths, namely by measuring the circumference. This can be done, for example, by a measuring device using a measuring thread.
  • Fig. 1 shows a device according to the invention in a schematic plan view.
  • the central part of the device is a rotary table 1 which acts as a work table and on which various stations are arranged offset from one another at an angle of 90 °, namely a tube section loading station 2 in the 9 o'clock position and an adaptation station 3 in the 6 o'clock position. in the 3 o'clock position a press-in station 4 and in the 12 o'clock position a parts removal station 5.
  • the turntable 1 is rotatably mounted on a machine frame 6 (FIG. 2).
  • a carrier part 7 and a pipe receptacle 8 are arranged in each station 2-5.
  • the carrier part 7 is an approximately rectangular base plate, which carries on its upper side the approximately cuboid tube receptacle 8.
  • the pipe receptacle 8 has a central and vertically running receiving bore 11 for receiving pipe sections 12.
  • the pipe sections 12 form the housing for an exhaust gas catalytic converter to be assembled according to the invention.
  • a pipe section magazine 13 in which several pipe sections are temporarily stored.
  • a conveyor section 14 is arranged above the rotary table 1, which connects the pipe section magazine 13 to the pipe section loading station 2.
  • the conveyor section 14 has, as a first section, an inclined section 9 which, starting from the pipe section magazine 13, slopes down towards the pipe section loading station 2.
  • the end of the conveyor section 14 facing the pipe section loading station 2 merges into a vertical section 10, the free end of which ends at a distance in front of the upper end face 15 of the pipe receptacle 8.
  • the vertical section 10 of the conveyor section 14 is flanked by a guide plate 16 such that the vertical section 10 and the guide plate 16 practically form an insertion channel 17 which overlaps the receiving bore 11 of the pipe holder 8.
  • the pipe sections 12 are transferred to the conveyor section 14 by a transfer device (not shown). This transfer is indicated in FIGS. 1 and 2 by the arrow 18.
  • the loading of the tube section loading station with a tube section 12 is therefore carried out simply by gripping the tube section 12 lying foremost in the tube section magazine 13 and placing it in the longitudinal direction on the conveying path 14. There it moves due to gravity in conveying direction 21, i.e. thus towards the tube section loading station 2.
  • the pipe section 12 strikes the guide plate 16, is pivoted into a vertical position, enters the insertion channel 17 and finally into the receiving bore 11 of the pipe holder 8 (FIGS. 5 and 6).
  • the turntable 1 is then for further assembly by 90 ° in the direction of rotation 22, i.e. counterclockwise rotated about the axis of rotation 23.
  • the pipe receptacle previously located in the pipe section loading station 2 with the pipe section 12 arranged therein is thus transferred to the adapter station 3.
  • the devices of the adapter station 3 are omitted in FIG. 1 for reasons of clarity, but are shown schematically in FIGS. 7, 8 and 9.
  • the adaptation station 3 has a pipe section which is inserted and extended in the receiving bore 11 in the direction of the axis of rotation 23 Expanding mandrel 24.
  • the expanding mandrel has an approximately cuboid housing 25, in which an expanding wedge 26 is arranged in the vertical direction, that is to say in the direction of the axis of rotation 23.
  • the expansion wedge 26 protrudes from the end face of the housing 25 facing the pipe receptacle 8 with an expansion part 32 and is flanked by four expansion strips 27, each at a 90 ° distance from one another.
  • the spreading strips 27 are mounted horizontally displaceably in the housing 25 and interact with corresponding inclined surfaces with the spreading wedge 26 in the manner of a wedge gear. If the expansion wedge 26 is moved towards the pipe receptacle 8 in the case of a stationary housing, the expansion strips give way to the outside in the horizontal direction or in the radial direction 29. At its end facing away from the tube holder 8, the expansion wedge 26 is connected to a feed rod 28. This feed rod 28 can be displaced in the direction of the axis of rotation 23 by a spindle drive (not shown) and the spreading position of the spreading strips can thereby be controlled.
  • the push rod 28 and the drive units (not shown) for the expansion dome 24 are held by a machine stand 31.
