EP0663968B1 - Plasma treatment process of antiballistic materials - Google Patents

Plasma treatment process of antiballistic materials Download PDF

Info

Publication number
EP0663968B1
EP0663968B1 EP19940924840 EP94924840A EP0663968B1 EP 0663968 B1 EP0663968 B1 EP 0663968B1 EP 19940924840 EP19940924840 EP 19940924840 EP 94924840 A EP94924840 A EP 94924840A EP 0663968 B1 EP0663968 B1 EP 0663968B1
Authority
EP
European Patent Office
Prior art keywords
gases
plasma
inorganic
gas
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940924840
Other languages
German (de)
French (fr)
Other versions
EP0663968A1 (en
Inventor
Andreas Reiner
Dieter Hans Peter Schuster
Achim Gustav Fels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo Nobel NV
Original Assignee
Akzo Nobel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo Nobel NV filed Critical Akzo Nobel NV
Publication of EP0663968A1 publication Critical patent/EP0663968A1/en
Application granted granted Critical
Publication of EP0663968B1 publication Critical patent/EP0663968B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/01Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/34Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxygen, ozone or ozonides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/58Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides
    • D06M11/59Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with nitrogen or compounds thereof, e.g. with nitrides with ammonia; with complexes of organic amines with inorganic substances
    • D06M11/60Ammonia as a gas or in solution
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/26Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/902High modulus filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/911Penetration resistant layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2615Coating or impregnation is resistant to penetration by solid implements
    • Y10T442/2623Ballistic resistant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3049Including strand precoated with other than free metal or alloy
    • Y10T442/3057Multiple coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/419Including strand precoated with other than free metal or alloy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/603Including strand or fiber material precoated with other than free metal or alloy
    • Y10T442/607Strand or fiber material is synthetic polymer

Definitions

  • the invention relates to a continuous or discontinuous process for the plasma treatment of antiballistically active materials.
  • Plasma treatments have been described several times for different polymers, with a number of very different plasmas being proposed. Plasmas of noble gases are often mentioned, but oxygen and nitrogen plasmas are also used.
  • the goal of plasma treatment is usually to change the surfaces of the polymers with the task of achieving better adhesion of coating or finishing agents. Another treatment goal frequently described is an improvement in dye affinity.
  • the polymers to be treated also include those which can be used for antiballistically active materials, such as aromatic polyamide fibers or polyethylene fibers spun by the gel spinning process. Also with the plasma treatment of these fibers always stand Property changes as mentioned above are the focus of interest.
  • Combined treatments are also sometimes proposed for this, which consist of a pretreatment in a plasma and a subsequent wet treatment by immersion impregnation with different finishing agents.
  • JP-A 63-223 043 describes a treatment of aromatic polyamide fibers in an argon, oxygen or nitrogen plasma. This is followed by treatment with a gaseous or liquid mixture of compounds and dienes containing glycidyl groups. This is intended to improve the dyeing behavior of the fiber and the adhesion of finishing agents to the fiber surface.
  • a plasma treatment for a number of very different fiber materials is described in EP-A 492 649.
  • treatment takes place in a plasma of polymerizable gases, among which alkenes and fluorinated alkenes are also mentioned. These gases can possibly be "diluted” with noble gases.
  • the aim of the treatment is to improve the dyeing properties and to have a positive influence on the processing properties of sewing threads.
  • the improvement of the antiballistic effect is a permanent task for the manufacturers of protective clothing against bullets and against splinters as well as for the suppliers of the materials to be used for this. It should be noted that an improvement in the antiballistic effect must not only be sought in the dry state, but that this effect, particularly in accordance with the requirements for protective clothing for the military sector, must also be continuously improved in the wet state.
  • the task was to develop a cost-effective method that once improves the antiballistic effectiveness in the dry and especially in the wet state and which offers the possibility of being able to do without the previous wet treatment.
  • a plasma treatment of the antiballistically active materials is carried out in a two-stage process.
  • treatment is carried out in a plasma consisting of at least 50% of an inorganic gas or a mixture of inorganic gases.
  • treatment takes place in a plasma of hydrophobic organic gases or mixtures of such gases from the group consisting of saturated hydrocarbons, unsaturated hydrocarbons, saturated fluorocarbons, unsaturated fluorocarbons, siloxanes or vinyl compounds.
  • the treatment in the second stage can also be carried out with a mixture of organic gases having a hydrophobic effect and inorganic gases.
  • Oxygen, nitrogen, hydrogen and noble gases such as argon, helium, xenon and. come as inorganic gases for the plasma treatment according to the inventive method Krypton in question.
  • Argon and helium are preferred among the noble gases.
  • Treatment in an argon plasma is particularly preferred.
  • Mixtures of the inorganic gases can also be used.
  • Mixtures of inorganic gases with organic gases can also be used, but the proportion of inorganic gases in each case must be at least 50%.
  • the organic gases the hydrophobicizing gases also provided for the second treatment stage are preferred.
  • the gas flow amounts of the inorganic gas or the gas mixtures introduced into the plasma chamber are, depending on the desired effect, between 1 ml / min and 500 ml / min, preferably between 5 ml / min and 200 ml / min, particularly preferably between 10 ml / min and 50 ml / min.
  • This information relates to a volume of the plasma chamber of 20 1. With other chamber sizes, the gas flow quantities can be converted accordingly. If the chamber geometry is very different, the gas flow quantities may have to be re-determined experimentally.
  • the plasma treatment with an inorganic gas or a gas mixture with at least 50% of an inorganic gas in the first treatment stage activates the surface of the polymer and thus prepares it for the subsequent treatment with a hydrophobic organic gas.
  • Saturated hydrocarbon compounds, unsaturated hydrocarbon compounds, saturated fluorocarbon compounds, unsaturated fluorocarbon compounds, are found as organic gases having a hydrophobic effect for the plasma treatment by the process according to the invention in the second treatment stage, Siloxanes or vinyl compounds or mixtures of the compounds mentioned application.
  • Ethene, propene, butene, hexene or heptene can be used as gases from the alkene series.
  • suitable alkynes are acetylene and diacetylene.
  • Butadiene can preferably be used among the dienes.
  • Other suitable compounds are pentadiene and hexadiene.
  • gases from the Triene class is hexatriene.
  • Suitable saturated fluorocarbon compounds are, for example, tetrafluoromethane and hexafluoroethane.
  • unsaturated fluorocarbons for example, tetrafluoroethylene and hexafluorobutadiene are well suited.
  • siloxanes examples include tetramethyldisiloxane and hexamethyldisiloxane.
  • vinyl compounds examples include styrene, divinylbenzene and hydrophobic acrylic compounds will.
  • the latter can be methyl, ethyl or butyl acrylate.
  • hydrophobicizing compounds which are gaseous at room temperature are particularly preferred.
  • compounds with a hydrophobic effect which are not gaseous at room temperature if they have a sufficiently high vapor pressure.
  • hydrophobic liquids if they have the necessary conditions with regard to the vapor pressure, can be connected to the vacuum of the plasma reactor, as a result of which the liquid evaporates and is then present in the plasma reactor as a gas having a hydrophobic effect.
  • hydrophobic compounds which are liquid at room temperature into the plasma reactor is to pass a gas, for example an inorganic gas, through the liquid, the gas being saturated with molecules of the liquid.
  • a gas for example an inorganic gas
  • the treatment can also be carried out with a mixture of organic gases and inorganic gases having a hydrophobic effect, the proportion of organic gases preferably being more than 50%.
  • the gases mentioned above are also used here.
  • Such mixtures can be used in a suitable manner if the organic compound with a hydrophobic effect is present as a liquid at room temperature.
  • the amounts of gas introduced into the plasma chamber in the second treatment stage are in the same ranges as in the first treatment stage.
  • the quantities mentioned there can also be used here.
  • the treatment to be carried out in two stages can take place, for example, in two plasma chambers connected in series, which can be accommodated in a reactor. It is also possible to work in one reactor in two reactors connected in series. Finally, it is also possible to work in the same chamber by direct succession of processes, i.e. without venting the chamber to perform the two-stage plasma treatment.
  • the antiballistically effective materials can be treated in different forms.
  • web-like presentations in the form of flat structures such as foils, fabrics, knitwear or nonwovens are best suited.
  • thread coulters can be used, for example, for plasma treatment of the freshly spun fiber, which means that the method according to the invention can also be combined with a fiber production method.
  • combinations of the method according to the invention with other treatment steps can also be carried out with other forms of presentation of the material to be treated, such as foils, fabrics, knitted fabrics or nonwovens.
  • the freshly spun aromatic polyamide fiber after passing through the washing passages and drying, can be subjected to a plasma treatment continuously using the method according to the invention.
  • the previously mentioned sheet-like or thread-like materials are suitable for the continuous treatment, which is preferred when carrying out the method according to the invention.
  • the method according to the invention can also be carried out discontinuously, the two treatment stages being carried out in the same treatment chamber or in two different treatment chambers. Any form of presentation can be used for the discontinuous treatment. It is particularly suitable for the treatment of blanks for the antiballistic protective layers of bulletproof or splinterproof vests.
  • the antiballistically effective materials include, above all, aromatic polyamide fibers, which are also known as aramid fibers. Such fibers are commercially available, for example, under brand names such as Twaron.
  • aromatic polyamides can also be non-fibrous, for example as films.
  • Aromatic polyamides include polymers which are obtained by polycondensation of aromatic diamines with aromatic dicarboxylic acids arise. Aromatic polyamides are also to be understood as meaning the polymers which, in addition to aromatic compounds, also contain portions of aliphatic compounds.
  • the antiballistically active materials also include polyolefin fibers, especially polyethylene fibers spun using the gel spinning process.
  • Aromatic polyamides are particularly suitable for carrying out the process according to the invention.
  • Aromatic polyamides are preferably used in the form of fibers in very different areas of clothing and technology. They are used, among other things, for the manufacture of ball and splinter-resistant clothing, in which the actual protective layer forms a so-called antiballistic package consisting of several superimposed layers of, for example, fabrics made from aromatic polyamide fibers. In addition to fabrics, other flat structures such as nonwovens, knitwear or foils can also be used here.
  • the process according to the invention offers the possibility of circumventing this wet process and of carrying out the inexpensive and environmentally friendly finishing of the aromatic polyamide fibers.
  • Fabrics made from aromatic polyamide fibers treated by the process according to the invention result in a significant improvement in the antiballistic effect compared to untreated materials. This improvement is not only found in wet bombardment, since it has surprisingly been found that fabrics made from aromatic polyamide fibers treated in the dry state by the process according to the invention also give improved antiballistic activity. The values listed below clearly show this.
  • a splinter bombardment can be carried out, for example.
  • This test method is particularly useful when it comes to protective clothing that should preferably be used in the military sector, since the antiballistic effectiveness in wet condition is of much greater importance than, for example, protective clothing for police use.
  • the antiballistic package produced in this way is subjected to a splinter bombardment in accordance with the conditions of STANAG 2920.
  • the bombardment is carried out with 1.1 g fragments.
  • the protective effect is expressed by the V50 value and given in speeds of m / sec.
  • the V50 value means that the determined Speed there is a penetration probability of 50%.
  • test material in the form of the prepared antiballistic package is placed in water for one hour. The bombardment occurs after three minutes of dripping.
  • V50 values listed below The clear progress in the antiballistic effectiveness when using the method according to the invention is evident from the V50 values listed below.
  • a comparison was made between an untreated fabric, a fabric hydrophobized in a conventional manner in a wet process with a fluorocarbon resin, and a fabric treated by the process according to the invention.
  • a first treatment stage in an argon plasma was used for the plasma treatment.
  • a mixture of 80% butadiene and 20% argon was used in a plasma.
  • the items to be treated were fabrics made from aromatic polyamide fibers.
  • the yarn titer of the filament yarns used for the fabric production was 1,100 dtex, the fabrics made in plain weave had a basis weight of 187 g / m 2 in the raw material.
  • the material treated by the process according to the invention exhibits approximately the same antiballistic activity as that which has been rendered hydrophobic by the conventional process.
  • the conditions for the plasma treatment when carrying out the method according to the invention depend very much on the material to be treated, on the desired effect and on any additional pretreatment or aftertreatment and must be coordinated with this.
  • Other factors that influence the definition of the treatment conditions are the type of plasma, i.e. a direct current plasma, low- or high-frequency alternating current plasma, the type of coupling of the plasma into the reaction zone (capacitive or inductive), the reactor size and reactor geometry Geometry of the electrodes, the area of material to be treated per unit of time and the position of the material in the reactor.
  • a temperature range of 10-90 ° C. has proven to be suitable for the plasma treatment according to the method according to the invention.
  • a temperature range between 20 and 50 ° C. is preferred.
  • the treatment according to the method according to the invention should not be restricted to the low-temperature plasma mentioned here.
  • Treatment in the high-temperature plasma, also called corona plasma can also be carried out by the method according to the invention. This works in a pressure range between 100 Pa and 100,000 Pa, whereby higher temperatures are reached.
  • 5 to 1,000 W are selected as power.
  • a range between 20 and 600 W is preferred.
  • the treatment can take place both in direct current and in alternating current plasma. AC plasmas are preferred. In the latter case, high-frequency and low-frequency plasmas are equally suitable. Ranges between 0.1 and 100 Pa have proven to be favorable as pressures; a range between 1 and 10 Pa is preferred. These pressures apply to treatment in low-temperature plasma. Suitable pressures for corona plasma are values between 100 and 100,000 Pa.
  • the inflow of the gas forming the plasma there are no restrictions with regard to the inflow of the gas forming the plasma.
  • the gas can be routed parallel or perpendicular or at an angle to the web.
  • the direction of flow can be both rectified and opposite to that of the material to be treated.
  • the residence time in the plasma chamber which is essentially determined by the speed of the goods in the continuous process, depends very much on the material to be treated and the desired effect, according to the type of plasma (direct current, low-frequency or high-frequency alternating current plasma), according to the type of coupling (inductive or capacitive), according to the reactor size and geometry, according to the geometry of the electrodes, according to the pro Unit of time to be treated and according to the position of the material to be treated in the reactor.
  • the residence time is also influenced by the ion density in the treatment chamber. If the ion density is high, the residence time can be reduced with the same effect.
  • a shorter residence time is required for the activating treatment in the first treatment stage in the plasma of an inorganic gas than for the treatment in the second stage in a plasma of a hydrophobizing organic gas or in a mixture of hydrophobizing organic gas and inorganic gas.
  • the method according to the invention offers a particularly advantageous possibility for the plasma treatment of antiballistically active materials, the most important advantage being the achievement of improved antiballistic properties.
  • This advantage is particularly evident in dry bombardment compared to conventional finishing with fluorocarbon resins in a wet process.
  • the method according to the invention results in a considerable simplification of the process, an improved economy and, above all, a significantly lower environmental impact compared to the previously used wet method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

