EP0659504A2 - Verfahren zur Nachpositionierung eines Giesssystems bei einem ballenpressenden Form- und Fördersystem - Google Patents

Verfahren zur Nachpositionierung eines Giesssystems bei einem ballenpressenden Form- und Fördersystem Download PDF

Info

Publication number
EP0659504A2
EP0659504A2 EP94118953A EP94118953A EP0659504A2 EP 0659504 A2 EP0659504 A2 EP 0659504A2 EP 94118953 A EP94118953 A EP 94118953A EP 94118953 A EP94118953 A EP 94118953A EP 0659504 A2 EP0659504 A2 EP 0659504A2
Authority
EP
European Patent Office
Prior art keywords
casting
deviation
casting system
liquid metal
measuring zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94118953A
Other languages
English (en)
French (fr)
Other versions
EP0659504B1 (de
EP0659504A3 (de
Inventor
Ralf Dr. Sesing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Patent GmbH
Original Assignee
ABB Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Patent GmbH filed Critical ABB Patent GmbH
Publication of EP0659504A2 publication Critical patent/EP0659504A2/de
Publication of EP0659504A3 publication Critical patent/EP0659504A3/de
Application granted granted Critical
Publication of EP0659504B1 publication Critical patent/EP0659504B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D37/00Controlling or regulating the pouring of molten metal from a casting melt-holding vessel

Definitions

  • the invention relates to a method for repositioning a casting system in a baling molding and conveying system according to the preamble of claim 1.
  • Such a method for repositioning a casting system in a baling molding and conveying system is known from DE 42 02 020 A1.
  • a bottom hole of the casting system is arranged above a casting funnel of the casting mold located on a conveyor system.
  • the position of the bottom hole above the pouring funnel is checked and the positional deviations are recorded as soon as a shaping and conveying process of a shaped bale has ended and the shaped bale is at rest.
  • a change in position takes place only after the casting process has ended and during the next molding and conveying process of a mold bale.
  • EP 02 65 206 B1 discloses an apparatus and a method for regulating the casting of molten metal into individual casting molds, image-area information being generated during previously determined sampling intervals for a casting process.
  • Regulating means for adjusting the flow of the molten metal respond to difference values between captured image area information and reference area values.
  • Each regulating value is a function of the difference value for its assigned sampling interval and a regulating preset value for this sampling interval based on preselected casting parameters from at least one previous pouring process.
  • EP 02 69 591 B1 discloses a method for controlling the casting of a molten metal into casting molds, in which the upper side of the casting molds is scanned during their progressive movement to the casting station in order to determine the casting funnels. The remaining distance of the respective mold to the casting station is determined. On the basis of the determination of the remaining distance to be covered by the respective casting mold, the casting kettle is moved into a position exactly above the end position of this casting mold in the casting station.
  • the invention has for its object a method for repositioning a casting system in a baling molding and conveying system of the type mentioned specify in which the measuring device used for the mold level control can be used with a video camera.
  • the advantages that can be achieved with the invention are, in particular, that the method requires no additional equipment in addition to the mold level control.
  • Repositioning during a model series advantageously and easily compensates for bale thickness tolerances when a predetermined tolerance range with regard to the difference between the casting system position and the casting funnel position is exceeded.
  • baling molding and conveying systems In the case of baling molding and conveying systems (generally referred to as boxless molding systems), the position of the casting device required for the casting is the sum of all bale thicknesses between the molding system and the casting funnel of the casting mold in the casting position.
  • the thickness of the individual bales varies absolutely by a few millimeters, depending on the nature of the molding sand, etc.
  • the position of the hopper of the mold bale must be determined relative to the position of the pouring system. This measurement takes place during casting. Then the deviation of the real casting position from the desired casting position has to be determined. Finally, the position of the casting system is changed if necessary according to the result of the above step. This happens after the casting has taken place.
  • FIG. 1 shows a system for positioning a casting system in a baling molding and conveying system.
  • the shaped bales 1 are transported to a casting system 4 via a conveyor system 3.
  • a stopper control 5b serves to actuate the stopper, i.e. For the controlled opening and closing of the bottom hole and thus for the metered pouring of the liquid metal.