  • the adaptation station 3 works as follows: After a pipe receptacle 8 with a pipe section 12 lying therein has been transferred from the pipe section loading station 2 to the adaptation station 3, the expansion dome 24 with its expansion part 32 protruding from its housing 25 is first inserted into the pipe section 12. At the end of this retraction movement, the housing 25 of the expanding mandrel 24 abuts a stationary pipe receiving stop 34 with an expanding mandrel stop 33.
  • the pipe receiving stop 34 is a plate resting on the end face 15 of the pipe receiving 8 with a passage opening 35 for the expanding part 32 of the expanding mandrel 24 corresponding to the cross-sectional area of the receiving bore 11
  • the spindle drive is set in motion and the expanding wedge 26 is driven in the direction of the tube holder 8. As a result, the spreading strips 27 diverge in the radial direction 29 and expand the pipe section, so that the cross-sectional area of the cavity of the pipe section 12, that is to say the internal cross-sectional area of the pipe section 12, is enlarged.
  • the extent of the widening of the pipe section depends on the cross-sectional area of a monolith 36 to be later pressed into the pipe section 12 in the press-in station 4.
  • the inner cross-sectional area of the pipe sections 12 is dimensioned such that in the case of a monolith 36 with the greatest possible negative cross-sectional area tolerance, it is not necessary to widen the tube section 12 assigned to it.
  • the annular space between the monolith 36 in the tube section 12 and the inner wall of the tube section 12 or its ring cross-sectional area 37 (FIG. 11) then has exactly the right size, as will be shown later.
  • FIG. 7 shows the assembly of an exhaust gas catalytic converter with two monoliths 36a and 36b.
  • the pipe section 12 has to be expanded to different widths.
  • the expansion part 32 first moves approximately half the maximum immersion depth 40 into the pipe section 12, namely up to the partial immersion depth 41.
  • a variable stop 38 serves as the end stop of this partial insertion movement, which stops in the horizontal direction or in the direction of the double arrow 39 is displaceable in the movement path of the housing 25.
  • the expansion stop 33 rests on the variable stop 39.
  • variable stop 38 is moved back out of the movement path of the housing 25 and the housing 25 is moved further in the direction of the pipe holder 8 and thus the expansion part 32 into the pipe section 12 until the maximum immersion depth 40 is reached.
  • the lower half of the pipe section can be widened. It should be noted that in the case of monoliths 36a, b with different tolerance dimensions, the upper half of the tube section 12 must be expanded more than the lower one. This is necessary in order to enable the monolith 36b with the smaller and then the monolith 36a with the larger cross-sectional area to be pressed in in the downstream press-in station 4.
  • a pipe section adapted to one or two or more monoliths 36 in the manner described is passed on to the press-in station 4 together with the pipe receptacle 8 and support part 7 by rotating the turntable in the direction of rotation 22 through 90 °.
  • the insertion device essentially comprises an insertion cone 44 which can be pivoted on a machine table 45 by means of a pivot axis 46 and by means of a hydraulic cylinder 47 is adjustable in height.
  • the insertion cone is arranged on the end face 15 of the tube holder 8.
  • a support ring 49 is also arranged between the insertion cone 44 and the tube receptacle 8 and fixes and centers the tube section protruding from the end face 15 of the tube receptacle 8.
  • the press-in ram 43 is arranged above the insertion funnel 44 and can be driven hydraulically into the insertion cone 44 in the vertical direction.
  • a press-in station 4 is associated with a monolith magazine 48, in which monoliths 36 are temporarily stored or provided.
  • the monoliths 36 in the monolith magazine 48 are covered with a storage mat 50.
  • Monolith packages 51 consisting of a monolith 36 and a storage mat 50 are thus provided in the monolith magazine.
  • the press-in station 4 works in the following way: A monolith package 51 is removed from the monolith magazine 48 by a transfer device (not shown) and inserted into the insertion cone 44 in the longitudinal direction. Then the press ram 43 is inserted into the insertion cone and the monolith package 51 is pressed into the tube section 12 of the tube receptacle 8 (see also FIG. 11). The end of the press-in movement can be limited by stops (not shown) which can be positioned at a corresponding position within the tube section 12.
