EP0667175B1 - Méthode pour traiter les carres de skis etc. - Google Patents

Méthode pour traiter les carres de skis etc. Download PDF

Info

Publication number
EP0667175B1
EP0667175B1 EP95890006A EP95890006A EP0667175B1 EP 0667175 B1 EP0667175 B1 EP 0667175B1 EP 95890006 A EP95890006 A EP 95890006A EP 95890006 A EP95890006 A EP 95890006A EP 0667175 B1 EP0667175 B1 EP 0667175B1
Authority
EP
European Patent Office
Prior art keywords
plasma
steel running
running edge
plasma jet
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95890006A
Other languages
German (de)
English (en)
Other versions
EP0667175A3 (fr
EP0667175A2 (fr
Inventor
Gerhard Schwankhart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fischer GmbH
Original Assignee
Fischer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fischer GmbH filed Critical Fischer GmbH
Priority to SI9530148T priority Critical patent/SI0667175T1/xx
Publication of EP0667175A2 publication Critical patent/EP0667175A2/fr
Publication of EP0667175A3 publication Critical patent/EP0667175A3/fr
Application granted granted Critical
Publication of EP0667175B1 publication Critical patent/EP0667175B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/20Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for blades for skates
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C11/00Accessories for skiing or snowboarding
    • A63C11/04Accessories for skiing or snowboarding for treating skis or snowboards
    • A63C11/06Edge-sharpeners
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • C21D9/06Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails with diminished tendency to become wavy