  • a video camera 6, which is connected to the casting system, is used to control the level of the mold and to determine the position of the pouring funnels in relation to the casting system.
  • the signals from the video camera 6 arrive at an image evaluation 7, which optically processes the entire video image (see number 12 according to FIG. 2) during the casting process and determines the current liquid metal height in the casting funnel from the visible liquid metal surface (see B according to FIG. 2) and the stop control 5b feeds.
  • image evaluation 7 optically processes the entire video image (see number 12 according to FIG. 2) during the casting process and determines the current liquid metal height in the casting funnel from the visible liquid metal surface (see B according to FIG. 2) and the stop control 5b feeds.
  • the pouring jet which can be seen in the video image see number 15 according to FIG. 2 is masked out in order to avoid falsification of the measured values. In this way, the casting performance of the casting system is automatically adjusted to the swallowing capacity of the mold.
  • a measuring zone (see number 16 according to FIG. 2) is defined such that e.g. in the case of a casting system correctly positioned above the casting funnel, the visible surface of the bale within the measuring zone (see C according to FIG. 2) corresponds to the visible liquid metal surface in the casting funnel within the measuring zone (see D according to FIG. 2). If a subsequent measurement shows a deviation from the originally defined area ratio between the visible surface of the bale in the measuring zone and the visible liquid metal surface in the measuring zone, this deviation is a measure of the deviation between the position of the bottom hole of the casting system and the position of the casting funnel of the casting mold.
  • the result of this area measurement described above is fed to a control system consisting of a histogram evaluation 8 for the measuring zone, an area evaluation 9, a measurement value weighting 10 and a position calculation 11 for the coordinate specification to the positioning system 5a.
  • the validity of the measurement is checked via the distribution of the liquid metal surface in the x-direction and the distribution of the shaped bale surface in the x-direction in order to rule out incorrect measurements caused by metal sprayed onto the shaped bale surface or by slag on the liquid metal surface.
  • the area ratio between the visible surface of the bale in the measuring zone and the visible liquid metal surface in the measuring zone is used to determine the deviation of the current actual pouring position of the pouring system from the position of the pouring funnel.
  • the positioning of the casting system is not exclusively based on the individual, current measurement, but rather using the measurement value weighting 10, both the current measurement and several previous measurements with the same or different weightings are used (whereby the current measurement is appropriately taken into account with a higher weight than previous measurements). In this way e.g. a moving average over the position deviation is formed and it is prevented that the casting system is constantly moved. The casting system is not repositioned until the difference between the casting system position and the casting funnel position exceeds a specified tolerance limit.
  • the position calculation 11 has, for example, correlations determined off-line between the area relationships and the coordinates for the repositioning.
  • the repositioning it is also possible for the repositioning to be carried out exclusively on-line in the sense of a "self-learning system" by specifying a fixed distance (or a fixed time for the operation of the casting system drives) for the method of the casting system and in the subsequent ones The effects of these specifications are evaluated, ie it is checked whether the deviation between the casting system position and the casting funnel position has decreased to the desired extent. Depending on the result of these evaluations, the specified distances (or the specified time) may be corrected.
  • the direction for repositioning the casting system can be determined in a simple manner from which of the surfaces has increased within the measuring zone. If, for example, the liquid metal surface has increased in relation to the surface of the bale, repositioning against the transport direction (x direction) of the conveyor system 3 is necessary. If the shape of the bale surface has increased in relation to the liquid metal surface (as shown in FIG. 3), repositioning in the transport direction x of the conveyor system is necessary. These repositionings apply to a video camera seen in the transport direction x.
  • FIG. 2 shows a video image used for the level control and repositioning of the casting system.
  • the pouring funnel edge 14 of the pouring funnel of a casting mold can be seen on the video image 12 of the screen 13.
  • the visible surface of the bale is labeled A.
  • the liquid metal height in the casting funnel is determined from the visible liquid metal surface B (and the known dimensions of the pouring funnel), the pouring jet 15 indicated by dashed lines being hidden.