  • Fig. 2 shows the assembly of an exhaust gas catalytic converter with two monoliths.
  • a first monolith package 51 is first pressed into the lower half of the tube section 12.
  • a second monolith package 51 is inserted with the interposition of a spacer element 52.
  • the two monoliths can also be accommodated by two in a common package and can be pressed into a pipe section 12 with only a single press-in process.
  • the turntable is again rotated through 90 ° in the direction of rotation 22.
  • the pipe receptacle 8, which was previously in the press-in station 4 is transferred to the parts removal station 5.
  • a pipe section 12 pre-assembled with a monolith package 51 reaches a conveyor path 54 via a chute 53. So that the pre-assembled pipe section 12 can reach the chute 53, the carrier part 7 and the rotary table 1 each have a through hole 55 and 56, respectively.
  • the two through holes 55.56 are aligned one above the other in their working position.
  • Their cross-sectional area is at least exactly as large as the cross-sectional area of the receiving bore 11.
  • the carrier part 7 there are also two slides 57 which protrude into the through bore 55 on both sides and are arranged such that their upper plane level is flush with the plane plane of the carrier part 7.
  • the slide In the situation shown in Figure 7, the slide is in its closed position. By moving them horizontally outwards (arrow 59), they open the through hole 55 so that the pre-assembled tube section 12 lying in the receiving bore 11 can fall down through the turntable 1 onto the chute 53 and finally reach the conveying path 54.
  • the tube sections 12 are then provided in the usual way with funnels, which serve as a catalyst inlet or outlet.
  • the end areas of the pipe section are widened to a constant dimension. This ensures that regardless of the tolerance-related expansion, the funnels, which have a certain dimension, can be inserted and welded into the end region of the pipe sections.
  • FIGS. 12 and 13 show another technical implementation for the pressing in of a monolith package 51 in a pipe section 12.
  • the press-in direction is not vertical, but horizontal.
  • the pipe section 12 provided for assembly is arranged here horizontally on a machine frame 58.
  • An insertion device 61 is arranged in front of the end face pointing to the right in FIG. 12 and directly after it. This consists of two separable jaws 62a and 62b, which are approximately U-shaped in cross section.
  • a press ram 63 can be driven into the insertion device 61 in a hydraulically operated manner. In this way, the monolith package can be inserted into the tube section 12.
  • a push rod 65 is connected to the outer circumferential surface of the clamping jaw 62a and extends vertically and in turn is connected in terms of drive to a drive, for example a hydraulic cylinder 66.
  • a drive for example a hydraulic cylinder 66.
  • the push rod 65 and thus the clamping jaw 62a can be moved upward.
  • a monolith package 51 can then be inserted into the lower, stationary clamping jaw 62 and the clamping jaw 62a can then be moved downward again.
  • the monoliths 36 provided for provision in the monolith magazine 48 are measured. More precisely, its circumference is determined in a circumference measuring station 67. The measured circumference is passed on to a spreading control device 71 as an actual variable value 68 of a spreading control device 71 as a reference variable.
  • This spreading control device 71 controls the extent of the extension movement of the spreading strips 27 in the radial direction 29.
  • the widening of a pipe section 12 is only shown roughly schematically in FIG. 14. Only a pipe section 12 with an expanding part 32 of an expanding mandrel 24 immersed therein is shown.
  • the inner cross-sectional area of the tube section 12 is only expanded or enlarged if the measured monolith has a cross-sectional area that is larger than the smallest cross-sectional area that occurs due to tolerances in the case of a batch size or a certain monolith size.
  • the cross-sectional area of the Monolith-proportional circumferential actual value 68 is compared in the spreading control device 71 with a predefined setpoint value, that is to say the smallest possible circumferential value. The extent of the widening of the pipe section then depends on the size of the setpoint deviation.
