EP0660043B1 - Dispositif de commande pour commander des appareils de commutation selon un programme de temps - Google Patents

Dispositif de commande pour commander des appareils de commutation selon un programme de temps Download PDF

Info

Publication number
EP0660043B1
EP0660043B1 EP93810909A EP93810909A EP0660043B1 EP 0660043 B1 EP0660043 B1 EP 0660043B1 EP 93810909 A EP93810909 A EP 93810909A EP 93810909 A EP93810909 A EP 93810909A EP 0660043 B1 EP0660043 B1 EP 0660043B1
Authority
EP
European Patent Office
Prior art keywords
microprocessor
switching devices
control device
circuit block
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93810909A
Other languages
German (de)
English (en)
Other versions
EP0660043A1 (fr
Inventor
Lelle Josef
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrowatt Technology Innovation AG
Original Assignee
Landis and Gyr Technology Innovation AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Landis and Gyr Technology Innovation AG filed Critical Landis and Gyr Technology Innovation AG
Priority to EP93810909A priority Critical patent/EP0660043B1/fr
Priority to DE59300336T priority patent/DE59300336D1/de
Priority to JP30721194A priority patent/JP3802093B2/ja
Priority to US08/359,277 priority patent/US5629879A/en
Publication of EP0660043A1 publication Critical patent/EP0660043A1/fr
Application granted granted Critical
Publication of EP0660043B1 publication Critical patent/EP0660043B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/20Opto-coupler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/12Burner simulation or checking
    • F23N2227/16Checking components, e.g. electronic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/167Circuits for remote indication