  • the measuring zone 16 is defined, for example, in such a way that when the pouring funnel position is correct below the bottom hole of the casting system, the visible mold bale surface C within the measuring zone is equal to the visible liquid metal surface D within the measuring zone.
  • the pouring jet 15 is of course not blanked out, as can also be seen below in FIG. 5.
  • the direction of transport of the conveyor system is designated x.
  • FIG 3 a video image is shown in which the position of the pouring hopper is changed, i.e. the pouring funnel edge 14 and the visible liquid metal surface B have "migrated" upward within the video image 12. This change does not cause a measurement error to determine the liquid metal height in the casting funnel.
  • the visible liquid metal surface D within the measuring zone 16 is significantly smaller than the visible bale surface C within the measuring zone. From the ratio of D to C, the deviation between the casting system position and the casting funnel position can be determined.
  • FIG. 4 shows a video image in which the liquid metal surface and the bale surface are contaminated.
  • slag 18 on the liquid metal surface D within the measuring zone This contamination falsifies the measurement result, since the metal splash 17 reduces the visible shape of the bale surface C and the slag 18 reduces the visible liquid metal surface D.
  • Such incorrect measurements are recognized by means of the histogram evaluation 8.
  • FIG. 5 shows a video image in which the pouring funnel is not yet filled with liquid metal.
  • the pouring funnel rim 14, the pouring jet 15 and the measuring zone 16 can be seen. Correct measurement of the bale surface C and liquid metal surface D within the measuring zone is advantageously ensured even when the pouring funnel is not yet filled, since the pouring jet 15 is located in the center of the image with respect to the y coordinate (transverse direction to the transport direction x) and its width b is greater than the width a the measuring zone 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Devices For Molds (AREA)

Abstract

Es wird ein Verfahren zur Nachpositionierung eines Gießsystems bei einem ballenpressenden Form- und Fördersystem vorgeschlagen, wobei die Abweichung zwischen der Position des Bodenlochs eines Gießsystems und der Position des Gießtrichters einer Gußform ermittelt wird und nach erfolgtem Abguß die Position des Gießsystems entsprechend dieser Abweichung verändert wird, wenn die Abweichung einen Toleranzwert überschreitet. Die Abweichung zwischen Gießsystemposition und Gießtrichterposition wird während des Gießens bestimmt, indem in einem zur Ermittlung der Flüssigmetallhöhe im Gießtrichter für eine Gießspiegelregelung dienenden Videobild (12) eine Meßzone (16) derart definiert wird, daß bei einem korrekt über einem Gießtrichter positionierten Gießsystem das Flächenverhältnis zwischen der sichtbaren Formballenoberfläche (C) innerhalb der Meßzone und der sichtbaren Flüssigmetalloberfläche (D) innerhalb der Meßzone einem vorgebbaren Faktor entspricht. Bei erneuten Messungen festgestellte Abweichungen der Flächenverhältnisse vom vorgebbaren Faktor werden als Maß für die Abweichung zwischen Gießsystemposition und Gießtrichterposition herangezogen. <IMAGE>

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Nachpositionierung eines Gießsystems bei einem ballenpressenden Form- und Fördersystem gemäß dem Oberbegriff des Anspruchs 1.
  • Ein solches Verfahren zur Nachpositionierung eines Gießsystems bei einem ballenpressenden Form- und Fördersystem ist aus der DE 42 02 020 A1 bekannt. Dort ist zum dosierten Abgießen von Flüssigmetall ein Bodenloch des Gießsystems über einem Gießtrichter der auf einem Fördersystem befindlichen Gußform angeordnet. Die Position des Bodenlochs über dem Gießtrichter wird überprüft und die Positionsabweichungen werden erfaßt, sobald ein Form- und Förderprozeß eines Formballens beendet ist und sich der Formballen in Ruhe befindet. Eine Positionsveränderung erfolgt erst nach beendetem Gießvorgang und während des nächsten Form- und Förderprozesses eines Formballens.