  • the control signal 72 passed on by the spreading control device 71 to the expanding mandrel 24 is therefore proportional to this setpoint deviation.
  • the measurement of the size of the monoliths 36 does not necessarily have to be carried out simultaneously with the assembly process. Rather, a larger number of measured monoliths can be provided.
  • the monoliths 36 are provided with a machine-readable bar code reflecting their circumferential value.
  • the assembly of an exhaust gas catalytic converter then proceeds as follows: Before the expansion of a pipe section in the adaptation station 4, the bar code of the monolith 36 provided for the pipe section 12 currently located in the adaptation station 4 is read and the internal cross-sectional area of the pipe section 12 is adjusted accordingly. Then the adapted pipe section is transferred to the press-in station 4 and the monolith 36 assigned to it, i.e.
  • the one whose bar code was previously read is pressed into the tube section in the form of a monolith package 51.
  • the bar codes of two or more monoliths 36 must consequently be read and the monoliths must be pressed into the tube section 12 one after the other, namely the one with the smallest cross-sectional area first and the one with the largest last.
  • the above tolerances of the pipe sections 12 and the mounting mats 50 can cancel each other out or add in negative or positive direction.
  • the ring cross-sectional area still has a small fluctuation range despite the compensation of the cross-sectional tolerances of the monoliths.
  • the storage mats 50 used according to the invention are designed such that, despite this fluctuation range, a holding force of the mat in the installed state is achieved which has a permissible value.
  • a measure of the holding force is the displacement force 73 of a monolith package 51 when it is completely inside the tube section 12. According to the invention, this displacement force 73 is now measured. The measurement is carried out shortly before the end position of a monolith package 51 in the pipe section 12.
  • the measured value 74 obtained is likewise passed on to the spreading control device 71. There, the measured value 74 is compared with the target value or the target value range for the pushing force 73. With a positive setpoint deviation, i.e. if the displacement force 73 is greater than the setpoint value, the control signal 72 is changed such that - possibly in addition to the monolithic expansion - the pipe section is expanded to an extent dependent on the magnitude of the deviation of the displacement force 73 from a predetermined setpoint value or setpoint range.
  • a change in the displacement force and a corresponding feedback to the spreading control device 71 results, for example, in the event that a new batch of storage mats is introduced into the assembly process, these new storage mats 50 having different thicknesses or grammages from the previous ones.
  • the tolerances of the inner cross-sectional area of the pipe sections 12 and the mounting mats 50 can therefore also be compensated for according to the invention. This therefore ensures that the monoliths 36 are always fixed within the tube section 12 with an optimal holding force.
  • FIGS. 15 and 16 illustrate that the present invention is suitable not only for exhaust gas catalysts which are circular in cross section, but also for shapes which are approximately adapted to the underbody of a vehicle.
  • the pipe receptacles 8 must have a receiving bore 11 that corresponds to the cross-sectional shape of the pipe sections 12 or the monoliths 36.
  • the approximately square shape shown in FIGS. 15 and 16 can be represented by the spreading strips 27 at the points of the initially circular tube section marked with the arrows 69 - shown by the dashed line 70 in Fig. 15 - act. Small deviations from the ideal shape resulting from this deformation, such as at point 75, are insignificant.
  • the wall thickness of the pipe sections used allows an elastic deformation.
  • the pipe section can therefore adapt to the cross-sectional shape of a pressed-in monolith package 51 (see location 76 in FIG. 16). Such an elastic adaptation also takes place when slightly oval deformed monoliths 36 are processed in the case of circular tube sections 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Claims (16)