Definitions

  • the invention relates to a control device of the type mentioned in the preamble of claim 1.
  • Devices of this type are used, for example, for controlling and monitoring the burner and the ignition device for oil and gas fires and for monitoring switches for actuators such as fuel valves and ventilation flaps, with the microprocessor evaluating the information supplied via line voltage-carrying signal lines and issuing corresponding control commands.
  • the switch-off capability of the switching devices that switch safety-critical loads such as a fuel valve must be checked frequently in order to be able to detect a malfunction of the switching device before a dangerous situation arises.
  • a control device for oil burners according to the preamble of claim 1 is known, in which information about the switching states of relay and sensor contacts are transmitted to a microprocessor by means of an amplifier.
  • the switching states of the relay contacts are fed via signaling lines carrying line voltage to an amplifier which is connected on the output side to an input of the microprocessor, so that the microprocessor must have a number of inputs corresponding to the number of amplifiers.
  • Isolators such as e.g. are used for the electrical isolation of the signal lines and the microprocessor.
  • Optocoupler or transmitter used. There is one isolator per signal voltage.
  • the microprocessor is programmed to perform a number of tests to determine whether a system with switched consumers is actually going through a switch-on phase in the correct way. For this purpose, signals are read in by the microprocessor and compared with setpoints. In the event of a faulty consumer status, the microprocessor switches the consumers off.
  • mains voltage-carrying signal lines are connected via optocouplers to an interrogation unit of an AC voltage detector.
  • the signal lines are each connected to the optocoupler via a low-pass filter, which consists of a resistor and a capacitor connected in series with it.
  • the switching states of the AC switches are queried and saved via the signal lines.
  • the switching states are compared with a target state - open or closed - and then a switch state signal is formed, which contains at least one piece of information - error or no error - in total for all AC switches that occur. From the switch status signal do not determine which AC switch can no longer be switched off, so that a simple display for diagnosis is not possible.
  • Optocouplers for example, are used as isolators for the electrical isolation of the monitored system from the microprocessor. Optocoupler applications of this type are known from the specialist literature (TI Opto Cookbook from 1975, ISBN 3 88078 000 5).
  • the optocouplers have the disadvantage that they are not fail-safe and have a higher failure rate than other electronic components, so that they must be checked for a signal pretense in safety-critical applications, even in an active operating state. Furthermore, the electromagnetic compatibility and thus the reliability of the control device decrease with an increasing number of optocouplers. Systems with many signal lines carrying mains voltage can incur high costs as long as an expensive isolating element such as an optocoupler or transmitter and an input pin on the microprocessor must be available per signal line.
  • the invention has for its object to design a control device with a microprocessor according to the preamble of claim 1 such that it detects the information in the form of low-voltage signals about the state of switching devices that switch loads on or off in a simple and reliable manner , processed and transmitted to the microprocessor.
  • a shift register is particularly suitable as a circuit block or, in the case of many switching devices to be monitored, an arrangement with a plurality of shift registers in cascade.
  • the signal lines must be connected to the circuit block via coupling elements in such a way that the circuit block is not destroyed even in the event of overvoltages.
  • the information about the states of the switching devices must be obtained from the distinction as to whether a low-voltage signal is of the same or alternating shape.
  • the first subtask could be solved in that the signal lines via resistor networks consisting of resistors, capacitors and diodes, which are both overvoltages also derive overcurrents connected to the circuit block.
  • the coupling element is reduced to a single high-resistance as a cost-effective solution.
  • the digitization could be carried out at a point in time at which the amplitude of an AC voltage is recorded as logic "1" and the amplitude of a DC voltage as logic "0".
  • several digitizations are carried out as multiple queries within a period of one to two network half-waves and an analysis of the values recorded one after the other, so that synchronization is not necessary.