Definitions

  • the invention relates to a method for hardening steel running edges for skis or the like the preamble of claim 1.
  • the invention provides that the steel running edge already is mounted on the ski.
  • Plasma rays have a particularly favorable energy-cost ratio and are compared to the surface properties of the material to be treated, such as color, pollution, reflectivity, insensitive.
  • no protective gas is required when using plasma torches.
  • that is Temperature distribution in a plasma jet in the axial direction is considerably flatter than in a laser beam, so that the exact positioning is less complex than necessary for the laser with the absolutely necessary precise setting of the Focus is the case.
  • the hardening of the steel running edges already attached to the ski can should be provided as the last step in ski production, since none Impairment of other ski components by the hardening according to the invention occurs and therefore no further post-treatment steps are necessary.
  • the plasma jet and the steel running edge are relative to each other in the longitudinal direction of the steel running edge be moved and the plasma jet at least over a portion of the Length of the steel running edge always has exactly the same energy, whereby this preferably by supplying the plasma head with exactly the same current is achieved is over the entire length of the swept longitudinal area of the steel sound edge ensures uniform, precisely defined hardening. This ensures that in a possible post-processing of the steel running edge, for example when uniform grinding, along the entire hardened length of the steel running edge same material properties and not undesirably hardened and unhardened sections occur in an unpredictable sequence. With the characteristic the fact that the plasma jet always has exactly the same energy is connected to everyone The point of the plasma jet is always the same temperature at all times. i.e. the temperature distribution in the plasma jet remains constant.
  • the plasma beam is simultaneously on both outer sides the steel leading edge is directed and the axis of the beam preferably obliquely on both Outside, especially in a range of 25 ° around the angular symmetry, especially exactly aligned in the angular symmetry.
  • the angle of the beam and / or its parallel shift up or down with respect to the axis of symmetry of the hardening outer edge can be a symmetrical or asymmetrical hardening zone and thus an adaptation to special wear situations or purposes can be achieved.
  • a symmetrical hardness zone of the outer edge, the shape of which is also possible during finishing is retained for a long time, is preferably with the axis of symmetry Outer edge coincident alignment of the energy and preferably the Plasma beams can be produced.
  • the area around the impingement area of the plasma jet is advantageously cooled to the extent that that in the transition area of the steel running edge ski, preferably the release temperature of the adhesive for fastening the steel running edge to the ski body is not exceeded.
  • the Heating of the material of the areas of the ski surrounding the steel running edge due to the heat dissipation to self-quench that heated by the plasma jet Area and thus to the hardening process, so that less thermal energy is transferred to others, must be dissipated in a more complex and expensive manner. It just has to be done care must be taken that the temperature does not rise so high that that for fixing the steel running edges used adhesive is dissolved or decomposed.
  • the impact area of the plasma beam is at least virtually, preferably by electromagnetic, in the direction of the longitudinal direction of the steel running edge Distraction of the plasma beam widened.
  • the diameter of the plasma jet itself is not enlarged, which would possibly disturb the parameters that are absolutely necessary for uniform temperature and energy distribution, but rather that a kind of serpentine guidance of the point of impact with a high frequency or a Shivering movement "of the point of impact around a central axis during the relative movement of the plasma head and steel running edge a larger area is covered than corresponds to the cross section of the plasma beam.
  • the virtual expansion can take place in any or any direction perpendicular to the axis of the plasma beam.
  • this variant also offers the advantage of slowing down the very rapid heating of the material by the plasma jet due to the distribution of the energy and thus, if necessary, to achieve a lower hardness than would correspond to the energy of the plasma beam. Since the area available for virtual expansion is usually limited at the outer edges of the steel running edge or only hardening in a narrow area around the wear-resistant area end is desired, is advantageously widened in the longitudinal direction of the steel running edge.
  • the gas flow around the cathode of the plasma head is kept laminar.
  • the temperature distribution in the plasma jet is in the desired way is precisely defined at every point.
  • the plasma head can be ignited by a sinus pulse and thus with little or simple shielding no influence on surrounding Electronic components enter through the plasma head. This is particularly the case with automated implementation of the method according to the invention using Industrial robots or similar, microprocessor-controlled systems of importance.
  • the use of the plasma jet for hardening makes it particularly economical deep hardening of the steel running edge especially in the plane of symmetry of the Achieve wear-prone outer edge, resulting in a cross-section in the essentially triangular hardness zone.