  1. Procédé de montage pour des catalyseurs de gaz d'échappement d'un mode de construction tubulaire, comprenant un tronçon de tube (12) en tant que boîtier, au moins un corps de catalyseur agencé dans le tronçon de tube, une chambre annulaire située entre la surface périphérique extérieure du corps de catalyseur et la paroi intérieure du tronçon de tube (12) et un matelas de montage (50) agencé dans la chambre annulaire pour le montage du corps de catalyseur, comportant les étapes de procédé suivantes :
    a) on prépare des corps de catalyseur sensiblement cylindriques ;
    b) on prépare des tronçons de tube ;
    c) on enroule les corps de catalyseur avec au moins une couche d'un matelas de montage (50);
    D) en enfile dans un tronçon de tube (12) au moins un paquet constitué d'un corps de catalyseur et d'un matelas de montage (50);
    caractérisé par les étapes de procédé suivantes :
    e) on mesure l'écart d'une valeur de consigne pour la surface de section transversale d'un corps de catalyseur, et
    f) on compense l'écart de la valeur de consigne par une adaptation en forme d'un agrandissement ou d'une diminution de la périphérie ou de la surface de section transversale intérieure du tronçon de tube (12) associé à ce corps de catalyseur, en fonction de la valeur et du signe de l'écart de la valeur de consigne.
  2. Procédé selon la revendication 1, caractérisé en ce que la valeur de consigne pour la surface de section transversale des corps de catalyseur est la plus petite surface transversale possible à l'intérieur de la plage des tolérances dues à la fabrication.
  3. Procédé selon l'une ou l'autre des revendications 1 et 2, caractérisé en ce que l'adaptation de la section transversale intérieure du tronçon de tube a lieu par élargissement du tronçon de tube à l'aide d'un appareil d'écartement.
  4. Procédé selon la revendication 3, caractérisé en ce que l'appareil d'écartement est un mandrin d'écartement susceptible d'être introduit dans le tronçon de tube et comprenant plusieurs barrettes d'écartement latérales susceptibles d'être déplacées radialement vers l'extérieur.
  5. Procédé selon l'une ou l'autre des revendications 3 et 4, caractérisé en ce que la forme de section transversale du tronçon de tube est susceptible d'être modifiée, indépendamment de l'élargissement, à l'aide de l'appareil d'écartement.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le matelas de montage est un matelas en fibres minérales comprenant des plaquettes de mica expansé noyées dans ledit matelas, qu'on appelle matelas "gonflant".
  7. Procédé, en particulier selon l'une des revendications 1 à 6, dans lequel on enfonce à la presse dans un tronçon de tube (12) servant de boîtier un paquet (51) constitué par un corps de catalyseur et par un matelas de montage (50) enroulé sur sa périphérie extérieure sous au moins une couche, caractérisé en ce que, lorsque le paquet se trouve totalement à l'intérieur du tronçon de tube (12), on mesure la force de déplacement (73) nécessaire pour déplacer le paquet en direction de l'axe longitudinal médian du tronçon de tube (12).
  8. Procédé selon la revendication 7, caractérisé en ce que selon la valeur et le signe de l'écart de la valeur de consigne pour la force de déplacement (73), on effectue une compensation par adaptation correspondante, c'est-à-dire augmentation ou diminution, de la surface de la section transversale intérieure du tronçon de tube suivant à remplir avec un paquet.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que les corps de catalyseur, après la mesure de leur écart de valeur de consigne, sont pourvus d'un codage qui reproduit celui-ci.
  10. Procédé selon la revendication 9, caractérisé en ce que le codage a lieu au moyen d'un code à barres lisible à la machine.
  11. Procédé selon l'une des revendications 1 à 10, caractérisé en ce que le catalyseur est un monolithe (36) essentiellement constitué d'un matériau céramique.
  12. Procédé selon l'une des revendications 1 à 11, caractérisé en ce que la mesure de l'écart de valeur de consigne pour la surface de section transversale du corps de catalyseur a lieu par mesure de la circonférence.
  13. Appareil pour le montage de catalyseurs de gaz d'échappement en mode de construction tubulaire, comprenant :
    - une station de chargement de tronçons tubulaires (2) dans laquelle est agencé un récepteur de tube (8) afin de recevoir un tronçon de tube (12) qui sert de boîtier pour un catalyseur de gaz d'échappement ;
    - une station d'adaptation (3), à laquelle est amené un récepteur de tube (1) de la station de chargement (2), chargé d'un tronçon de tube (12), et dans laquelle la surface de section transversale intérieure du tronçon de tube (12) peut être le cas échéant agrandie ou diminuée ;
    - une station d'introduction (4'), dans laquelle on peut introduire à la presse dans le tronçon de tube (12) reçu de la station d'adaptation (3) à l'aide d'un poinçon de presse, le paquet (51) constitué par un corps de catalyseur et par un matelas de montage (50) enroulé sous au moins une couche autour de sa surface périphérique ;
    - une station de mesure (67) disposée avant ou après la station de chargement des tronçons de tube (2) pour mesurer l'écart de valeur de consigne de la surface de section transversale d'un corps de catalyseur à enfoncer à la presse dans un tronçon de tube associé ; et
    - un dispositif de commande, avec lequel le degré d'élargissement ou de réduction de la surface de section transversale intérieure du tronçon de tube associé peut être commandée, en fonction de la valeur et du signe de l'écart de la valeur de consigne.
  14. Appareil selon la revendication 13, caractérisé en ce que pour l'agrandissement de la surface de section transversale intérieure d'un tronçon de tube (12), un mandrin d'écartement (24) est susceptible d'être introduit en direction de l'axe longitudinal médian dans le tronçon de tube, ledit mandrin comprenant plusieurs barrettes d'écartement latérales (27) susceptibles d'être déplacées radialement vers l'extérieur.
  15. Appareil, en particulier selon l'une des revendications 13 et 14, caractérisé par un dispositif de mesure pour la mesure de la force de déplacement (73) à appliquer au moyen du poinçon de presse (43), lorsqu'un paquet (51) se trouve entièrement à l'intérieur d'un tronçon de tube (12).
  16. Appareil selon la revendication 15, caractérisé par un dispositif de commande, au moyen duquel on peut influencer la valeur de l'agrandissement ou de la réduction de la surface de section transversale d'un corps de catalyseur situé dans la station d'adaptation, en fonction de la valeur et du signe de l'écart de la force de déplacement mesurée (73) par rapport à une valeur de consigne ou une plage de consigne pour la force de déplacement.
EP95106547A 1994-05-02 1995-05-02 Méthode et dispositif pour le montage d'un catalysateur de gaz d'échappement Expired - Lifetime EP0681095B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4415160 1994-05-02
DE4415160 1994-05-02