  • FIG. 1 shows a control device which has a microprocessor 1 as the timer and control logic device. It also contains two switching devices 2.1 and 2.2, two resistors 3.1 and 3.2, a circuit block 4 and a voltage supply circuit 5.
  • the output of the first switching device 2.1 which switches a load L1 to a mains voltage U PG lying between a phase P and a zero point G, is connected to the input of the first resistor 3.1, while the output of the second switching device 2.2, via which a further load L2 is fed by the mains voltage U PG , is connected to the input of the second resistor 3.2.
  • the outputs of the resistors 3.1 and 3.2 are connected to inputs 4.1 and 4.2 of the circuit block 4 arranged in parallel for processing the low-voltage signals which are present at the taps between the switching devices 2.1 and 2.2 and the loads L1 and L2.
  • the circuit block 4 is fed by the voltage supply circuit 5.
  • the circuit block 4 is connected to the microprocessor 1 via two control lines 6a and 6b and a serial data line 7 for transmitting the voltage levels present at the inputs 4.1 to 4.2, the control lines 6a and 6b and the data line 7 are each provided with a connecting element 8, 9 or 10.
  • the microprocessor 1 is programmed by a time program to switch the loads L1 and L2 on and off in a specific sequence during the switch-on phase, for example of a gas burner, by means of the switching devices 2.1 and 2.2 and to carry out various processes such as e.g. monitor the formation of a flame and, if necessary, switch off the entire system so that the gas burner is never in a potentially explosive situation.
  • the microprocessor 1 also executes a monitoring program for the detection of faulty states of the system to be controlled. In order to determine the state of one of the switching devices 2.1 or 2.2 - open or closed - the microprocessor 1 executes a test cycle which will be explained later.
  • test cycles The frequency of the test cycles depends on the intended use of the control device and the corresponding legal regulations or standards. Automatic burner controls that comply with the EN 298 standard must detect a fault within three seconds of their occurrence. A test cycle is therefore typically every 200 milliseconds. In this way it is possible to reliably detect the state of each of the switching devices 2.1 and 2.2 within the prescribed three seconds even if the state of one of the switching devices 2.1 or 2.2 is currently changing during a test cycle.
  • the voltage supply circuit 5 has a Zener diode ZD and a resistor R, which are connected in series between the phase P and the zero point G of the low-voltage network, the cathode of the Zener diode ZD being connected to the phase P.
  • a capacitor C and a further diode D are connected in series with the Zener diode ZD, the cathode of the diode D being connected to the anode of the Zener diode ZD.
  • a connection Vdd of the circuit block 4 is connected to the cathode of the Zener diode ZD, a connection GND of the circuit block 4 to the anode of the diode D, whereby the connection GND is connected to the negative pole and the connection Vdd to the positive pole of the voltage supply circuit 5.
  • the circuit block 4 contains a circuit part 11 with parallel inputs 11.1 and 11.2, which are connected to the inputs 4.1 and 4.2, respectively.
  • the circuit part 11 has the task of digitizing the voltage levels present at the inputs 11.1 and 11.2 and converting them into a serial data stream for transmission to the microprocessor 1 via the data line 7. For this reason, inputs 11.1 and 11.2 are very high-impedance with values that are typically in the G ⁇ range.
  • the circuit part 11 is implemented as a shift register and can be controlled via only two control inputs.
  • Each of the inputs 4.1 and 4.2 of the circuit block 4 is connected via two protective diodes D1S.1 and D2S.1 or D1S.2 and D2S.2 to the connection Vdd or to the connection GND, the cathodes of the protection diodes D1S.1 and D1S.2 are connected to the Vdd connection and the anodes of the protective diodes D2S.1 and D2S.2 are connected to the GND connection.
  • These protective diodes are used to discharge overvoltages in order to prevent the circuit part 11 from being destroyed.
  • all inputs are equipped as standard, so that in particular a commercially available shift register provided with protective diodes can be used as the entire circuit block 4.
  • the resistors 3.1 and 3.2 are used as coupling elements and are typically 5 M ⁇ sized so that the control device can be used in various low-voltage networks with 115 V or 230 V as well as in low-voltage networks with 24 V, for example, and that the protective diodes D1S.1 , D1S.2, D2S.1 and D2S.2 with a voltage peak of four thousand volts superimposed on the mains voltage U PG cannot be destroyed.
  • This control device works as follows:
  • a current flows from the phase P via the capacitor C, the connection GND, the protective diode D2S.1, the input 4.1 during the positive half-wave of the mains voltage U PG , the resistor 3.1 and the load L1 to the zero point G.