  • Other hardening processes such as by Laser use, do not penetrate as deep, so that there is along the outside of the steel running edge only in shallow depth and approximately L-shaped hardening zone in cross section results. This allows the property profile of a ski that has at least partially hardened steel running edge is provided, can be optimized for different purposes.
  • the invention further relates to a plasma head for hardening edges in steel materials, in particular to carry out the method according to one of the preceding paragraphs, with a housing divided by insulating material.
  • This plasma head is characterized according to the invention by a with radial bores for supplying the gas provided socket uni the cathode, preferably made of insulating material, which socket one Leaves annular gap around the cathode.
  • the inside of the socket is bounded together with the Outside the cathode an annular entry and equalization area for the Gas from the plasma torch, which favors the setting of a laminar flow, which for the uniformity of the plasma jet is important.
  • Particularly favorable results have set in when the free gap between the socket and cathode Has a height to width ratio of essentially 2: 1.
  • the plasma head is characterized by a Tungsten zirconium cathode. This material ensures an even discharge between cathode and anode and the resultant uniform temperature and Energy distribution in the emerging plasma jet.
  • At least one end of the cathode is at an angle between 10 and 30 °, preferably 20 °. This very small angle that is symmetrical between each other opposite sides of the preferably radially symmetrical cathode is measured, ensures a smooth approach of the cathode to the tip, thereby the flow of the Gases laminar and the plasma jet remains uniform.
  • This design of the cathode end enables an optimal tearing off of the gas flow at the end of the cathode with the least possible Influencing the laminar flow characteristics.
  • the opening in the anode is in the form of a Elongated hole, preferably the longer diameter in the longitudinal direction the steel running edge is aligned.
  • This form of the outlet opening for the plasma jet the plasma head causes a physical expansion of the plasma beam in the direction of the longer diameter and thus a distribution of the energy over a larger one Area of the steel running edge, preferably over a longitudinal area of the same. So that goes slower heating of the material, which - if desired - leads to less Hardness of the partially hardened part of the steel running edge leads.
  • the invention also relates to a device for hardening the edges of steel materials, in particular for performing the method according to the invention, with at least one Laser or plasma head, preferably two laser or plasma heads, as in one of the previous paragraphs described, as well as facilities for guiding the or each laser - or Plasma head and the steel running edge or with a steel running edge to be hardened provided skis relative to each other in the longitudinal direction of the steel running edge.
  • the device is advantageous characterized by preferably liquid-cooled heat sinks, preferably made of Copper, which is at a distance from the steel running edge or the ski body, preferably in a distance of 0.2 to 0.3 mm.
  • the heat sinks dissipate the amount of heat, which can no longer be absorbed by the ski body without a predetermined one Temperature, preferably the release temperature of the adhesive fixing the steel running edges, would be exceeded.
  • a cooling liquid water has a maximum of about 20 ° C result in the cheapest solution and as the material for the production of the heat sink, copper is the most advantageous choice for the rapid dissipation of large amounts of heat.
  • the heat sinks are not directly on the steel running edge or the surface of the ski created and guided along in contact with them, but at a short distance from the steel running edge and / or ski guided.
  • a base frame 1 there are three guide devices 2 for the ski (not shown) provided that the lateral in a known, preferably automated manner Guide the ski in an exact manner, i.e. guarantee to the tenth of a millimeter.
  • adjustable guide rollers for this purpose 3 arranged to Both sides of the ski's transport path.
  • the ski to be treated is transported by means of a conveyor belt 4 driven roller 5a driven by a precisely controllable motor 5 is promoted by the facility.
  • the conveyor belt 4 runs over the deflection rollers 6a to 6f and is such that a frictional connection with friction preferably the tread of the ski can arise.
  • the lower one Support roller 7, on which the ski rests with the tread is fixed on a stationary one or at least precisely fixable axis freely rotatable and made of very hard material, preferably made of steel.
  • a relative Soft, elastic circumferential coating 8a provided pressure roller 8 the ski against the lower support roller 7 pressed, in particular also the bias of the ski in its central area - which is the bulge of the ski between its front and rear support line caused - must be overcome.
  • a pressure of the ski arises due to the pretension Conveyor belt 4, which pressure is used to create the friction between the tread and conveyor belt 4 based, non-positive connection contributes.
  • the pressure roller 8 is adjustable in height, if necessary guided in a resiliently movable manner perpendicular to the ski, so that unhindered passage of the ski shovel and its insertion or removal from the Allow device.
  • S denotes the ski, which already has the steel running edges K to be hardened is provided and which is pressed by the pressure roller 8 on the support roller 7.
  • a device 9 for generating the plasma jet for heating the provided steel running edge K since this is a faster and therefore more economical Processing ensures as the nevertheless possible arrangement of only one device 9 one side of the ski S.