Publications (2)

Publication Number Publication Date
EP0681095A1 EP0681095A1 (fr) 1995-11-08
EP0681095B1 true EP0681095B1 (fr) 1997-11-05

Family

ID=6516888

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95106547A Expired - Lifetime EP0681095B1 (fr) 1994-05-02 1995-05-02 Méthode et dispositif pour le montage d'un catalysateur de gaz d'échappement

Country Status (3)

Country Link
EP (1) EP0681095B1 (fr)
DE (1) DE59500935D1 (fr)
ES (1) ES2111985T3 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6769281B2 (en) 2002-03-05 2004-08-03 Sango Co., Ltd. Method and apparatus of producing a columnar member container
DE102007001613A1 (de) 2007-01-04 2008-07-10 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung einer Abgasnachbehandlungseinheit
DE102008005752A1 (de) 2008-01-24 2009-07-30 Volkswagen Ag Verfahren und Vorrichtung zur Herstellung eines Abgaskatalysators
DE102009021269A1 (de) 2009-05-14 2010-11-18 Volkswagen Ag Verfahren zum Herstellen einer Abgasreinigungsvorrichtung
US7900352B2 (en) 2001-05-18 2011-03-08 Hess Engineering, Inc. Method and apparatus for manufacturing a catalytic converter
US8225476B2 (en) 2001-05-18 2012-07-24 Hess Engineering, Inc. Method and apparatus for manufacturing a catalytic converter
DE102011115509B3 (de) * 2011-10-11 2013-01-03 Benteler Automobiltechnik Gmbh Verfahren zum Einhausen eines Monolithen mit Lagerungsmatte in ein Gehäuse durch Stopfen