  • a current flows from the zero point G via the load to the resistor 3.1, the input 4.1, the protective diode D1S.1 and the connection Vdd to the phase P.
  • the circuit block 4 is fed by the voltage supply circuit 5 in such a way that the voltage difference between the connections Vdd and GND, thanks to the capacitor C, approximately corresponds on average over time to the Zener voltage of the Zener diode ZD.
  • the voltage drop across these diodes corresponds approximately to their forward voltage U D.
  • the voltage at input 4.1 with respect to the voltage at connection GND is thus approximately -U D during the positive half-wave of mains voltage U PG , during the negative half-wave Vdd - U D , except in the vicinity of the zero crossings.
  • the input 4.2 is connected via the resistor 3.2 to the positive pole Vdd of the voltage supply circuit 5 and is therefore always at the potential Vdd.
  • the voltage curve U 1 at the input 4.1 is therefore alternating, the voltage curve U 2 at the input 4.2 is uniform.
  • the test cycle for determining the state of the switching devices 2.1 and 2.2 now consists in the time course of the To detect voltages U1 and U2 during a period of typically one to two half-waves of the mains voltage U PG and then evaluate them.
  • Fig. 2 are the time course of the mains voltage U PG , the voltages U1 and U2 at the inputs 4.1 and 4.2, the polling clock U cl of the microprocessor 1 and the corresponding to a predetermined voltage level, for example in the middle of the level of the connections GND and Vdd of the circuit block 4 is represented as numbers "0" or "1" binary digitized values U 1, dig and U 2, dig .
  • the interrogation clock U cl of the microprocessor 1 is selected to be higher than the frequency of the mains voltage U PG , for example by a factor of ten.
  • the first part of the test cycle is that the microprocessor 1 by means of the circuit part 11, the levels of the voltages U1 and U2 at k predetermined times t1, t2 to t k as binary numbers "0" or "1" can be detected and transmitted, the Time period t k - t 1 is longer than a network half-wave.
  • the sequence of the F1 numbers U 1, dig (t1), U 1, dig (t2), ... U 1, dig (t k) contains both values "0” as "1”
  • F2 the sequence of numbers U 2 , dig (t1), U 2, dig (t2), ... U 2, dig (t k ) contains only values "1".
  • the microprocessor 1 carries out a suitable analysis of the sequences F 1 and F 2 and determines the state of the switching devices 2.1 and 2.2.
  • Network faults during a query can lead to one or more values of the sequences F 1 or F 2 having a different value than in the case of a query without a fault.
  • a random query during a zero crossing of the mains voltage U PG can also lead to an incorrect value. All numerical values between “0” and “10” can therefore arise as a summation value.
  • the microprocessor 1 is programmed to have values "9” and “10” as closed states, values "3", “4", “5", “6” or “7” as open states and values "0" or “1””to be interpreted as an error of the control device which should not occur. If a value "2" or "8" occurs, the microprocessor 1 repeats the query.
  • the microprocessor 1 can also perform a shorter test cycle, in which the time period between the first query at time t 1 and the last query at time t k is slightly longer than the duration of a network half-wave.
  • the summation value of the sequence F 1 is then subject to a probability distribution without interference, but cannot assume the value "1" or the value "k” since at least the query at time t k falls into a different network half-wave than the query at time t 1.
  • the summation value of the sequence F2 has the value "k”.
  • the microprocessor 1 interprets a value "k” as a closed state, a value in the range "1" to "k-1" as an open state and a value "0" as an error.
  • the shortest test cycle which in the worst case takes a little longer than a network half-wave, results when the microprocessor 1 determines the state of the switching devices 2.1 and 2.2 as soon as either the value U 1, dig (t i ) recorded at the time t i differs from the previous value U 1, dig (t i-1 ) or the value U 2, dig (t i ) is different from the previous value U 2, dig (t i-1 ) or as soon as the time period between the first query at time t 1 and the last query at time t i is longer than the duration of a network half-wave.
  • the state of the switching devices 2.1 and 2.2 is then determined from whether the two last recorded numerical values U 1, dig (t i-1 ) and U 1, dig (t i ) or U 2, dig (t i-1 ) and U 2, dig (t i ) are different or both are "1", as open or closed.
  • the gain in speed goes hand in hand with an increase in susceptibility to interference on the Internet.
  • the control device described enables the use of a microprocessor 1 with a number of inputs which is independent of the number m of loads L1 to Lm to be controlled, so that a microprocessor 1 can be used whose number of inputs is significantly smaller than the number m of loads to be controlled L1 to Lm Lm can be.