A plasma treatment process in two steps is disclosed for antiballistic materials, such as aromatic polyamides. In the first step, a plasma treatment is applied with at least 50 % inorganic gas or a mixture of inorganic gasses and in the second step a plasma treatment is applied with a water-proofing organic gas or with mixtures of such gasses from the group of the saturated hydrocarbons, unsaturated hydrocarbons, saturated fluorohydrocarbons, unsaturated fluorohydrocarbons, siloxanes or vinyl compounds. In the second step a mixture of one or several inorganic gasses with one or several water-proofing organic gasses may also be used. This process improves the antiballistic properties.

Description

Die Erfindung betrifft ein kontinuierliches oder diskontinuierliches Verfahren zur Plasmabehandlung von antiballistisch wirksamen Materialien.The invention relates to a continuous or discontinuous process for the plasma treatment of antiballistically active materials.

Plasmabehandlungen sind für verschiedene Polymere bereits mehrfach beschrieben worden, wobei eine Reihe sehr unterschiedlicher Plasmen vorgeschlagen wird. Oft werden Plasmen von Edelgasen genannt, aber auch Sauerstoff- und Stickstoffplasmen finden Anwendung. Das Ziel der Plasmabehandlung ist meistens eine Veränderung der Oberflächen der Polymeren mit der Aufgabenstellung, eine bessere Haftung von Beschichtungs- oder Ausrüstungsmitteln zu erzielen. Ein weiteres häufig beschriebenes Behandlungsziel ist eine Verbesserung der Farbstoffaffinität.Plasma treatments have been described several times for different polymers, with a number of very different plasmas being proposed. Plasmas of noble gases are often mentioned, but oxygen and nitrogen plasmas are also used. The goal of plasma treatment is usually to change the surfaces of the polymers with the task of achieving better adhesion of coating or finishing agents. Another treatment goal frequently described is an improvement in dye affinity.

Unter den zu behandelnen Polymeren werden auch solche genannt, die für antiballistisch wirksame Materialien einsetzbar sind, wie aromatische Polyamidfasern oder nach dem Gelspinnverfahren ersponnene Polyethylenfasern. Auch bei der Plasmabehandlung dieser Fasern stehen immer Eigenschaftsänderungen, wie sie oben genannt sind, im Mittelpunkt des Interesses.The polymers to be treated also include those which can be used for antiballistically active materials, such as aromatic polyamide fibers or polyethylene fibers spun by the gel spinning process. Also with the plasma treatment of these fibers always stand Property changes as mentioned above are the focus of interest.

Hierfür werden teilweise auch kombinierte Behandlungen vorgeschlagen, die aus einer Vorbehandlung in einem Plasma und einer anschließenden Naßbehandlung durch eine Tauchimprägnierung mit unterschiedlichen Ausrüstungsmitteln bestehen.Combined treatments are also sometimes proposed for this, which consist of a pretreatment in a plasma and a subsequent wet treatment by immersion impregnation with different finishing agents.

So wird beispielsweise in JP-A 63 - 223 043 eine Behandlung von aromatischen Polyamidfasern in einem Argon-, Sauerstoff- oder Stickstoffplasma beschrieben. Dieser schließt sich eine Behandlung mit einer gasförmigen oder flüssigen Mischung von glycidylgruppenhaltigen Verbindungen und Dienen an. Hiermit soll das Färbeverhalten der Faser und die Haftung von Ausrüstungsmitteln an der Faseroberfläche verbessert werden.For example, JP-A 63-223 043 describes a treatment of aromatic polyamide fibers in an argon, oxygen or nitrogen plasma. This is followed by treatment with a gaseous or liquid mixture of compounds and dienes containing glycidyl groups. This is intended to improve the dyeing behavior of the fiber and the adhesion of finishing agents to the fiber surface.