  • Aus der BBC-Druckschrift Nr. DIA 12 46 84D Gießspiegelregelung beim Guß von Formstücken" von G.W. Drees und P. Hildenbrand ist es bekannt, eine Videokamera zur Feststellung des Füllstandes im Gießtrichter heranzuziehen. Ein nachgeschaltetes optoelektronisches Meß- und Sensorsystem (Bildauswertung) digitalisiert das Videobild punktweise in Hell-Dunkel-Anteile. Der Gießstrahl vom Bodenloch des Gießsystems in den Trichter wird ausgeblendet. Die Flüssigmetallhöhe im Gießtrichter wird aus der Flüssigmetallfläche (Dunkel-Anteile) bestimmt.
  • Aus der EP 02 65 206 B1 sind eine Vorrichtung und ein Verfahren zum Regulieren des Gießens von geschmolzenem Metall in einzelne Gießformen bekannt, wobei Bild-Flächen-Informationen während vorher bestimmter Abtast-Intervalle für einen Gießvorgang erzeugt werden. Reguliermittel zur Einstellung des Fließens der Metallschmelze sprechen auf Differenzwerte zwischen erfaßten Bild-Flächen-Informationen und Bezugs-Flächen-Werten an. Dabei ist jeder Regulierwert eine Funktion des Differenzwertes für sein zugeordnetes Abtast-Intervall und eines Regulier-Voreinstellungs-Wertes für dieses Abtast-Intervall basierend auf vorgewählten Gießparametern von wenigstens einem vorangegangenen Gießvorgang.
  • Aus der EP 02 69 591 B1 ist ein Verfahren zur Steuerung des Gießens einer Metallschmelze in Gußformen bekannt, bei dem ein Abtasten der Oberseite der Gußformen während deren fortschreitenden Bewegung zur Gießstation erfolgt, um die Gießtrichter zu ermitteln. Der Restweg der jeweiligen Gußform bis zur Gießstation wird bestimmt. Der Gießkessel wird aufgrund der Bestimmung des von der jeweiligen Gußform noch zurückzulegenden Restweges in eine Stellung genau über der Endposition dieser Gußform in der Gießstation bewegt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Nachpositionierung eines Gießsystems bei einem ballenpressenden Form- und Fördersystem der eingangs genannten Art anzugeben, bei dem die zur Gießspiegelregelung verwendete Meßeinrichtung mit Videokamera verwendet werden kann.
  • Diese Aufgabe wird in Verbindung mit den Merkmalen des Oberbegriffes erfindungsgernäß durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst.
  • Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, daß das Verfahren keinen weiteren Geräte-Mehraufwand zusätzlich zur Gießspiegelregelung erfordert. Die Videokamera und die Bildauswertung für das Videobild werden vorteilhaft sowohl zur Bestimmung der Flüssigmetallhöhe im Gießtrichter (= Gießspiegel-Isthöhe) für die Gießspiegelregelung als auch zur Ermittlung von Abweichungen zwischen der Position des Bodenlochs des Gießsystems und der Position des Gießtrichters der Gußform herangezogen. Durch das Nachpositionieren während einer Modellreihe werden Ballendickentoleranzen vorteilhaft und einfach ausgeglichen, wenn ein vorgegebener Toleranzbereich hinsichtlich der Differenz zwischen der Gießsystem-Position und der Gießtrichter-Position überschritten ist.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsbeispiele erläutert. Es zeigen:
  • Figur 1
    eine Anlage zur Positionierung eines Gießsystems bei einem ballenpressenden Form- und Fördersystem,
    Figur 2
    ein zur Gießspiegelregelung und Nachpositionierung des Gießsystems herangezogenes Videobild,
    Figur 3
    ein Videobild, bei dem die Lage des Gießtrichters verändert ist,
    Figur 4
    ein Videobild, bei dem die Flüssigmetalloberfläche und die Ballenoberfläche verschmutzt sind,
    Figur 5
    ein Videobild, bei dem der Gußtrichter noch nicht gefüllt ist.