  • the proposed control device is further characterized by the possibility of using standardized components through an inexpensive construction.
  • the number of components includes a minimum, which leads to fewer failures and increased reliability.
  • the evaluation of the information obtained in the form of low-voltage signals is carried out entirely by the microprocessor 1, the method not requiring any particular time synchronization between the microprocessor 1 and another component of the control device.
  • This software solution enables one very simple acquisition of certain physically available information and the determination of the desired information about the state of the switching devices by means of a small program which is stored in a memory.
  • Circuit block 4 in particular requires no means of any kind, such as zero point detectors, integrators or averaging devices, etc., for data analysis or data preparation.
  • the electrical supply of the microprocessor 1 can take place in various ways. It depends on the purpose of the control device. In the simplest case, the microprocessor 1 is also fed by the voltage supply circuit 5 and the circuit block 4 is connected directly to the microprocessor 1 via the lines 6a, 6b and 7 without the connecting elements 8, 9 and 10. In such a case, it can be economical to use some of the inputs of the microprocessor 1, which must be provided with appropriate protective diodes, as a circuit block 4 and to connect the resistors 3.1 and 3.2 directly to the inputs of the microprocessor 1.
  • the connecting links 8, 9 and 10 are designed as galvanic isolating links.
  • the microprocessor 1 can be separated from the circuit block 4 and thus also from the mains voltage U PG with only a few galvanic isolators 8, 9 and 10, so that the number is also reduced the galvanic isolators can be significantly smaller than the number m of loads L1 to Lm.
  • An input coupling error occurs, for example, when the value read in at input 4.2 depends not only on the voltage level at input 4.2, but also on the voltage level at another input, for example 4.5.
  • the test module 12 has a serial data input, a clock input and an input controlling the state of its parallel outputs 12.1 to 12.8, which are connected to the microprocessor 1 via lines 13, 14 and 15.
  • the parallel outputs 12.1 to 12.8 are connected via lines 16 to the inputs 4.1 to 4.8 of the shift register 4. They can be switched into a state known to the specialist under the term tristate, in which they are high-impedance and do not influence the state of the lines 16 (for example U. Tietze and Ch. Schenk, semiconductor circuit technology, 5th edition, Springer Verlag Berlin Heidelberg New York, ISBN 3-540-09848-8).
  • the test module 12 is advantageously formed by a second shift register and connected to the voltage supply circuit 5 in the same way as the shift register 4.
  • the inputs 4.1 to 4.8 of the shift register 4 are still connected to the outputs of the resistors 3.1 to 3.8, only the switching device 2.1 and the resistor 3.1 being drawn for the sake of clarity.
  • the microprocessor 1 In order to check the reliability of the data acquisition by means of the circuit block 4, the microprocessor 1 carries out a test cycle at certain times.
  • the test cycle consists in the microprocessor 1 sending a test pattern, which consists of eight binary values "0" or "1", to the test module 12 via the serial line 13.
  • these values are available at the outputs 12.1 to 12.8 as soon as the microprocessor 1 sets the outputs 12.1 to 12.8 in the conductive state via the control line 15, so that voltage levels U1 to U8 with values Vdd or GND in accordance with the previously sent test pattern are applied to the inputs 4.1 to 4.8 of the shift register 4.
  • the microprocessor 1 now sends further commands to the shift register 4 for detecting the voltage levels U 1 to U 4 present at its inputs 4.1 to 4.8 as binary values and for transmission to whereupon it compares the reported binary values with the sent test pattern.
  • the microprocessor 1 is programmed to send a number of selected test patterns to the test module 12 and to read them in again via the shift register 4, so that both input coupling errors and hardware errors can be identified.
  • a test cycle is ended by writing values "0" into the registers of the test module 12. To carry out this test process, it does not matter whether the switching devices 2.1 to 2.8 are open or closed. If necessary, the control lines 13, 14 and 15 can be provided with galvanic isolators.
  • the microprocessor 1 can also be programmed to perform a test cycle, which consists of a single test pattern, during the execution of each test cycle to determine the state of the switching devices 2.1 to 2.8, the test pattern being different from test cycle to test cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electronic Switches (AREA)
  • Keying Circuit Devices (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)