Weitere zweistufige Verfahren mit einer Plasmavorbehandlung von aromatischen Polyamidfasern und einer Naßnachbehandlung durch Tauchimprägnierung, beispielsweise mit polymerisierbaren Substanzen, sind in EP-A 191 680, EP-A 192 510 und CA-A 1 122 566 beschrieben. Bei all diesen Verfahren wird eine Verbesserung der Haftung von Beschichtungs- bzw. Ausrüstungsmitteln durch eine Veränderung der Oberfläche bei der Plasmabehandlung angestrebt.Further two-stage processes with a plasma pretreatment of aromatic polyamide fibers and a wet aftertreatment by immersion impregnation, for example with polymerizable substances, are described in EP-A 191 680, EP-A 192 510 and CA-A 1 122 566. In all of these processes, the aim is to improve the adhesion of coating or finishing agents by changing the surface during the plasma treatment.

Diese Verfahren ermöglichen zwar eine gute Haftung zwischen dem Grundmaterial aus aromatischen Polyamidfasern und dem Ausrüstungs- oder Beschichtungsmittel, sie sind aber wegen der Notwendigkeit der Behandlung in zwei sehr unterschiedlichen Vorrichtungen (Plasmavorrichtung für die erste Stufe und Tauch- oder Beschichtungsvorrichtung für die zweite Stufe) sehr kostenungünstig. Darüberhinaus sind die Naßverfahren der zweiten Stufe auch aus ökologischen Gründen bedenklich.While these methods allow good adhesion between the aromatic polyamide fiber base material and the finishing or coating agent, they are very great because of the need for treatment in two very different devices (plasma device for the first stage and dipping or coating device for the second stage) inexpensive. Furthermore, they are Wet process of the second stage is also of concern for ecological reasons.

Eine Plasmabehandlung für eine Reihe sehr unterschiedlicher Fasermaterialien wird in EP-A 492 649 beschrieben. Hier erfolgt eine Behandlung in einem Plasma polymerisierbarer Gase, unter denen auch Alkene und fluorierte Alkene genannt werden. Diese Gase können eventuell mit Edelgasen "verdünnt" werden. Ziel der Behandlung ist eine Verbesserung der Färbeeigenschaften sowie ein positiver Einfluß auf die Verarbeitungseigenschaften von Nähfäden.A plasma treatment for a number of very different fiber materials is described in EP-A 492 649. Here treatment takes place in a plasma of polymerizable gases, among which alkenes and fluorinated alkenes are also mentioned. These gases can possibly be "diluted" with noble gases. The aim of the treatment is to improve the dyeing properties and to have a positive influence on the processing properties of sewing threads.

Eine kombinierte Plasmabehandlung von Polyethylen mit Edelgasen und Fluorkohlenwasserstoffen wird in US 3 740 325 beschrieben. Hier wird versucht, durch die Plasmabehandlung die Korrosionsbeständigkeit zu verbessern.A combined plasma treatment of polyethylene with noble gases and fluorocarbons is described in US 3,740,325. An attempt is being made here to improve the corrosion resistance by means of the plasma treatment.

Alle diese Verfahren liefern keine Hinweise, wie eine Plasmabehandlung von antiballistisch wirksamen Materialien erfolgen muß.All of these methods do not provide any clues as to how plasma treatment of antiballistically active materials must take place.

Die Verbesserung des antiballistischen Effektes ist eine Daueraufgabe für die Hersteller von Schutzkleidung gegen Kugeln und gegen Splitter sowie für die Lieferanten der hierfür einzusetzenden Materialien. Hierbei ist zu beachten, daß nicht nur in trockenem Zustand eine Verbesserung des antiballistischen Effektes angestrebt werden muß, sondern daß dieser Effekt, besonders gemäß der Forderungen für Schutzkleidung für den militärischen Bereich, auch in nassem Zustand stetig verbessert werden muß.The improvement of the antiballistic effect is a permanent task for the manufacturers of protective clothing against bullets and against splinters as well as for the suppliers of the materials to be used for this. It should be noted that an improvement in the antiballistic effect must not only be sought in the dry state, but that this effect, particularly in accordance with the requirements for protective clothing for the military sector, must also be continuously improved in the wet state.

Um den Forderungen nach einer guten antiballistischen Wirksamkeit in nassem Zustand gerecht zu werden, wurden bislang Flächengebilde aus aromatischen Polyamidfasern häufig einer Badbehandlung mit Hydrophobierungsmitteln, wofür besonders Fluorkohlenwasserstoff-Verbindungen zum Einsatz gelangten, unterzogen. Abgesehen von dem Kostenaufwand, der für die Badbehandlung und anschließende Trocknung aufgebracht werden muß, ist auch eine Naßbehandlung mit derartigen Verbindungen aus ökologischen Gründen bedenklich.In order to meet the demands for a good antiballistic effectiveness when wet, Up to now, fabrics made from aromatic polyamide fibers have frequently been subjected to a bath treatment with hydrophobizing agents, for which fluorocarbon compounds in particular have been used. In addition to the cost involved in the bath treatment and subsequent drying, wet treatment with such compounds is also of concern for ecological reasons.

Deshalb bestand die Aufgabe, ein kostengünstiges Verfahren zu entwickeln, das einmal die antiballistische Wirksamkeit in trockenem und besonders in nassem Zustand verbessert und das die Möglichkeit bietet, auf die bisherige Naßbehandlung verzichten zu können.Therefore, the task was to develop a cost-effective method that once improves the antiballistic effectiveness in the dry and especially in the wet state and which offers the possibility of being able to do without the previous wet treatment.

Überraschend wurde nun gefunden, daß diese Aufgabenstellung gelöst werden kann, wenn eine Plasmabehandlung der antiballistisch wirksamen Materialien in einem zweistufigen Verfahren vorgenommen wird. Hierbei wird in der ersten Stufe in einem Plasma, das aus mindestens 50 % eines anorganischen Gases oder eines Gemisches anorganischer Gase besteht, behandelt. In der zweiten Stufe erfolgt eine Behandlung in einem Plasma hydrophobierend wirkender organischer Gase oder Mischungen solcher Gase aus der Gruppe der gesättigten Kohlenwasserstoffe, ungesättigten Kohlenwasserstoffe, gesättigten Fluorkohlenwasserstoffe, ungesättigten Fluorkohlenwasserstoffe, Siloxane oder Vinylverbindungen. Die Behandlung in der zweiten Stufe kann auch mit einer Mischung hydrophobierend wirkender organischer Gase mit anorganischen Gasen vorgenommen werden.Surprisingly, it has now been found that this problem can be solved if a plasma treatment of the antiballistically active materials is carried out in a two-stage process. In the first stage, treatment is carried out in a plasma consisting of at least 50% of an inorganic gas or a mixture of inorganic gases. In the second stage, treatment takes place in a plasma of hydrophobic organic gases or mixtures of such gases from the group consisting of saturated hydrocarbons, unsaturated hydrocarbons, saturated fluorocarbons, unsaturated fluorocarbons, siloxanes or vinyl compounds. The treatment in the second stage can also be carried out with a mixture of organic gases having a hydrophobic effect and inorganic gases.

Als anorganische Gase für die Plasmabehandlung nach dem erfindungsgemäßen Verfahren kommen Sauerstoff, Stickstoff, Wasserstoff sowie Edelgase wie Argon, Helium, Xenon und Krypton in Frage. Unter den Edelgasen werden Argon und Helium bevorzugt. Besonders bevorzugt wird eine Behandlung in einem Argon-Plasma. Auch Mischungen der anorganischen Gase können Einsatz finden. Ebenso können Mischungen anorganischer Gase mit organischen Gasen verwendet werden, wobei aber jeweils der Anteil anorganischer Gase mindestens 50 % betragen muß. Unter den organischen Gasen werden die auch für die zweite Behandlungsstufe vorgesehenen hydrophobierend wirkenden Gase bevorzugt.Oxygen, nitrogen, hydrogen and noble gases such as argon, helium, xenon and. Come as inorganic gases for the plasma treatment according to the inventive method Krypton in question. Argon and helium are preferred among the noble gases. Treatment in an argon plasma is particularly preferred. Mixtures of the inorganic gases can also be used. Mixtures of inorganic gases with organic gases can also be used, but the proportion of inorganic gases in each case must be at least 50%. Among the organic gases, the hydrophobicizing gases also provided for the second treatment stage are preferred.

Die Gasfluß-Mengen des in die Plasmakammer eingebrachten anorganischen Gases oder der Gasmischungen liegen, je nach gewünschtem Effekt, zwischen 1 ml/min und 500 ml/min, bevorzugt zwischen 5 ml/min und 200 ml/min, besonders bevorzugt zwischen 10 ml/min und 50 ml/min. Diese Angaben beziehen sich auf ein Volumen der Plasmakammer von 20 1. Bei anderen Kammergrößen können die Gasfluß-Mengen entsprechend umgerechnet werden. Eventuell müssen, bei stark abweichender Kammergeometrie, die Gasfluß-Mengen experimentell neu ermittelt werden.The gas flow amounts of the inorganic gas or the gas mixtures introduced into the plasma chamber are, depending on the desired effect, between 1 ml / min and 500 ml / min, preferably between 5 ml / min and 200 ml / min, particularly preferably between 10 ml / min and 50 ml / min. This information relates to a volume of the plasma chamber of 20 1. With other chamber sizes, the gas flow quantities can be converted accordingly. If the chamber geometry is very different, the gas flow quantities may have to be re-determined experimentally.