  • the devices 9 are on support structures 10, for example microprocessor-controlled robot arms, which support structures 10 advantageously - as symbolized by the arrows in the lower part - parallel to the axis the support roller 7 is controllably movably mounted.
  • the movement described is controlled by the contact rollers 11, which also on each support structure 10, which contact rollers 11 are provided by suitable sensors are monitored and wherein the support structures 10 are controlled such that the Contact rollers 11 always bear the same pressure on the steel running edge K.
  • the contact rollers 11 were shown on the left in FIG. 3 of the ski S to the right, the detail IV shown enlarged in FIG. 4 clearly in the To show connection with the support structure 10 and the entire device.
  • liquid-cooled heat sink 12 which is the material of the edge K surrounding components of the Ski S from overheating due to the plasma jet E Facility 9 preserved.
  • the coolant preferably water with a Maximum temperature of about 20 ° C, preferably flows through the passages 12a made of copper heat sinks 12.
  • These heat sinks 12 cover a longitudinal area of a few centimeters to about 30 cm in front of and behind the impact area of the plasma jet E from.
  • they are also located on the support structure 10 worn heat sink 12 not on the ski S or the edge K, but are in any case from this spaced, preferably between 0.2 and 0.3 mm, which is avoided Damage or impairment of the materials, for example, by scratching the still ensures sufficient heat dissipation.
  • plasma beams E are less sensitive to that Surface quality of the edge K and also more economical to use and require furthermore no additional protective gas. Below is one shown in FIG preferred embodiment of a plasma head 9 for generating a plasma beam E described in more detail.
  • the plasma head 9 shown comprises a two-part housing made of an upper part 13 and a lower part 14, which parts 13 and 14 by an insulating material 15 from each other are electrically isolated.
  • One connecting element 16 or 17 each on the upper part 13 or lower part 14 is for supplying or discharging cooling medium for the plasma head 9 in the Passage 17 provided.
  • the upper part 13 there is a cathode 18 in a manner known per se interchangeably fixable in a conventional holder 19.
  • In the lower part 14 is one free end of the cathode 18 at a distance surrounding anode 20 with an outlet opening 21 for the ionized gas, i.e. the plasma jet.
  • this space 23 is closed by the holder 19 of the cathode 18 while it is opposite in the annular gap 24 between cathode 18 and anode 20 and further the Exit opening 21 continues for the exit of the plasma jet.
  • the gas to be ionized by in an annular gap 26 around the bushing 22 and further through radial bores 27 in the Entry and equalization room 23 directed.
  • Helium or nitrogen is preferred as the gas to be ionized, however Argon used in an amount of 0.5 to 5 l / min, with argon a particularly stable Plasma with a protective gas effect is achieved.
  • a laminar flow of the gas is along for the uniform energy of the plasma jet the cathode 18 of particular importance.
  • the cathode 18 of particular importance.
  • the tip of the cathode 18 runs under a very small one Angle a between 10 and 30 °, preferably 20 °, together to as far as the flow possible to keep laminar.
  • Another feature to make the gas flow laminar to pass on consists in a flat, normal to the axis of the cathode 18 oriented End surface 28 with a preferably 0.3 mm diameter, which acts as a kind of tear-off edge controlled tearing of the gas flow from the cathode 18 acts.
  • the laminar flow of the gas has in addition to the uniform energy of the plasma jet and in connection with the special choice of material for the cathode 18, the additional one Advantage that the ionizing discharge between cathode 18 and anode 20 is not hard Rectangular pulse required, but can be ignited with a soft sine pulse. This eliminates all shielding problems of the plasma head 9 and it can without the interference surrounding electronic components, for example in the control of the support structures 10, in Measuring devices, etc., are used.
  • the current is during the stable Operating phase of the plasma torch 9 between 20 and 180 A.
  • the performance of the The energy beam is preferably between 1 and 5 kW, in particular 2 kW per unit 9.
  • the energy input by the energy beam E over a larger area the steel running edge K can be distributed.
  • an anode 20 configured in accordance with FIGS. 6a and 6b can be used with an elongated or oval outlet opening 21 be provided with a width between 0.6 and 2.5 mm, preferably 1 mm and a length between 2 and 5 mm, preferably 3 mm.
  • the outlet opening 21 ' is oriented such that the longer diameter lies parallel to the longitudinal axis of the steel running edge K. The heating and quenching is therefore slower and the hardness remains in the range of 57 to 60 Rockwell desired for the specific application. Round outlet openings in the anodes always result in higher hardness due to the faster cooling.
  • the Energy beam E with respect to both outer surfaces of the steel running edges to be hardened K is directed obliquely at this.
  • the beam E in the in Fig. 3 or more clearly in a range of about 25 ° around that Plane of symmetry, advantageously exactly in the plane of the angular symmetry, to hardening outer edge of the steel running edge K directed towards this. So the effect can be of the hardened area within the steel running edge, whereby directly in Extension of the energy beam E the greatest depth of hardening is achieved. The depth of hardening becomes smaller the greater the radial distance from the axis of the energy beam E.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (16)