Claims (10)

  1. Dispositif de commande, qui comporte un microprocesseur (1) en tant que minuterie et dispositif logique de commande, pour l'actionnement de plusieurs dispositifs de commutation (2.1; 2.2) selon un programme temporel, les dispositifs de commutation (2.1; 2.2) commandant l'envoi de courant à des charges (L1; L2) qui peuvent être raccordés dans un circuit basse tension entre une phase (P) et un point zéro (G) en série avec les dispositifs de commutation (2.1; 2.2), et qui comporte un bloc de circuits (4), qui est relié électriquement, côté entrée, par l'intermédiaire de lignes de signalisation, qui sont disposées en parallèle et servent à détecter l'état des dispositifs de commutation (2.1; 2.2) - ouvert ou fermé -, et comportant des prises disposées dans la voie de passage du courant entre les dispositifs de commutation (2.1; 2.2) et les charges associées (L1; L2), et, côté sortie, au microprocesseur (1), caractérisé en ce que les lignes de signalisation possèdent une seule résistance (3.1; 3.2), que le bloc de circuit (4) est relié par l'intermédiaire de deux bornes (Vdd, GND) à un circuit d'alimentation en tension (5) pour réaliser l'alimentation en tension à partir de la phase (P) du réseau basse tension, que chaque entrée (4.1; 4.2), reliée à une ligne de signalisation, du bloc de circuit (4) est reliée par l'intermédiaire de deux diodes de protection associées (D1S.1; D2S.1; D1S.2; D2S.2), aux bornes (Vdd, GND), prévues pour l'alimentation, du bloc de circuits (4), les diodes de protection (D1S.1; D2S.1; D1S.2; D2S.2) étant branchées de telle sorte que lorsque l'un des dispositifs de commutation (2.1, 2.2) est dans l'état ouvert, des courants circulent par l'intermédiaire des diodes de protection (D1S.1; D2S.1; D1S.2; D2S.2), associées à l'entrée correspondante (4.1; 4.2), de sorte que la tension (U₁; U₂) au niveau de cette entrée (4.1; 4.2) par rapport à une borne (GND) du bloc de circuits (4), utilisée comme point de référence, prend une allure variable dans le temps, tandis que la variation de tension (U₁; U₂) est constante, lorsque le dispositif de commutation (2.1; 2.2) est à l'état fermé, et que le microprocesseur (1) exécute, à des instants déterminés, un cycle de contrôle pour détecter l'état des dispositifs de commutation (2.1; 2.2), cycle de contrôle qui consiste en ce que le microprocesseur (1) détecte, à des instants prédéterminés (t₁ à tk), les tensions (U₁; U₂) présentes aux entrées (4.1; 4.2) du bloc de circuits (4), sous la forme de chiffres binaires "0" ou "1", en fonction d'un niveau de tension prédéterminé, les transmet en soi par l'intermédiaire d'une sortie série du bloc de circuits (4) et d'une ligne de transmission de données en série (7), et que le microprocesseur (1) détermine l'état des dispositifs de commutation (2.1; 2.2) à partir des chiffres binaires (U1,dig; U2,dig) détectés au moyen de ces interrogations multiples.
  2. Dispositif de commande selon la revendication 1, caractérisé en ce que le microprocesseur (1) est alimenté par le circuit d'alimentation en tension (5), à partir de la phase (P) du réseau basse tension et que les résistances (3.1; 3.2) sont raccordées directement aux entrées du microprocesseur (1).
  3. Dispositif de commande selon la revendication 2, caractérisé par le fait que le bloc de circuits (4) comporte un ou plusieurs registres à décalage branchés en cascade.
  4. Dispositif de commande selon la revendication 1 ou 3, caractérisé en ce que le bloc de circuits (4) et le microprocesseur (1) sont séparés galvaniquement.
  5. Dispositif de commande selon l'une des revendications 1 à 4, caractérisé en ce que le microprocesseur (1) exécute à des instants déterminés, pour l'identification de défauts lors d'un fonctionnement permanent de l'installation commandée par le dispositif de commande, un cycle de contrôle servant à détecter l'état des dispositifs de commutation (2.1; 2.2).
  6. Dispositif de commande selon l'une des revendications 1 à 5, caractérisé en ce que le microprocesseur (1) détermine l'état des dispositifs de commutation (2.1; 2.2) sur la base d'une sommation des chiffres binaires détectés (U1,dig; U2,dig).
  7. Dispositif de commande selon l'une des revendications 1 à 5, caractérisé en ce que le microprocesseur détermine l'état des dispositifs de commutation (2.1; 2.2) dès que l'un des chiffres binaires (U1,dig(ti); U2,dig(ti)), détectés à l'instant ti, sont différents du chiffre binaire associé (U1,dig(ti-1); U2,dig(ti-1)), détecté à l'instant ti-1 précédent, ou dès que l'intervalle de temps entre la première interrogation à l'instant t₁ et la dernière interrogation à l'instant ti est supérieur à la durée d'une alternance du réseau.
  8. Dispositif de commande selon l'une des revendications 1 ou 3 à 7, caractérisé en ce que le microprocesseur (1) est relié à un module de test (12), qui comporte une entrée de données en série et plusieurs sorties en parallèle (12.1 à 12.8), que les sorties en parallèle (12.1 à 12.8) du module de test (12) sont reliées aux entrées en parallèle (4.1 à 4.8) du bloc de circuits (4) et que les sorties en parallèle (12.1 à 12.8) peuvent être commutées dans un état conducteur ou dans un état tristate de forte valeur ohmique.
  9. Dispositif de commande selon la revendication 8, caractérisé en ce que le module de test (12) est constitué par un ou plusieurs registres à décalage branchés en cascade.
  10. Dispositif de commande selon la revendication 8 ou 9, caractérisé en ce que le microprocesseur (1) exécute un cycle de test pour la détection d'erreurs de couplage d'entrée ou d'erreurs matérielles du bloc de circuits (4) à des instants prédéterminés, par le fait qu'il enregistre un profil de test constitué par des valeurs binaires, par l'intermédiaire d'une ligne en série (12), dans le module de test (12), positionne le module de test (12) dans l'état conducteur, déclenche la détection et la transmission en soi des niveaux de tension (U₁ à U₈) présents aux entrées (4.1 à 4.8) du bloc de circuits (4), compare le profil de test transmis en retour au profil de test envoyé et place à nouveau le module de test (12) dans l'état tristate.
EP93810909A 1993-12-24 1993-12-24 Dispositif de commande pour commander des appareils de commutation selon un programme de temps Expired - Lifetime EP0660043B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP93810909A EP0660043B1 (fr) 1993-12-24 1993-12-24 Dispositif de commande pour commander des appareils de commutation selon un programme de temps
DE59300336T DE59300336D1 (de) 1993-12-24 1993-12-24 Steuereinrichtung zur Betätigung von Schalteinrichtungen nach einem Zeitprogramm.
JP30721194A JP3802093B2 (ja) 1993-12-24 1994-12-12 時間プログラムに従ってスイッチング装置を操作する制御装置
US08/359,277 US5629879A (en) 1993-12-24 1994-12-19 Control device for the actuation of switchgears according to a time program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP93810909A EP0660043B1 (fr) 1993-12-24 1993-12-24 Dispositif de commande pour commander des appareils de commutation selon un programme de temps