Durch die Plasmabehandlung mit einem anorganischen Gas oder einer Gasmischung mit mindestens 50 % eines anorganischen Gases in der ersten Behandlungsstufe wird die Oberfläche des Polymeren aktiviert und so für die nachfolgende Behandlung mit einem hydrophobierend wirkendem organischen Gas vorbereitet.The plasma treatment with an inorganic gas or a gas mixture with at least 50% of an inorganic gas in the first treatment stage activates the surface of the polymer and thus prepares it for the subsequent treatment with a hydrophobic organic gas.

Als hydrophobierend wirkende organische Gase für die Plasmabehandlung nach dem erfindungsgemäßen Verfahren in der zweiten Behandlungsstufe finden gesättigte Kohlenwasserstoffverbindungen, ungesättigte Kohlenwasserstoffverbindungen, gesättigte Fluorkohlenwasserstoffverbindungen, ungesättigte Fluorkohlenwasserstoffverbindungen, Siloxane oder Vinylverbindungen oder Gemische der genannten Verbindungen Anwendung.Saturated hydrocarbon compounds, unsaturated hydrocarbon compounds, saturated fluorocarbon compounds, unsaturated fluorocarbon compounds, are found as organic gases having a hydrophobic effect for the plasma treatment by the process according to the invention in the second treatment stage, Siloxanes or vinyl compounds or mixtures of the compounds mentioned application.

Als gesättigte und ungesättigte Kohlenwasserstoffverbindungen kommen Verbindungen aus den Gruppen der Alkane, Alkene, Alkine, Diene, Triene und Kumulene zum Einsatz. Das erfindungsgemäße Verfahren kann entweder mit Kohlenwasserstoffverbindungen der genannten Gruppen oder mit entsprechenden Verbindungen, bei denen ein oder mehrere Wasserstoffatome durch Fluoratome substituiert sind, ausgeführt werden. Ungesättigte Verbindungen werden zur Ausführung des erfindungsgemäßen Verfahrens bevorzugt.Compounds from the groups of alkanes, alkenes, alkynes, dienes, trienes and cumulenes are used as saturated and unsaturated hydrocarbon compounds. The process according to the invention can be carried out either with hydrocarbon compounds of the groups mentioned or with corresponding compounds in which one or more hydrogen atoms are substituted by fluorine atoms. Unsaturated compounds are preferred for carrying out the method according to the invention.

Beispiele für Gase aus der Alkanreihe sind Verbindungen der allgemeinen Formel CnH2n+2 mit n=1-10.Examples of gases from the alkane series are compounds of the general formula C n H 2n + 2 with n = 1-10.

Als Gase aus der Alkenreihe können Ethen, Propen, Buten, Hexen oder Hepten zum Einsatz kommen. Beispiele für geeignete Alkine sind Acetylen und Diacetylen. Unter den Dienen kann bevorzugt Butadien Verwendung finden. Weitere geeignete Verbindungen sind Pentadien und Hexadien. Ein Beispiel für Gase aus der Klasse der Triene ist Hexatrien.Ethene, propene, butene, hexene or heptene can be used as gases from the alkene series. Examples of suitable alkynes are acetylene and diacetylene. Butadiene can preferably be used among the dienes. Other suitable compounds are pentadiene and hexadiene. An example of gases from the Triene class is hexatriene.

Geeignete gesättigte Fluorkohlenwasserstoffverbindungen sind zum Beispiel Tetrafluormethan und Hexafluorethan. Bei den ungesättigten Fluorkohlenwasserstoffen sind beispielsweise Tetrafluorethylen und Hexafluorbutadien gut geeignet.Suitable saturated fluorocarbon compounds are, for example, tetrafluoromethane and hexafluoroethane. For the unsaturated fluorocarbons, for example, tetrafluoroethylene and hexafluorobutadiene are well suited.

Beispiele für Siloxane sind Tetramethyldisiloxan und Hexamethyldisiloxan.Examples of siloxanes are tetramethyldisiloxane and hexamethyldisiloxane.

Bei den Vinylverbindungen können Styrol, Divinylbenzol sowie hydrophobe Acrylverbindungen als Beispiele genannt werden. Bei letzteren kann es sich um Methyl-, Ethyl- oder Butylacrylat handeln.Examples of the vinyl compounds include styrene, divinylbenzene and hydrophobic acrylic compounds will. The latter can be methyl, ethyl or butyl acrylate.

Die Nennung geeigneter Verbindungen soll nicht einschränkend, sondern lediglich als Aufzählung von Beispielen verstanden werden.The naming of suitable compounds should not be interpreted as restrictive, but merely as an enumeration of examples.

Es liegt nahe, daß besonders solche hydrophobierende Verbindungen bevorzugt eingesetzt werden, die bei Raumtemperatur gasförmig sind. Es können aber auch hydrophobierend wirkende Verbindungen verwendet werden, die bei Raumtemperatur nicht gasförmig sind, wenn sie einen ausreichend hohen Dampfdruck besitzen. Beispielsweise können hydrophobe Flüssigkeiten, wenn sie bezüglich des Dampfdrucks die nötigen Voraussetzungen aufweisen, an das Vakuum des Plasmareaktors angeschlossen werden, wodurch die Flüssigkeit verdampft und im Plasmareaktor dann als hydrophobierend wirkendes Gas vorliegt.It is obvious that those hydrophobicizing compounds which are gaseous at room temperature are particularly preferred. However, it is also possible to use compounds with a hydrophobic effect which are not gaseous at room temperature if they have a sufficiently high vapor pressure. For example, hydrophobic liquids, if they have the necessary conditions with regard to the vapor pressure, can be connected to the vacuum of the plasma reactor, as a result of which the liquid evaporates and is then present in the plasma reactor as a gas having a hydrophobic effect.

Eine weitere Möglichkeit, bei Raumtemperatur flüssige hydrophobe Verbindungen in den Plasmareaktor einzubringen, besteht im Durchleiten eines Gases, beispielsweise eines anorganischen Gases, durch die Flüssigkeit, wobei das Gas mit Molekülen der Flüssigkeit gesättigt wird. Beim Einleiten des Gases in den Plasmareaktor werden dort die mitgeschleppten Moleküle der Flüssigkeit dem Plasma ausgesetzt.Another possibility of introducing hydrophobic compounds which are liquid at room temperature into the plasma reactor is to pass a gas, for example an inorganic gas, through the liquid, the gas being saturated with molecules of the liquid. When the gas is introduced into the plasma reactor, the entrained molecules of the liquid are exposed to the plasma there.

In der zweiten Behandlungsstufe kann die Behandlung auch mit einer Mischung hydrophobierend wirkender organischer Gase und anorganischer Gase erfolgen, wobei bevorzugt der Anteil der organischen Gase mehr als 50 % beträgt. Hierbei kommen ebenfalls die obengenannten Gase zum Einsatz. In geeigneter Weise kann mit solchen Mischungen gearbeitet werden, wenn die hydrophobierend wirkende organische Verbindung bei Raumtemperatur als Flüssigkeit vorliegt.In the second treatment stage, the treatment can also be carried out with a mixture of organic gases and inorganic gases having a hydrophobic effect, the proportion of organic gases preferably being more than 50%. The gases mentioned above are also used here. Such mixtures can be used in a suitable manner if the organic compound with a hydrophobic effect is present as a liquid at room temperature.

Wenn in der zweiten Stufe mit Mischungen hydrophobierend wirkender organischer Gase gearbeitet wird, so bestehen bezüglich der Mischungsverhältnisse keine Einschränkungen. Die Art der Mischungen und die Anteile der einzelnen Gase richten sich nach dem gewünschten Effekt.When working with mixtures of hydrophobic organic gases in the second stage, there are no restrictions with regard to the mixing ratios. The type of mixtures and the proportions of the individual gases depend on the desired effect.

Die in die Plasmakammer eingebrachten Gasmengen liegen bei der zweiten Behandlungsstufe in den gleichen Bereichen wie bei der ersten Behandlungsstufe. Die dort genannten Mengen können hier ebenfalls Anwendung finden.The amounts of gas introduced into the plasma chamber in the second treatment stage are in the same ranges as in the first treatment stage. The quantities mentioned there can also be used here.

Die bei der Plasmabehandlung mit einem hydrophobierend wirkenden organischen Gas oder mit Mischungen solcher Gase ablaufenden Reaktionen sind noch nicht ausreichend geklärt. Vermutlich wird eine Polymerisation dieser Gase auf der durch die Behandlung mit einem Edelgas-Plasma aktivierten Oberfläche des Polymeren ausgelöst. Diese Polymerisation vollzieht sich bei Monomeren mit Doppelbindungen, zum Beispiel ungesättigten Kohlenwasserstoffen wie Alkenen oder Dienen, in der bekannten Weise. Über die Vorgänge der Polymerisation bei gesättigten Kohlenwasserstoffen besteht noch keine ausreichende Klarheit. Hier erfolgt wahrscheinlich durch ein partielles Kracken die Erzeugung von Radikalen mit Doppelbindungen, die zur Polymerisation fähig sind.The reactions taking place in plasma treatment with a hydrophobic organic gas or with mixtures of such gases have not yet been sufficiently clarified. Polymerization of these gases is probably triggered on the surface of the polymer activated by the treatment with a noble gas plasma. This polymerization takes place in the known manner for monomers with double bonds, for example unsaturated hydrocarbons such as alkenes or dienes. There is still insufficient clarity about the processes of polymerization in saturated hydrocarbons. Here, partial cracking is likely to generate radicals with double bonds that are capable of polymerization.