  1. Procédé de durcissement de carres en acier pour des skis ou analogues, où la carre en acier est chauffée rapidement partiellement, de préférence au moins au voisinage de la carre en acier délimitant la semelle du ski à l'extérieur, avec un jet de plasma avec une énergie définie d'une manière précise à chaque instant, ensuite le matériau chauffé par le jet de plasma est de préférence uniquement refroidi et de ce fait durci, où la carre en acier est déjà montée sur le ski ou analogue.
  2. Procédé selon la revendication 1, caractérisé en ce que le jet de plasma et la carre en acier sont déplacés relativement l'un par rapport à l'autre dans la direction longitudinale de la carre en acier et que le jet de plasma présente dans ce cas au moins sur une zone partielle de la longueur de la carre en acier toujours la même énergie, où cela est obtenu de préférence par une alimentation de la tête à plasma toujours exactement avec la même force de courant.
  3. Procédé selon la revendication 1, caractérisé en ce que le jet de plasma et la carre en acier sont déplacés l'un par rapport à l'autre dans la direction longitudinale de la carre en acier et que le jet de plasma présente dans ce cas au moins sur une zone partielle de la longueur de la carre en acier une énergie de préférence régulièrement modifiable, où cela est obtenu de préférence par une modification régulière de la force de courant amenée à la tête à plasma.
  4. Procédé selon l'une des revendications précédentes, caractérisé en ce que le jet de plasma est orienté simultanément sur les deux côtés extérieurs de la carre en acier et que l'axe du jet de plasma est orienté de préférence d'une manière oblique sur les deux côtés extérieurs, notamment dans une zone de 25° autour de la symétrie angulaire, en particulier d'une manière précise selon la symétrie angulaire.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la zone autour de la zone d'incidence du jet de plasma est refroidie suffisamment pour que dans la zone de transition entre la carre en acier et le ski, de préférence la température de dissolution de la colle pour la fixation de la carre en acier au corps de ski ne soit pas dépassée.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que la zone d'incidence du jet de plasma est élargie en direction de la direction longitudinale de la carre en acier au moins virtuellement, de préférence par une déviation électromagnétique du jet de plasma.
  7. Procédé selon la revendication 6, caractérisé en ce que la section transversale du jet de plasma est élargie de préférence dans le sens de la direction longitudinale de la carre en acier.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le flux de gaz pour le jet de plasma autour de la cathode de la tête à plasma est toujours maintenu d'une manière laminaire.
  9. Tête à plasma pour le durcissement d'arêtes de matériaux en acier, pour l'exécution du procédé selon l'une des revendications 1 à 8, avec un boítier (13, 14) divisé par un matériau isolant (15), des installations pour l'amenée d'un gaz, une cathode (18) en forme de tige ronde, autour de laquelle passe le gaz et une anode (20, 20') entourant une extrémité de la cathode (18) avec une ouverture (21, 21') pour la sortie du jet de plasma (E), caractérisée par une douille (22) pourvue de perçages radiaux (27), de préférence en un matériau isolant, autour de la cathode (23), pour l'amenée d'un gaz, ladite douille (22) laissant libre une fente annulaire (23) autour de la cathode (18), où la fente annulaire (23) restant libre entre la douille (22) et la cathode (18) a un rapport de hauteur en largeur de 2:1.
  10. Tête à plasma selon la revendication 9, caractérisée par une cathode en tungstène-zirconium (18).
  11. Tête à plasma selon la revendication 9 ou 10, caractérisée en ce qu'au moins une extrémité de la cathode (18) s'étend suivant un angle d'arrivée compris entre 10 et 30° de préférence de 20°.
  12. Tête à plasma selon l'une des revendications 9 à 11, caractérisée en ce que la cathode (18) se termine d'une manière obtuse, de préférence dans une surface plane (28) s'étendant perpendiculairement à l'axe de la cathode.
  13. Tête à plasma selon l'une des revendications 9 à 12, caractérisée en ce que l'ouverture (21') dans l'anode (20') est réalisée sous la forme d'un trou oblong où de préférence le diamètre plus long est orienté dans la direction longitudinale de la carre en acier (K).
  14. Tête à plasma selon l'une des revendications 9 à 13, caractérisée en ce que sont prévues des installations (29) pour la déviation électromagnétique du jet de plasma (E) au voisinage de l'ouverture de sortie (21, 21') pour le jet de plasma.
  15. Dispositif pour le durcissement d'arêtes de matériaux en acier, pour l'exécution du procédé selon l'une des revendications 1 à 8, avec au moins une tête à plasma (9), de préférence deux têtes à plasma, selon l'une des revendications 9 à 14, et avec des installations (2 à 8, 10) pour guider la ou chaque tête à plasma (9) et la carre en acier (K) respectivement du ski (S) pourvu d'une carre en acier à durcir les unes par rapport aux autres dans la direction longitudinale de la carre en acier (K).
  16. Dispositif selon la revendication 15, caractérisé par des corps de refroidissement (12) refroidis de préférence par du liquide, de préférence en cuivre qui sont guidés à une distance relativement à la carre en acier (K) respectivement au corps de ski, de préférence à une distance de 0,2 à 0,3 mm.
EP95890006A 1994-01-17 1995-01-11 Méthode pour traiter les carres de skis etc. Expired - Lifetime EP0667175B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI9530148T SI0667175T1 (en) 1994-01-17 1995-01-11 Method for treating edges of skis etc.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0008094A AT404798B (de) 1994-01-17 1994-01-17 Verfahren zum härten von stahl-laufkanten für ski sowie plasmakopf zur härtung von kanten bei stahlmaterialien und vorrichtng zur härtung von kanten bei stahlmaterialien
AT80/94 1994-01-17