Publications (2)

Publication Number Publication Date
EP0660043A1 EP0660043A1 (fr) 1995-06-28
EP0660043B1 true EP0660043B1 (fr) 1995-07-05

Family

ID=8215101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93810909A Expired - Lifetime EP0660043B1 (fr) 1993-12-24 1993-12-24 Dispositif de commande pour commander des appareils de commutation selon un programme de temps

Country Status (4)

Country Link
US (1) US5629879A (fr)
EP (1) EP0660043B1 (fr)
JP (1) JP3802093B2 (fr)
DE (1) DE59300336D1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0920038A1 (fr) 1997-11-25 1999-06-02 Electrowatt Technology Innovation AG Circuit de surveillance d'un commutateur à courant alternatif
US6957172B2 (en) * 2000-03-09 2005-10-18 Smartsignal Corporation Complex signal decomposition and modeling
FR2807194B1 (fr) 2000-03-31 2002-05-31 Alstom Circuit electrique pour la transmission d'une information d'etat, notamment d'un organe de materiel ferroviaire roulant, et systeme electrique incorporant un tel circuit
US6728600B1 (en) * 2000-06-08 2004-04-27 Honeywell International Inc. Distributed appliance control system having fault isolation
US8275577B2 (en) 2006-09-19 2012-09-25 Smartsignal Corporation Kernel-based method for detecting boiler tube leaks
US8311774B2 (en) 2006-12-15 2012-11-13 Smartsignal Corporation Robust distance measures for on-line monitoring
US9250625B2 (en) 2011-07-19 2016-02-02 Ge Intelligent Platforms, Inc. System of sequential kernel regression modeling for forecasting and prognostics
US8620853B2 (en) 2011-07-19 2013-12-31 Smartsignal Corporation Monitoring method using kernel regression modeling with pattern sequences
US9256224B2 (en) 2011-07-19 2016-02-09 GE Intelligent Platforms, Inc Method of sequential kernel regression modeling for forecasting and prognostics
US8660980B2 (en) 2011-07-19 2014-02-25 Smartsignal Corporation Monitoring system using kernel regression modeling with pattern sequences