Neben der Polymerisationsreaktion kommt aber auch ein Austausch von Atomen zwischen Plasmagas und zu behandelndem Substrat in Frage. So können bei Verwendung eines Plasmas von fluorhaltigen Gasen H-Atome des Benzolkerns eines aromatischen Polyamids gegen F-Atome ausgetauscht werden.In addition to the polymerization reaction, an exchange of atoms between plasma gas and the substrate to be treated is also possible. Thus, when using a plasma of fluorine-containing gases, H atoms of the benzene nucleus of an aromatic polyamide can be exchanged for F atoms.

Weiter ist noch nicht ausreichend geklärt, ob die beobachtete positive Auswirkung auf die antiballistischen Eigenschaften alleine auf die Bildung eines auf der Oberfläche der antiballistisch wirksamen Materialien erzeugten Polymerfilmes zurückzuführen ist oder ob auch noch andere Vorgänge, wie beispielsweise eine Veränderung der Oberfläche der antiballistisch wirksamen Materialien, hierbei eine Rolle spielen.Furthermore, it has not yet been sufficiently clarified whether the observed positive effect on the antiballistic properties is solely due to the formation of a polymer film produced on the surface of the antiballistically active materials or whether other processes, such as, for example, changing the surface of the antiballistically active materials, play a role here.

Die zweistufig durchzuführende Behandlung kann beispielsweise in zwei hintereinander geschalteten Plasmakammern, die in einem Reaktor untergebracht sein können, erfolgen. Ebenso kann in zwei hintereinander geschalteten Reaktoren mit je einer Kammer gearbeitet werden. Schließlich ist es auch möglich, in der gleichen Kammer durch unmittelbare Aufeinanderfolge der Prozesse, d.h. ohne Belüften der Kammer, die zweistufige Plasmabehandlung durchzuführen.The treatment to be carried out in two stages can take place, for example, in two plasma chambers connected in series, which can be accommodated in a reactor. It is also possible to work in one reactor in two reactors connected in series. Finally, it is also possible to work in the same chamber by direct succession of processes, i.e. without venting the chamber to perform the two-stage plasma treatment.

Die antiballistisch wirksamen Materialien können in unterschiedlichen Aufmachungsformen behandelt werden. Im Interesse einer kontinuierlichen Fahrweise sind am besten bahnenförmige Aufmachungen in Form von Flächengebilden wie Folien, Gewebe, Maschenwaren oder Nonwovens geeignet. In gleicher Weise kann auch mit Fadenscharen gearbeitet werden. Letztere können beispielsweise für eine Plasmabehandlung der frisch ersponnenen Faser in Frage kommen, das heißt, daß das erfindungsgemäße Verfahren auch mit einem Faserherstellungsverfahren kombiniert werden kann. In gleicher Weise sind Kombinationen des erfindungsgemäßen Verfahrens mit anderen Behandlungsschritten auch bei anderen Aufmachungsformen des Behandlungsgutes wie Folien, Geweben, Maschenwaren oder Nonwovens durchführbar.The antiballistically effective materials can be treated in different forms. In the interest of a continuous driving style, web-like presentations in the form of flat structures such as foils, fabrics, knitwear or nonwovens are best suited. In the same way you can also work with thread coulters. The latter can be used, for example, for plasma treatment of the freshly spun fiber, which means that the method according to the invention can also be combined with a fiber production method. In the same way, combinations of the method according to the invention with other treatment steps can also be carried out with other forms of presentation of the material to be treated, such as foils, fabrics, knitted fabrics or nonwovens.

Daneben ist es auch möglich, Einzelfäden oder -garne sowie Faserbänder einer Plasmabehandlung zu unterziehen. Bei letzteren kann es sich um Karden- oder Streckenbänder, Kammzüge oder Flyerlunten handeln. Ebenso können auch Faserkabel zur Behandlung gelangen. Auch mit diesen Aufmachungsformen kann eine Integration der Plasmabehandlung in verschiedene Fertigungsprozesse wie beispielsweise die Faserherstellung erfolgen. Hierzu kann zum Beispiel die frisch ersponnene aromatische Polyamidfaser, nach dem Passieren der Waschpassagen und dem Trocknen, kontinuierlich nach dem erfindungsgemäßen Verfahren einer Plasmabehandlung unterzogen werden.In addition, it is also possible to subject individual threads or yarns as well as fiber tapes to plasma treatment. The latter can be card or drawstring belts, ridges or flyers. Fiber cables can also be treated. These forms of presentation can also be used to integrate the plasma treatment into various manufacturing processes such as fiber production. For this purpose, for example, the freshly spun aromatic polyamide fiber, after passing through the washing passages and drying, can be subjected to a plasma treatment continuously using the method according to the invention.

Die bisher genannten bahn- oder fadenförmigen Materialien sind für die kontinuierliche Behandlung, die bei der Ausführung des erfindungsgemäßen Verfahrens bevorzugt wird, geeignet. Dagegen kann das erfindungsgemäße Verfahren auch diskontinuierlich durchgeführt werden, wobei die beiden Behandlungsstufen in derselben Behandlungskammer oder in zwei verschiedenen Behandlungskammern ausgeführt werden. Für die diskontinuierliche Behandlung kann jede beliebige Aufmachungsform Verwendung finden. Besonders geeignet ist sie für die Behandlung von Zuschnitten für die antiballistischen Schutzlagen von Kugel- oder Splitterschutzwesten.The previously mentioned sheet-like or thread-like materials are suitable for the continuous treatment, which is preferred when carrying out the method according to the invention. In contrast, the method according to the invention can also be carried out discontinuously, the two treatment stages being carried out in the same treatment chamber or in two different treatment chambers. Any form of presentation can be used for the discontinuous treatment. It is particularly suitable for the treatment of blanks for the antiballistic protective layers of bulletproof or splinterproof vests.

Zu den antiballistisch wirksamen Materialien zählen vor allem aromatische Polyamidfasern, die auch als Aramidfasern bekannt sind. Solche Fasern sind beispielsweise unter Markennamen wie Twaron im Handel. Daneben können aromatische Polyamide auch nicht faserförmig, beispielsweise als Folien, vorliegen. Zu den aromatischen Polyamiden zählen Polymere, die durch Polykondensation von aromatischen Diaminen mit aromatischen Dicarbonsäuren entstehen. Unter aromatischen Polyamiden sollen aber auch die Polymeren verstanden werden, die neben aromatischen Verbindungen auch Anteile aliphatischer Verbindungen enthalten.The antiballistically effective materials include, above all, aromatic polyamide fibers, which are also known as aramid fibers. Such fibers are commercially available, for example, under brand names such as Twaron. In addition, aromatic polyamides can also be non-fibrous, for example as films. Aromatic polyamides include polymers which are obtained by polycondensation of aromatic diamines with aromatic dicarboxylic acids arise. Aromatic polyamides are also to be understood as meaning the polymers which, in addition to aromatic compounds, also contain portions of aliphatic compounds.

Weiter zählen zu den antiballistisch wirksamen Materialien auch Polyolefinfasern, besonders nach dem Gelspinnverfahren ersponnene Polyethylenfasern. Für die Ausführung des erfindungsgemäßen Verfahrens sind aromatische Polyamide besonders geeignet.The antiballistically active materials also include polyolefin fibers, especially polyethylene fibers spun using the gel spinning process. Aromatic polyamides are particularly suitable for carrying out the process according to the invention.

Aromatische Polyamide sind bevorzugt in Form von Fasern in sehr unterschiedlichen Bereichen des Bekleidungswesens und der Technik im Einsatz. Sie finden unter anderem zur Herstellung kugel- und splitterhemmender Bekleidung Verwendung, in der die eigentliche Schutzschicht ein sogenanntes antiballistisches Paket aus mehreren übereinander liegenden Lagen von beispielsweise Geweben aus aromatischen Polyamidfasern bildet. Außer Geweben können hier auch andere Flächengebilde wie Non-wovens, Maschenwaren oder Folien Verwendung finden.Aromatic polyamides are preferably used in the form of fibers in very different areas of clothing and technology. They are used, among other things, for the manufacture of ball and splinter-resistant clothing, in which the actual protective layer forms a so-called antiballistic package consisting of several superimposed layers of, for example, fabrics made from aromatic polyamide fibers. In addition to fabrics, other flat structures such as nonwovens, knitwear or foils can also be used here.