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4433974C1 (de) * 1994-09-23 1996-03-28 Eberspaecher J Verfahren zur Herstellung von Katalysatoren
EP0818615B1 (fr) 1996-07-10 2011-09-28 Volkswagen Aktiengesellschaft Boîtier de catalyseur
DE19714851C1 (de) * 1997-04-10 1998-10-01 Zeuna Staerker Kg Abgasreinigungsvorrichtung
BR9814063A (pt) * 1997-10-07 2000-09-26 Arvin Ind Inc Médodo e aparelho para montar componentes de escapamento
US6591497B2 (en) * 1998-08-27 2003-07-15 Delphi Technologies, Inc. Method of making converter housing size based upon substrate size
DE19959241C1 (de) * 1999-12-08 2001-04-26 Zeuna Staerker Kg Abgasreinigungsvorrichtung
CA2396899C (fr) * 2000-11-17 2005-10-25 Yukihito Ichikawa Procedes d'assemblage et de traitement utilisant l'information marquee et assemblage fabrique au moyen dudit procede
AU2002214295A1 (en) 2000-11-17 2002-05-27 Ngk Insulators, Ltd. Processing method utilizing display information and cell structure processed by the processing method
FR2826301B1 (fr) * 2001-06-20 2003-10-24 Faurecia Sys Echappement Procede de fabrication d'un element etage d'une ligne d'echappement et element etage obtenu
FR2846037B1 (fr) 2002-10-21 2006-02-17 Faurecia Sys Echappement Procede de montage de catalyseur dans une enveloppe destinee a s'inserer dans une ligne d'echappement pour vehicule automobile
DE10313155B4 (de) * 2003-03-18 2013-02-14 Volkswagen Ag Verfahren zur Herstellung eines Abgaskatalysators
US7377038B2 (en) * 2005-06-03 2008-05-27 Emcon Technologies, Llc Method for assembling a catalyic converter
DE102005029163A1 (de) * 2005-06-23 2006-12-28 Arvinmeritor Emissions Technologies Gmbh Verfahren zum Herstellen von abgasführenden Vorrichtungen, insbesondere Abgasreinigungsvorrichtungen
DE102007002376A1 (de) * 2007-01-16 2008-07-17 Arvinmeritor Emissions Technologies Gmbh Verfahren zur Herstellung einer abgasführenden Vorrichtung sowie Werkzeug zur Herstellung einer abgasführenden Vorrichtung
DE102007026810A1 (de) * 2007-06-06 2008-12-11 J. Eberspächer GmbH & Co. KG Herstellungsverfahren für Abgasbehandlungseinrichtungen, wie z.B. Abgaskatalysatoren und Partikelfilter
BRPI0820186B1 (pt) * 2007-11-09 2020-10-06 Gws Tube Forming Solutions Inc Aparelho para formar uma peça de trabalho com uma superfície interna e uma superfície externa oposta dentro de um alojamento de um dispositivo antipoluição e método para fornecer um alojamento de um dispositivo antipoluição
EP2459331B1 (fr) 2009-07-30 2017-03-22 Gws Tube Forming Solutions Inc. Appareil et procédé de formation d un boîtier de dispositif antipollution

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2248442B2 (de) * 1972-10-03 1978-07-06 Volkswagenwerk Ag, 3180 Wolfsburg Vorrichtung zur katalytischen Reinigung von Abgasen und Verfahren zur Herstellung der Vorrichtung
DE2604886A1 (de) * 1976-02-07 1977-08-11 Zeuna Staerker Kg Verfahren zur herstellung eines katalysators zur reinigung der abgase von brennkraftmaschinen
CA2028217A1 (fr) * 1989-10-23 1991-04-24 Timothy Z. Thayer Dispositif de traitement a extremites dimensionnees pour systeme d'evacuation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7900352B2 (en) 2001-05-18 2011-03-08 Hess Engineering, Inc. Method and apparatus for manufacturing a catalytic converter
US8225476B2 (en) 2001-05-18 2012-07-24 Hess Engineering, Inc. Method and apparatus for manufacturing a catalytic converter
US6769281B2 (en) 2002-03-05 2004-08-03 Sango Co., Ltd. Method and apparatus of producing a columnar member container
DE102007001613A1 (de) 2007-01-04 2008-07-10 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung einer Abgasnachbehandlungseinheit
DE102007001613B4 (de) * 2007-01-04 2009-09-17 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung einer Abgasnachbehandlungseinheit
DE102008005752A1 (de) 2008-01-24 2009-07-30 Volkswagen Ag Verfahren und Vorrichtung zur Herstellung eines Abgaskatalysators
DE102008005752B4 (de) * 2008-01-24 2017-06-01 Volkswagen Ag Verfahren zur Herstellung eines Abgaskatalysators
DE102009021269A1 (de) 2009-05-14 2010-11-18 Volkswagen Ag Verfahren zum Herstellen einer Abgasreinigungsvorrichtung
DE102011115509B3 (de) * 2011-10-11 2013-01-03 Benteler Automobiltechnik Gmbh Verfahren zum Einhausen eines Monolithen mit Lagerungsmatte in ein Gehäuse durch Stopfen
EP2581577A1 (fr) 2011-10-11 2013-04-17 Benteler Automobiltechnik GmbH Procédé de d'assemblage d'un monolithe avec un mat dans un boîtier
US8832937B2 (en) 2011-10-11 2014-09-16 Benteler Automobiltechnik Gmbh Method for stuffing a monolith with a mounting mat into a housing
DE102011115509C5 (de) 2011-10-11 2020-01-16 Benteler Automobiltechnik Gmbh Verfahren zum Einhausen eines Monolithen mit Lagerungsmatte in ein Gehäuse durch Stopfen