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303383A (en) * 1979-11-09 1981-12-01 Honeywell Inc. Condition control system with safety feedback means
US4298334A (en) * 1979-11-26 1981-11-03 Honeywell Inc. Dynamically checked safety load switching circuit
US4777479A (en) * 1987-04-03 1988-10-11 Unisys Corporation Switch position indicator
DE3801952C2 (de) * 1988-01-23 2000-05-11 Mannesmann Vdo Ag Elektronische Verarbeitungseinheit für Analogsignale mit einer Überwachungseinrichtung für eine Referenzspannung
US4974179A (en) * 1989-01-27 1990-11-27 Honeywell Inc. Method and apparatus for preventing race conditions in a control system
CH682608A5 (de) * 1991-10-28 1993-10-15 Landis & Gyr Business Support Anordnung zur Ueberwachung von Wechselstromschaltern.
DE59302293D1 (de) * 1993-12-24 1996-05-23 Landis & Gyr Tech Innovat Steuereinrichtung zur Betätigung von Schalteinrichtungen

Also Published As

Publication number Publication date
JP3802093B2 (ja) 2006-07-26
US5629879A (en) 1997-05-13
EP0660043A1 (fr) 1995-06-28
DE59300336D1 (de) 1995-09-07
JPH07282702A (ja) 1995-10-27

Similar Documents

Publication Publication Date Title
DE4441070C2 (de) Sicherheitsschalteranordnung
EP0676055B1 (fr) Agencement de circuits permettant de surveiller une pluralite de bobines
EP0660043B1 (fr) Dispositif de commande pour commander des appareils de commutation selon un programme de temps
DE10035174A1 (de) Peripheriebaustein mit hoher Fehlersicherheit für speicherprogrammierbare Steuerungen
EP1748299B1 (fr) Circuit électronique, système avec un circuit électronique et procédé pour tester un circuit électronique
CH618801A5 (fr)
EP3440517A1 (fr) Élément de bus et procédé de fonctionnement d'un élément de bus
EP2434358A1 (fr) Procédé de fonctionnement d'un système redondant et système
EP1034553B1 (fr) Circuit de surveillance d'un commutateur a courant alternatif
EP1594021B1 (fr) Dispositif de circuit et procédé de test de contacts de commutation d'un circuit numérique de sortie
EP0660044B1 (fr) Dispositif de commande pour commander des appareils de commutation
DE4232720C1 (de) Anordnung zur Funktionsüberwachung und Meßwertauswertung von Füllstands-Sensoren, insbesondere Vibrations-Füllstands-Grenzschaltern
EP2117094B1 (fr) Commutation de surveillance et procédé de contrôle d'une commutation
EP3465720B1 (fr) Dispositif de mise hors circuit sans erreur d'un consommateur
EP1025501A1 (fr) Procede et dispositif pour controler une procedure de surveillance d'erreurs d'un circuit
DE19508841A1 (de) Sicherheitsschalteranordnung
DE2400604B2 (de) Elektronisches Fehleranzeigesystem
EP0815459A1 (fr) Circuits et procede de controle de generateurs non intermittents de signaux
EP1282859B1 (fr) Composant peripherique ayant un degre de protection eleve contre les erreurs, destine a des dispositfs de commande a memoire programmable
EP3584648B1 (fr) Agencement de circuit permettant de commuter une charge électrique et procédé de vérification de l'état d'une sortie de sécurité d'un agencement de circuit
EP0660042B1 (fr) Circuit de couplage de lignes sous tension avec un micro-processeur
DE2438257C2 (de) Schaltungsanordnung zur Überwachung eines binären Signalgebers
DE4319750C2 (de) Verfahren und Vorrichtung zur Funktionsüberwachung von Schalteinrichtungen einer Brückenschaltung sowie deren Verwendung
EP3848633B1 (fr) Circuit avec protection contre les erreurs internes
DE19640739C1 (de) Alarmspeicher-Schaltungsanordnung für Öffnungsmelder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

17P Request for examination filed

Effective date: 19940701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REF Corresponds to:

Ref document number: 59300336

Country of ref document: DE

Date of ref document: 19950907

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950814

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: LANDIS & GYR TECHNOLOGY INNOVATION AG TRANSFER- SIEMENS BUILDING TECHNOLOGIES AG C-IPR

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070305

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071219

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071213

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081224

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130218

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59300336

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: LANDIS & GYR TECHNOLOGY INNOVATION AG, ZUG, CH

Effective date: 20130507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59300336

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20131225