Bei Einsatz von aromatischen Polyamidfasern in derartiger Schutzkleidung ist es bekannt, daß die antiballistische Wirksamkeit leidet, wenn die Schutzkleidung naß wird. Aus diesem Grunde ist es üblich, Flächengebilde aus aromatischen Polyamidfasern vor ihrer Weiterverarbeitung zu Schutzkleidung mit Fluorcarbonharzen wasserabweisend auszurüsten und so den antiballistischen Effekt der kugel-bzw. splitterhemmenden Lagen in der Schutzkleidung beim Naßbeschuß zu verbessern. Hierbei handelt es sich um einen mit einem hohen Kostenaufwand durchzuführenden Naßprozeß, der auch aus ökologischen Gründen nicht unbedenklich ist.When aromatic polyamide fibers are used in such protective clothing, it is known that the antiballistic effectiveness suffers when the protective clothing gets wet. For this reason, it is common to provide fabrics made of aromatic polyamide fibers with water-repellent materials before they are further processed into protective clothing with fluorocarbon resins, and thus to have the antiballistic effect of the spherical or. to improve splinter-resistant layers in protective clothing during wet bombardment. This is a wet process to be carried out at a high cost, which is also not harmless for ecological reasons.

Das erfindungsgemäße Verfahren bietet in einer besonders vorteilhaften Weise die Möglichkeit, diesen Naßprozeß zu umgehen und eine kostengünstige und umweltschonende Ausrüstung der aromatischen Polyamidfasern durchzuführen. Nach dem erfindungsgemäßen Verfahren behandelte Gewebe aus aromatischen Polyamidfasern ergeben gegenüber unbehandelten Materialien eine deutliche Verbesserung des antiballistischen Effektes. Diese Verbesserung wird nicht nur beim Naßbeschuß festgestellt, denn überraschenderweise wurde gefunden, daß auch beim Beschuß im trockenen Zustand nach dem erfindungsgemäßen Verfahren behandelte Gewebe aus aromatischen Polyamidfasern eine verbesserte antiballistische Wirksamkeit ergeben. Die unten aufgeführten Werte zeigen dies deutlich.In a particularly advantageous manner, the process according to the invention offers the possibility of circumventing this wet process and of carrying out the inexpensive and environmentally friendly finishing of the aromatic polyamide fibers. Fabrics made from aromatic polyamide fibers treated by the process according to the invention result in a significant improvement in the antiballistic effect compared to untreated materials. This improvement is not only found in wet bombardment, since it has surprisingly been found that fabrics made from aromatic polyamide fibers treated in the dry state by the process according to the invention also give improved antiballistic activity. The values listed below clearly show this.

Zur Prüfung der antiballistischen Wirksamkeit kann beispielsweise ein Splitterbeschuß vorgenommen werden. Diese Testmethode bietet sich vor allem dann an, wenn es sich um Schutzkleidung handelt, die bevorzugt im militärischen Bereich Einsatz finden soll, da hier der antiballistischen Wirksamkeit in naßem Zustand eine wesentlich höhere Bedeutung zukommt als beispielsweise bei Schutzkleidung für den Polizeieinsatz.To test the antiballistic effectiveness, a splinter bombardment can be carried out, for example. This test method is particularly useful when it comes to protective clothing that should preferably be used in the military sector, since the antiballistic effectiveness in wet condition is of much greater importance than, for example, protective clothing for police use.

Zur Prüfung der Wirkung gegen den Splitterbeschuß werden insgesamt 14 Zuschnitte für Westen zu einem Paket zusammengelegt und für den Beschußversuch längs der Ränder miteinander vernäht. Das so hergestellte antiballistische Paket wird einem Splitterbeschuß nach den Bedingungen von STANAG 2920 unterzogen. Der Beschuß erfolgt mit 1,1 g-Splittern. Die Schutzwirkung wird durch den V50-Wert ausgedrückt und in Geschwindigkeiten mit m/sec angegeben. Der V50-Wert bedeutet, daß bei der ermittelten Geschwindigkeit eine Penetrationswahrscheinlichkeit von 50 % besteht.To test the effect against the splintering, a total of 14 blanks for the west are put together in a package and sewn together along the edges for the attempted bombardment. The antiballistic package produced in this way is subjected to a splinter bombardment in accordance with the conditions of STANAG 2920. The bombardment is carried out with 1.1 g fragments. The protective effect is expressed by the V50 value and given in speeds of m / sec. The V50 value means that the determined Speed there is a penetration probability of 50%.

Zur Prüfung der antiballistischen Wirksamkeit in nassem Zustand wird das Prüfmaterial in Form des vorbereiteten antiballistischen Paketes eine Stunde in Wasser eingelegt. Der Beschuß erfolgt nach drei Minuten Abtropfzeit.To test the antiballistic effectiveness when wet, the test material in the form of the prepared antiballistic package is placed in water for one hour. The bombardment occurs after three minutes of dripping.

Der deutliche Fortschritt in der antiballistischen Wirksamkeit bei Anwendung des erfindungsgemäßen Verfahrens zeigt sich aus den nachstehend aufgeführten V50-Werten. Hierbei wurde ein Vergleich zwischen einem unbehandeltem Gewebe, einem auf konventionelle Weise in einem Naßverfahren mit einem Fluorcarbon-Harz hydrophobiertem Gewebe und einem nach dem erfindungsgemäßen Verfahren behandeltem Gewebe durchgeführt. Bei der Plasmabehandlung kam hier eine erste Behandlungsstufe in einem Argonplasma zur Anwendung. In der zweiten Stufe wurde in einem Plasma einer Mischung von 80 % Butadien und 20% Argon gearbeitet. Bei dem Behandlungsgut handelte sich jeweils um Gewebe, die aus aromatischen Polyamidfasern hergestellt worden waren. Der Garntiter der für die Gewebeherstellung eingesetzten Filamentgarne lag bei 1 100 dtex, die in Leinwandbindung hergestellten Gewebe hatten ein Flächengewicht von 187 g/m2 in der Rohware. V50-Wert trocken naß Unbehandelt 344 205 Konventionell hydrophobiert 345 361 Plasmabehandelt 370 365 The clear progress in the antiballistic effectiveness when using the method according to the invention is evident from the V50 values listed below. Here, a comparison was made between an untreated fabric, a fabric hydrophobized in a conventional manner in a wet process with a fluorocarbon resin, and a fabric treated by the process according to the invention. A first treatment stage in an argon plasma was used for the plasma treatment. In the second stage, a mixture of 80% butadiene and 20% argon was used in a plasma. The items to be treated were fabrics made from aromatic polyamide fibers. The yarn titer of the filament yarns used for the fabric production was 1,100 dtex, the fabrics made in plain weave had a basis weight of 187 g / m 2 in the raw material. V50 value dry wet Untreated 344 205 Conventionally hydrophobic 345 361 Plasma treated 370 365

Diese Tabelle, bei der es sich jeweils um Mittelwerte aus 6 Beschußversuchen handelt, zeigt, daß das konventionelle Naßhydrophobierungsverfahren mit Fluorcarbonharzen beim Trockenbeschuß keine Verbesserung der antiballistischen Wirksamkeit gegenüber dem unbehandelten Material erkennen läßt, was auch den Erfahrungen der Hersteller solcher Splitterschutzwesten entspricht. In der Praxis wird sogar teilweise ein Rückgang der antiballistischen Wirksamkeit beim Trockenbeschuß nach der Naßbehandlung mit Fluorcarbonharzen beobachtet. Dagegen ist bei Anwendung des erfindungsgemäßen Verfahrens überraschenderweise auch beim trockenen Beschuß eine Verbesserung der antiballistischen Wirksamkeit als Folge der Plasmabehandlung feststellbar.This table, which is an average of 6 bombardment tests, shows that the conventional wet hydrophobization process with fluorocarbon resins during dry bombardment shows no improvement in the antiballistic effectiveness compared to the untreated material, which also corresponds to the experience of the manufacturers of such splinter protection vests. In practice, a decline in antiballistic effectiveness in dry bombardment after wet treatment with fluorocarbon resins is even observed in some cases. In contrast, when using the method according to the invention, surprisingly, an improvement in the antiballistic effectiveness as a result of the plasma treatment can also be found with dry bombardment.

Beim Naßbeschuß zeigt das nach dem erfindungsgemäßen Verfahren behandelte Material etwa die gleiche antiballistische Wirksamkeit wie das nach dem konventionellen Verfahren hydrophobierte.In the case of wet bombardment, the material treated by the process according to the invention exhibits approximately the same antiballistic activity as that which has been rendered hydrophobic by the conventional process.

Die Bedingungen für die Plasmabehandlung bei der Ausführung des erfindungsgemäßen Verfahrens richten sich sehr stark nach dem zu behandelnden Material, nach dem gewünschten Effekt sowie nach eventuellen zusätzlichen Vor- oder Nachbehandlungen und müssen hierauf abgestimmt werden. Weitere Faktoren, die auf die Festlegung der Behandlungsbedingungen einen Einfluß ausüben, sind die Art des Plasmas, d.h. ein Gleichstromplasma, nieder- oder hochfrequentes Wechselstromplasma, die Art der Einkoppelung des Plasmas in die Reaktionszone (kapazitiv oder induktiv), die Reaktorgröße und Reaktorgeometrie, die Geometrie der Elektroden, die pro Zeiteinheit zu behandelnde Materialfläche und die Position des Materials im Reaktor.The conditions for the plasma treatment when carrying out the method according to the invention depend very much on the material to be treated, on the desired effect and on any additional pretreatment or aftertreatment and must be coordinated with this. Other factors that influence the definition of the treatment conditions are the type of plasma, i.e. a direct current plasma, low- or high-frequency alternating current plasma, the type of coupling of the plasma into the reaction zone (capacitive or inductive), the reactor size and reactor geometry Geometry of the electrodes, the area of material to be treated per unit of time and the position of the material in the reactor.