Also Published As

Publication number Publication date
ES2111985T3 (es) 1998-03-16
EP0681095A1 (fr) 1995-11-08
DE59500935D1 (de) 1997-12-11

Similar Documents

Publication Publication Date Title
EP0681095B1 (fr) Méthode et dispositif pour le montage d'un catalysateur de gaz d'échappement
EP0523215B1 (fr) Procede et dispositif de formage hydrostatique de corps creux en metal deformable a froid
DE602004003286T2 (de) Verfahren zur Herstellung einer einen Wabenkörper aufweisenden Vorrichtung zur Behandlung von Fluiden
EP1861594B1 (fr) Procede pour produire un dispositif de guidage des gaz d'echappement, en particulier un dispositif de purification de gaz d'echappement d'un vehicule
EP1899588B1 (fr) Procede pour realiser des dispositifs d'acheminement des gaz d'echappement, en particulier des dispositifs de purification des gaz d'echappement
EP0218062B1 (fr) Matrice porteuse, en particulier pour un réacteur catalytique d'épuration des gaz d'échappement des moteurs à combustion interne
DE102010005629B4 (de) Verfahren zum Herstellen von abgasführenden Vorrichtungen
EP1901863B1 (fr) Procede et dispositif pour former en une piece un rebord a l'extremite d'un tube cylindrique ou ovale en tole a paroi mince et tube fabrique selon ledit procede
DE7935982U1 (de) Wälzlagerkäfig
WO2007031122A1 (fr) Production d'un corps en nid d'abeilles, en particulier de grandes dimensions, pour le traitement ulterieur mobile de gaz d'echappement
WO2008046595A1 (fr) Procédé et outil pour produire des dispositifs d'acheminement de gaz d'échappement
WO2007101468A1 (fr) Procede de fabrication de dispositifs de guidage des gaz d'echappement ainsi que dispositif de fabrication de dispositifs de guidage des gaz d'echappement
DE2851944A1 (de) Vorrichtung zur herstellung von rohrkoerpern mit axial aufeinanderfolgenden querwellen
WO2008046597A1 (fr) Outil pour produire des dispositifs pour acheminer des gaz d'échappement
EP0907824A1 (fr) Dispositif d'epuration des gaz d'echappement pour moteur a combustion interne et procede permettant de le produire
DE10327668A1 (de) Verfahren zur Herstellung eines Katalysators sowie Anlage hierzu
DE102006015657B4 (de) Verfahren zum Herstellen von abgasführenden Vorrichtungen, insbesondere Abgasreinigungsvorrichtungen
DE19501780C2 (de) Rohr-Flansch-Verbindung
EP2998530B1 (fr) Procede de fabrication d'un convertisseur de gaz d'echappement, outil pour une presse annulaire destinee a fabriquer un convertisseur de gaz d'echappement, presse annulaire dotee dudit outil et convertisseur de gaz d'echappement fabrique a l'aide de la presse annulaire
EP0791132B1 (fr) Procede et dispositif de fabrication d'un bloc en nid d'abeilles, en particulier un bloc-support de catalyseur avec enveloppe
EP0125540A2 (fr) Dispositif de fabrication de tubes pourvus de trous dans leur paroi
WO2006045511A1 (fr) Procede et dispositif de production d'un profil
DE19611611A1 (de) Presse
DE69925042T2 (de) Verfahren zur herstellung von katalysatoren und anordnung zur durchführung des verfahrens
EP1570172B1 (fr) Procede de realisation d'accumulateurs de carburant haute pression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19951230

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970206

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19971105

REF Corresponds to:

Ref document number: 59500935

Country of ref document: DE

Date of ref document: 19971211

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971215

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2111985

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050419

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050524

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050531

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060523

Year of fee payment: 12

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060502

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060503

BERE Be: lapsed

Owner name: *LEISTRITZ A.G. & CO. ABGASTECHNIK

Effective date: 20070531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070525

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500935

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500935

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140529

Year of fee payment: 20

Ref country code: FR

Payment date: 20140519

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59500935

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59500935

Country of ref document: DE