Publications (3)

Publication Number Publication Date
EP0667175A2 EP0667175A2 (fr) 1995-08-16
EP0667175A3 EP0667175A3 (fr) 1996-08-28
EP0667175B1 true EP0667175B1 (fr) 1998-10-21

Family

ID=3481006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95890006A Expired - Lifetime EP0667175B1 (fr) 1994-01-17 1995-01-11 Méthode pour traiter les carres de skis etc.

Country Status (6)

Country Link
EP (1) EP0667175B1 (fr)
JP (1) JPH07250932A (fr)
AT (2) AT404798B (fr)
CA (1) CA2140310A1 (fr)
DE (1) DE59503963D1 (fr)
SI (1) SI0667175T1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403805B (de) * 1994-12-23 1998-05-25 Fischer Gmbh Verfahren zur bearbeitung von stahlkanten für ski od.dgl.
RU2644638C2 (ru) * 2016-01-26 2018-02-13 Общество с ограниченной ответственностью "Транс-Атом" Способ термической обработки стальных рельсов

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT286152B (de) * 1968-08-23 1970-11-25 Boehler & Co Ag Geb Stahlkanten für Schier
US3802927A (en) * 1970-09-14 1974-04-09 N Gomada Apex seal for rotary piston engine and method of producing same
DE2435446A1 (de) * 1974-07-23 1976-06-16 Hollingsworth Gmbh Verfahren und vorrichtung zum haerten von drahtfoermigen werkstuecken
WO1984003648A1 (fr) * 1983-03-25 1984-09-27 Bobrov Alexandr V Procede de traitement thermomecanique de pieces a usiner
SE446316B (sv) * 1978-07-11 1986-09-01 Gpnii Nikel Kobalt Olov Promy Forfarande for plasmabehandling
AT392483B (de) * 1989-07-25 1991-04-10 Schuler Albert Verfahren zum haerten der schneidkanten von saegen
YU135290A (sh) * 1989-07-25 1992-12-21 Schuler, Albert Postopek kaljenja rezalnih robov žag, nožev in orodij za štancanje
DE4000744C2 (de) * 1990-01-12 1996-07-11 Trumpf Gmbh & Co Verfahren für Stahlkanten von Wintersportgeräten
DE4042349A1 (de) * 1990-06-08 1991-12-19 Fraunhofer Ges Forschung Verfahren zur oberflaechenbehandlung von werkstuecken mit laserstrahlung
US5313042A (en) * 1991-06-07 1994-05-17 Nissan Motor Co., Ltd Laser hardening device