Für die Plasmabehandlung nach dem erfindungsgemäßen Verfahren hat sich ein Temperaturbereich von 10 - 90 °C als geeignet erwiesen. Bevorzugt wird ein Temperturbereich zwischen 20 und 50 °C. Die Behandlung nach dem erfindungsgemäßen Verfahren soll aber nicht auf das hier genannte Niedertemperaturplasma beschränkt bleiben. Auch im Hochtemperaturplasma, auch Coronaplasma genannt, kann eine Behandlung nach dem erfindungsgemäßen Verfahren erfolgen. Hierbei wird in einem Druckbereich zwischen 100 Pa und 100 000 Pa gearbeitet, wobei höhere Temperaturen erreicht werden.A temperature range of 10-90 ° C. has proven to be suitable for the plasma treatment according to the method according to the invention. A temperature range between 20 and 50 ° C. is preferred. However, the treatment according to the method according to the invention should not be restricted to the low-temperature plasma mentioned here. Treatment in the high-temperature plasma, also called corona plasma, can also be carried out by the method according to the invention. This works in a pressure range between 100 Pa and 100,000 Pa, whereby higher temperatures are reached.

Als Leistungen werden 5 bis 1 000 W gewählt. Bevorzugt wird ein Bereich zwischen 20 und 600 W. Die Behandlung kann sowohl im Gleichstrom- als auch im Wechselstromplasma erfolgen. Wechselstromplasmen werden bevorzugt. Im letztgenannten Falle sind hochfrequente und niederfrequente Plasmen in gleicher Weise geeignet. Als Drücke haben sich Bereiche zwischen 0,1 und 100 Pa als günstig erwiesen, bevorzugt wird ein Bereich zwischen 1 und 10 Pa. Diese Drücke gelten für die Behandlung im Niedertemperaturplasma. Geeignete Drücke für Coronaplasmen sind Werte zwischen 100 und 100 000 Pa.5 to 1,000 W are selected as power. A range between 20 and 600 W is preferred. The treatment can take place both in direct current and in alternating current plasma. AC plasmas are preferred. In the latter case, high-frequency and low-frequency plasmas are equally suitable. Ranges between 0.1 and 100 Pa have proven to be favorable as pressures; a range between 1 and 10 Pa is preferred. These pressures apply to treatment in low-temperature plasma. Suitable pressures for corona plasma are values between 100 and 100,000 Pa.

Bezüglich der Einströmung des das Plasma bildenden Gases bestehen keine Beschränkungen. So kann das Gas parallel oder auch senkrecht oder schräg zur Warenbahn geführt werden. Bei kontinuierlicher Fahrweise kann die Strömungsrichtung sowohl gleichgerichtet als auch entgegengesetzt zu derjenigen des Behandlungsgutes sein.There are no restrictions with regard to the inflow of the gas forming the plasma. In this way, the gas can be routed parallel or perpendicular or at an angle to the web. In the case of continuous driving, the direction of flow can be both rectified and opposite to that of the material to be treated.

Die Verweilzeit in der Plasmakammer, die im wesentlichen durch die Warengeschwindigkeit beim kontinuierlichen Verfahren bestimmt wird, richtet sich sehr stark nach dem zu behandelndem Material und dem gewünschten Effekt, nach der Art des Plasmas (Gleichstrom-, niederfrequentes oder hochfrequentes Wechselstromplasma), nach der Art der Einkoppelung (induktiv oder kapazitiv), nach der Reaktorgröße und -geometrie, nach der Geometrie der Elektroden, nach der pro Zeiteinheit zu behandelnden Oberfläche sowie nach der Position des Behandlungsgutes im Reaktor. Die Verweilzeit wird darüberhinaus durch die Ionendichte in der Behandlungskammer beeinflußt. Bei hoher Ionendichte ist eine Verringerung der Verweilzeit bei gleichem Effekt möglich. Normalerweise wird für die aktivierende Behandlung in der ersten Behandlungsstufe im Plasma eines anorganischen Gases eine kürzere Verweilzeit benötigt als zur Behandlung in der zweiten Stufe in einem Plasma eines hydrophobierend wirkenden organischen Gases bzw. in einem Gemisch aus hydrophobierend wirkendem organischem Gas und anorganischem Gas.The residence time in the plasma chamber, which is essentially determined by the speed of the goods in the continuous process, depends very much on the material to be treated and the desired effect, according to the type of plasma (direct current, low-frequency or high-frequency alternating current plasma), according to the type of coupling (inductive or capacitive), according to the reactor size and geometry, according to the geometry of the electrodes, according to the pro Unit of time to be treated and according to the position of the material to be treated in the reactor. The residence time is also influenced by the ion density in the treatment chamber. If the ion density is high, the residence time can be reduced with the same effect. Normally, a shorter residence time is required for the activating treatment in the first treatment stage in the plasma of an inorganic gas than for the treatment in the second stage in a plasma of a hydrophobizing organic gas or in a mixture of hydrophobizing organic gas and inorganic gas.

Das erfindungsgemäße Verfahren bietet eine besonders vorteilhafte Möglichkeit für die Plasmabehandlung von antiballistisch wirksamen Materialien, wobei als wichtigster Vorteil die Erzielung verbesserter antiballistischer Eigenschaften herauszustellen ist. Dieser Vorteil zeigt sich vor allem beim Trockenbeschuß im Vergleich zu einer konventionellen Ausrüstung mit Fluorcarbonharzen in einem Naßverfahren. Das erfindungsgemäße Verfahren ergibt gegenüber dem bisher üblichen Naßverfahren neben der Verbesserung der antiballistischen Eigenschaften eine erhebliche verfahrenstechnische Vereinfachung, eine verbesserte Wirtschaftlichkeit und vor allem eine wesentlich geringere Umweltbelastung.The method according to the invention offers a particularly advantageous possibility for the plasma treatment of antiballistically active materials, the most important advantage being the achievement of improved antiballistic properties. This advantage is particularly evident in dry bombardment compared to conventional finishing with fluorocarbon resins in a wet process. In addition to the improvement of the antiballistic properties, the method according to the invention results in a considerable simplification of the process, an improved economy and, above all, a significantly lower environmental impact compared to the previously used wet method.

Claims (14)

  1. Continuous or discontinuous method of plasma-treating antiballistically active materials, characterised in that the plasma treatment is in two stages, whereby in the first stage a plasma consisting of at least 50% of an inorganic gas or a mixture of inorganic gases is used, and in the second stage treatment takes place in organic gases or mixtures of such gases, selected from the group of hydrophobically acting saturated hydrocarbons, unsaturated hydrocarbons, saturated fluorohydrocarbons, unsaturated fluoro-hydrocarbons, siloxanes or vinyl compounds or in a plasma composed of mixtures of one or more of these gases with one or more inorganic gases.
  2. Method according to claim 1, characterised in that the inorganic gases are oxygen, nitrogen, hydrogen or nobles gases such as argon or helium or mixtures of these gases.
  3. Method according to claim 1, characterised in that the inorganic gas is argon.
  4. Method according to claim 1, characterised in that the hydrophobically acting organic gases are alkanes, alkenes, alkines, dienes, trienes, cumulenes or the corresponding fluorine-containing compounds, in which case one or more hydrogen atoms are substituted by fluorine atoms.
  5. Method according to claim 1, characterised in that the hydrophobically acting organic gases are siloxanes or vinyl compounds.
  6. Method according to claim 1, characterised in that the first treatment stage takes place in a plasma consisting of at least 50% of one or more inorganic gases and in that the remaining quantity of gas consists of hydrophobically acting organic gases.
  7. Method according to claim 1, characterised in that in the first stage treatment takes place in a plasma of an inorganic gas or a mixture of inorganic gases, and in the second stage treatment takes place in a plasma consisting of a hydrophobically acting organic gas or gas mixture from the group of saturated hydrocarbons, unsaturated hydrocarbons, saturated fluorohydrocarbons, unsaturated fluorohydrocarbons, siloxanes or vinyl compounds.
  8. Method according to claim 1, characterised in that in the first stage, treatment takes place in a plasma of an inorganic gas or a mixture of inorganic gases, and in the second stage treatment takes place in a plasma consisting of a mixture of one or more inorganic gases comprising a hydrophobically acting organic gas or gas mixture from the group of saturated hydrocarbons, unsaturated hydrocarbons, saturated fluorohydrocarbons, unsaturated fluorohydrocarbons, siloxanes or vinyl compounds.
  9. Method according to at least one of claims 1-8, characterised in that the antiballistic materials to be treated are aromatic polyamides and these are in the form of yarns, yarn sheets, fibre bands, sheets or flat textile structures such as wovens, knitwear, non-wovens or thread composites.
  10. Method according to at least one of claims 1-8, characterised in that the antiballistic materials to be treated are in the form of wovens of aromatic polyamide fibres.
  11. Method according to at least one of claims 1-8, characterised in that the antiballistic materials to be treated are polyethylene fibres spun according to the gel spinning process or yarns, yarn sheets, fibre bands, wovens, knitwear, non-wovens or thread composites from these fibres.
  12. Flat textile structure composed of aromatic polyamide fibres or polyethylene fibres spun according to the gel spinning process treated according to at least one of claims 1-8.
  13. Use of flat structures of antiballistically active materials, treated acccording to at least one of claims 1-8 for the manufacture of protective clothing, particularly protective clothing with bullet and splinter protection properties.
  14. Protective clothing, in particular protective clothing with bullet and splinter inhibiting properties, manufactured with the use of a flat structure of antiballistically active materials treated according to at least one of claims 1-8.
EP19940924840 1993-08-07 1994-08-03 Plasma treatment process of antiballistic materials Expired - Lifetime EP0663968B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4326555 1993-08-07
DE4326555 1993-08-07
DE4424320 1994-07-09
DE4424320 1994-07-09
PCT/EP1994/002572 WO1995004854A2 (en) 1993-08-07 1994-08-03 Plasma treatment process of antiballistic materials