  • Bei ballenpressenden Form- und Fördersystemen (im allgemeinen als kastenlose Formanlagen bezeichnet) ergibt sich die zum Gießen notwendige Position der Gießeinrichtung als Summe aller Ballendicken zwischen Formanlage und dem Gießtrichter der in Gießposition befindlichen Gußform. Die Dicke der einzelnen Ballen variiert abhängig von der Beschaffenheit des Formsandes usw. absolut um wenige Millimeter. Somit ergibt sich bei einer Serie gleicher Modelle von Zeit zu Zeit die Notwendigkeit, das Gießsystem neu zu positionieren, wenn die Gießtrichterposition nicht mehr mit der Position der Gießeinrichtung übereinstimmt.
  • Schließt man den Fall eines Modellwechsels aus, bei dem sich die Gießpositon von Abguß zu Abguß um die Dickendifferenz der Ballen des alten und des neuen Modells verschiebt, kann man davon ausgehen, daß bei korrekt positionierter Gießeinrichtung die nächsten Gießformen ohne Korrektur der Gießposition gegossen werden können. Es reicht daher aus, das Gießsystem lediglich dann neu zu positionieren, wenn die Abweichung zwischen Gießtrichterposition und Gießsystemposition ein bestimmtes festgelegtes Toleranzband verläßt.
  • Zur Bestimmung der Gießposition ist die Position des Gießtrichters des Formballens relativ zur Gießsystemposition zu bestimmen. Diese Messung erfolgt beim Gießen. Anschließend ist die Abweichung der realen Gießposition von der gewünschten Gießposition zu ermitteln. Abschließend erfolgt gegebenenfalls die Positionsveränderung des Gießsystems entsprechend dem Ergebnis des vorstehenden Verfahrensschrittes. Dies geschieht nach erfolgtem Abguß.
  • In Figur 1 ist eine Anlage zur Positionierung eines Gießsystems bei einem ballenpressenden Form- und Fördersystem dargestellt. Es sind mehrere, mittels eines kastenlosen, ballenpressenden Formsystems hergestellte Formballen 1 zu erkennen, die Gußformen mit Gießtrichtern bilden. Die Formballen 1 werden über ein Fördersystem 3 zu einem Gießsystem 4 transportiert. Das Gießsystem 4 weist einen Flüssigmetallspeicher mit Bodenloch und Stopfen zum Verschließen des Bodenlochs auf und kann mittels eines Positioniersystems 5a in x- und y-Richtung verschoben werden, d.h. in Transportrichtung des Fördersystems 3 (= x-Richtung) und quer hierzu (= y-Richtung). Eine Stopfenregelung 5b dient zur Betätigung des Stopfens, d.h. zum geregelten Öffnen und Schließen des Bodenlochs und damit zum dosierten Abgießen des Flüssigmetalls. Zur Gießspiegelregelung und zur Bestimmung der Position der Gießtrichter in Relation zum Gießsystem dient eine mit dem Gießsystem verbundene Videokamera 6. Beim Verfahren des Gießsystems wird die Videokamera 6 in gleicher Weise verfahren.
  • Die Signale der Videokamera 6 gelangen zu einer Bildauswertung 7, die während des Gießvorganges das gesamte Videobild (siehe Ziffer 12 gemäß Figur 2) optisch aufbereitet und aus der sichtbaren Flüssigmetalloberfläche (siehe B gemäß Figur 2) die aktuelle Flüssigmetallhöhe im Gießtrichter bestimmt und der Stopfregelung 5b zuführt. Zur Ermittlung der aktuellen Flüssigmetallhöhe im Gießtrichter wird der im Videobild erkennbare Gießstrahl (siehe Ziffer 15 gemäß Figur 2) ausgeblendet, um Meßwertverfälschungen zu vermeiden. Auf diese Weise wird die Gießleistung des Gießsystems automatisch dem Schluckvermögen der Gußform angepaßt.