Also Published As

Publication number Publication date
EP0667175A3 (fr) 1996-08-28
ATA8094A (de) 1997-09-15
EP0667175A2 (fr) 1995-08-16
SI0667175T1 (en) 1999-02-28
DE59503963D1 (de) 1998-11-26
JPH07250932A (ja) 1995-10-03
AT404798B (de) 1999-02-25
CA2140310A1 (fr) 1995-07-18
ATE172381T1 (de) 1998-11-15

Similar Documents

Publication Publication Date Title
EP1516068B1 (fr) Procede pour lisser et polir des surfaces par traitement avec un rayonnement energetique
DE102007043146B4 (de) Bearbeitungskopf mit integrierter Pulverzuführung zum Auftragsschweißen mit Laserstrahlung
DE2654486A1 (de) Verfahren zur glaettung eines nadeloehrs
DE1553761A1 (de) Verfahren zum UEberziehen der Schneiden von geschaerften Geraeten
EP0483182B1 (fr) Procede de trempe des bords tranchants de scies, couteaux et outils de decoupage
EP0667175B1 (fr) Méthode pour traiter les carres de skis etc.
EP3603871A1 (fr) Dispositif et procédé d'usinage d'une pièce par rayonnement laser
EP0511274B1 (fr) Dispositif pour le traitement de surface de pieces au moyen d'un rayonnement lumineux
DE19935884C1 (de) Verfahren zum Härten mindestens einer Fläche einer Wand eines Bauteils und Vorrichtung zu seiner Durchführung
DE3121555C2 (de) Verfahren zum Bearbeiten von Stahl mittels Laserstrahlung
EP0718013B1 (fr) Procédé de traitement des carres de skis etc.
DE102004005358B4 (de) Verfahren zur Laserbearbeitung beschichteter Bleche und beschichtetes Blech
DE4123577A1 (de) Verfahren zur laserhaertung von bauteilen
DE1765852B2 (de) Verfahren und Vorrichtung zur Bearbeitung von metallischen Werkstoffen mit magnetisch fokussieren Ladungsträgerstrahlen
EP3108018A1 (fr) Système, installation de fabrication et procédé
AT392483B (de) Verfahren zum haerten der schneidkanten von saegen
EP0617134B1 (fr) Procédé pour la refusion de zones de surface de pièces à usiner
DE1765104A1 (de) Verfahren zur raschen Erhitzung elektrisch leitender Werkstoffe
WO1991018704A1 (fr) Procede de traitement de surface de pieces au moyen d'un rayonnement laser
DE102022130614A1 (de) Ortsselektive plasmareduktion
WO2023203166A1 (fr) Procédé d'usinage de pièce sur la base de lasers
EP1249505A1 (fr) Procédé pour le durcissement d'une zone superficielle d'une pièce
EP0703299B1 (fr) Procédé et appareil de durcissement des bords en aciers de skis
AT392981B (de) Verfahren zum haerten der schneidkanten von messern
DE2435446A1 (de) Verfahren und vorrichtung zum haerten von drahtfoermigen werkstuecken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR IT LI

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 950125

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR IT LI

AX Request for extension of the european patent

Free format text: SI PAYMENT 950125

17P Request for examination filed

Effective date: 19960916

17Q First examination report despatched

Effective date: 19970603

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR IT LI

AX Request for extension of the european patent

Free format text: SI PAYMENT 950125

REF Corresponds to:

Ref document number: 172381

Country of ref document: AT

Date of ref document: 19981115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59503963

Country of ref document: DE

Date of ref document: 19981126

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: SI

Ref legal event code: IF

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070118

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070125

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070313

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070424

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070118

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080111

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080111