Publications (2)

Publication Number Publication Date
EP0663968A1 EP0663968A1 (en) 1995-07-26
EP0663968B1 true EP0663968B1 (en) 1996-10-30

Family

ID=25928417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940924840 Expired - Lifetime EP0663968B1 (en) 1993-08-07 1994-08-03 Plasma treatment process of antiballistic materials

Country Status (9)

Country Link
US (1) US5622773A (en)
EP (1) EP0663968B1 (en)
JP (1) JPH08502560A (en)
CA (1) CA2146457A1 (en)
DE (1) DE59400947D1 (en)
IL (1) IL110454A (en)
TR (1) TR27976A (en)
TW (1) TW275074B (en)
WO (1) WO1995004854A2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9712338D0 (en) 1997-06-14 1997-08-13 Secr Defence Surface coatings
GB9715508D0 (en) * 1997-07-24 1997-10-01 Scapa Group Plc Industrial fabrics and method of treatment
FR2775488B1 (en) * 1998-02-27 2000-05-19 Nylstar Sa PROCESS FOR THE PLASMA TREATMENT OF A FIBER OR YARN ARTICLE
US6146462A (en) * 1998-05-08 2000-11-14 Astenjohnson, Inc. Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
GB9812457D0 (en) * 1998-06-10 1998-08-05 Secr Defence Surface coatings
GB9821267D0 (en) * 1998-10-01 1998-11-25 Secr Defence Surface coatings
ITMI20011619A1 (en) * 2001-07-26 2003-01-26 Montefibre Spa PROCEDURE FOR THE PREPARATION OF WATER-REPELLENT ACRYLIC FIBER MATERIALS
DE50206665D1 (en) 2002-09-06 2006-06-08 Teijin Twaron Gmbh Process for the preparation of a water repellent aramid fabric and its use
GB0406049D0 (en) * 2004-03-18 2004-04-21 Secr Defence Surface coatings
ITMI20051577A1 (en) * 2005-08-12 2007-02-13 Mascioni Spa PRINTING AND FINISHING PROCEDURE ON TEXTILES CONTAINING PARTIALLY OR TOTALLY ARADIMIC FIBER IN THE FORM OF E-OR FILM FILAMENT
CA2637733A1 (en) * 2006-01-20 2007-07-26 P2I Ltd Clothing, accessories or textiles treated to protect from liquid damage
US20100203347A1 (en) * 2007-07-17 2010-08-12 P2I Ltd. Method for liquid proofing an item by plasma graft polymerisation
GB0713830D0 (en) * 2007-07-17 2007-08-29 P2I Ltd Novel products method
US20120174274A1 (en) * 2007-10-01 2012-07-12 Lucent Technologies Inc. Enhancement of armor
FR2923494B1 (en) * 2007-11-09 2010-01-15 Hutchinson IMPER-BREATHING MEMBRANES AND METHOD FOR THE PRODUCTION THEREOF
US20090156079A1 (en) * 2007-12-14 2009-06-18 Kimberly-Clark Worldwide, Inc. Antistatic breathable nonwoven laminate having improved barrier properties
US20110241269A1 (en) * 2010-04-01 2011-10-06 The Goodyear Tire & Rubber Company Atmospheric plasma treatment of reinforcement cords and use in rubber articles
US8852693B2 (en) 2011-05-19 2014-10-07 Liquipel Ip Llc Coated electronic devices and associated methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674667A (en) * 1969-07-23 1972-07-04 Allis Chalmers Mfg Co Process for increasing water repellency of cotton cloth
CA1122566A (en) * 1978-06-28 1982-04-27 Henry P. Schreiber Microwave plasma modification of surface properties in organic polymers
JPS5814454B2 (en) * 1979-11-07 1983-03-19 信越化学工業株式会社 Surface treatment method for vinyl chloride resin molded products
EP0168131B1 (en) * 1984-05-25 1989-07-12 Bridgestone Corporation Method for adhering of aromatic polyamide fibers to rubber
US4637851A (en) * 1985-01-25 1987-01-20 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a laminate
US4664936A (en) * 1985-01-30 1987-05-12 Shin-Etsu Chemical Co., Ltd. Aromatic polyamide fiber-based composite prepreg
JPS63223043A (en) * 1987-03-12 1988-09-16 Asahi Chem Ind Co Ltd Modification of material surface
DE3739994A1 (en) * 1987-11-25 1989-06-08 Linde Ag METHOD FOR FLUORINATING PLASTIC OBJECTS
CS408191A3 (en) * 1990-12-27 1992-09-16 Amann & Soehne Method of changing textile substrates properties

Also Published As

Publication number Publication date
US5622773A (en) 1997-04-22
EP0663968A1 (en) 1995-07-26
IL110454A (en) 1997-07-13
DE59400947D1 (en) 1996-12-05
WO1995004854A3 (en) 1995-03-16
CA2146457A1 (en) 1995-02-16
TW275074B (en) 1996-05-01
TR27976A (en) 1995-11-03
WO1995004854A2 (en) 1995-02-16
IL110454A0 (en) 1994-10-21
JPH08502560A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
EP0663968B1 (en) Plasma treatment process of antiballistic materials
EP0492649B1 (en) Method of modifying the properties of a textile substrate
EP1396572B1 (en) Process for producing a water-repellent aramide fabric and use thereof
DE60132636T2 (en) FLAME-PROTECTING MEDIUM FOR POLYMER MATERIALS
EP0336507B1 (en) Process to compress flat textiles, flat textiles made with this process and their application
EP3697958B1 (en) Method for producing a textile article with hydrophobised textile surface using plasma treatment and wet chemical processing
DE1435549A1 (en) Process for the production of synthetic linear fibers or threads, especially acrylic fibers with high shrinkage
DE2548507A1 (en) NON-FLAMMABLE TEXTILE FIBER BLEND AND ITS USE
DE1236125C2 (en) PROCESS FOR THE AFTER-TREATMENT OF FEDES, TUBES, FIBERS, FILMS OR TAPES MADE OF ACRYLNITRILE POLYMERISATES OR. -MIXED POLYMERIZES
DE2307744A1 (en) METHOD OF MANUFACTURING FIRE-RESISTANT CELLULOSE MATERIALS
DE1042521B (en) Process for the modification of fibers or films made from natural or regenerated natural polymers
EP0695622B1 (en) Method and apparatus for plasma modification of flat porous articles
DE4432919C2 (en) Method and device for plasma modification of flat porous objects
EP3298191B1 (en) Textile sheet material having a water-repellent finish and method for producing said sheet material
DE4100786C2 (en) Yarn with equipment provided on the surface
DE1900234A1 (en) Water and oil repellent finishing of synthetic fiber materials and foils
DE2264819A1 (en) FIBER CLOTH AND ITS USE AS ELECTRICAL INSULATING MATERIAL
DE69728563T2 (en) NON-CELLULOSE FIBERGLAVES WITH AN IMPROVED WET STRENGTH
DE1435572A1 (en) Process for producing a continuous filament yarn with different denier and new color effects
DE1444117C (en) Process for making fibrous materials repellent to oil and water
DD256670B1 (en) METHOD OF MAKING MATTER AND ROUGH OF FLAE, BAND OR FADENFOERMIC POLYMERIC PRODUCTS
DE3305221C2 (en) Hydrolysis-resistant polyester yarns and process for their manufacture
DE4100787A1 (en) Modifying properties of textiles
DD149096A1 (en) METHOD OF REFINING, ESPECIALLY FOR IMPREGNATING TEXTILE FLUID SURFACES
DE2155430A1 (en) Finishing materials - applied esp to textiles,after-treatment with superheated steam or solvent vapour

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT LU NL

17P Request for examination filed

Effective date: 19950816

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960411

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT LU NL

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961030

REF Corresponds to:

Ref document number: 59400947

Country of ref document: DE

Date of ref document: 19961205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000719

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000720

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000724

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20000802

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010803

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130827

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59400947

Country of ref document: DE

Representative=s name: SCHROEDER OBERLEIN PATENTANWALTS UG (HAFTUNGSB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59400947

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59400947

Country of ref document: DE

Representative=s name: SCHROEDER OBERLEIN PATENTANWALTS UG (HAFTUNGSB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140805