  • Innerhalb des von der Videokamera 6 erfaßten Videobildes ist eine Meßzone (siehe Ziffer 16 gemäß Figur 2) derart definiert, daß z.B. bei einem korrekt über dem Gießtrichter positionierten Gießsystem die sichtbare Formballenoberfläche innerhalb der Meßzone (siehe C gemäß Figur 2) der sichtbaren Flüssigmetalloberfläche im Gießtrichter innerhalb der Meßzone (siehe D gemäß Figur 2) entspricht. Stellt man bei einer nachfolgenden Messung eine Abweichung vom ursprünglich definierten Flächenverhältnis zwischen sichtbarer Formballenoberfläche in der Meßzone und sichtbarer Flüssigmetalloberfläche in der Meßzone fest, so ist diese Abweichung ein Maß für die Abweichung zwischen der Position des Bodenlochs des Gießsystems und der Position des Gießtrichters der Gußform. Das Ergebnis dieser vorstehend beschriebenen Flächenmessung wird einem Kontrollsystem, bestehend aus einer Histogrammauswertung 8 für die Meßzone, einer Flächenbewertung 9, einer Meßwertgewichtung 10 und einer Positionsberechnung 11 für die Koordinatenvorgabe an das Positioniersystem 5a zugeführt.
  • In der Histogrammauswertung 8 wird über die Verteilung der Flüssigmetalloberfläche in x-Richtung und die Verteilung der Formballenoberfläche in x-Richtung die Gültigkeit der Messung überprüft, um durch auf die Formballenoberfläche gespritztes Metall oder durch Schlacke auf der Flüssigmetalloberfläche verursachte fehlerhafte Messungen auszuschließen.
  • Bei fehlerfreier Messung wird mittels einer Flächenbewertung 9 aus dem Flächenverhältnis zwischen sichtbarer Formballenoberfläche in der Meßzone und sichtbarer Flüssigmetalloberfläche in der Meßzone die Abweichung der aktuellen Ist-Gießposition des Gießsystems von der Position des Gießtrichters ermittelt.
  • Um etwa auftretende Meßungenauigkeiten zu eliminieren, wird für die Positionierung des Gießsystems nicht ausschließlich die einzelne, gerade aktuelle Messung herangezogen, sondern es werden unter Einsatz der Meßwert-Gewichtung 10 sowohl die aktuelle Messung als auch mehrere zurückliegende Messungen mit gleicher oder unterschiedlicher Gewichtung herangezogen (wobei die aktuelle Messung zweckmäßig mit höherem Gewicht berücksichtigt wird als zurückliegende Messungen). Auf diese Art und Weise wird z.B. ein gleitender Mittelwert über die Positionsabweichung gebildet und es wird verhindert, daß das Gießsystem ständig verfahren wird. Erst wenn die Differenz zwischen Gießsystemposition und Gießtrichterposition eine festgelegte Toleranzgrenze überschreitet, wird das Gießsystem nachpositioniert.
  • Entsprechend der so ermittelten Abweichung werden von der Positionsberechnung 11 entsprechende Koordinatensignale berechnet und an das Positionierungssystem 5a des Gießsystems 4 gegeben. Der Positionsberechnung 11 liegen hierzu beispielsweise off-line ermittelte Zusammenhänge zwischen den Flächenverhältnissen und den Koordinaten für die Nachpositionierung vor. Ferner ist es auch möglich, daß die Nachpositionierung ausschließlich on-line im Sinne eines "selbstlernenden Systems" erfolgt, indem für das Verfahren des Gießsystems eine festgelegte Wegstrecke (oder eine festgelegte Zeit für den Betrieb der Gießsystem-Antriebe) vorgegeben wird und in den nachfolgenden Meßintervallen die Wirkungen dieser Vorgaben ausgewertet werden, d.h. es wird überprüft, ob sich die Abweichung zwischen Gießsystemposition und Gießtrichterposition im gewünschten Umfang verringert hat. In Abhängigkeit des Ergebnisses dieser Auswertungen erfolgt gegebenenfalls eine Korrektur der festgelegten Wegstrecken( oder der festgelegten Zeit).
  • Die Richtung zur Nachpositionierung des Gießsystems läßt sich in einfacher Weie daraus ermitteln, welche der Flächen innerhalb der Meßzone sich vergrößert hat. Hat sich z.B. die Flüssigmetalloberfläche in Relation zur Formballenoberfläche vergrößert, ist eine Nachpositionierung entgegen der Transportrichtung (x-Richtung) des Fördersystems 3 notwendig. Hat sich die Formballenoberfläche in Relation zur Flüssigmetalloberfläche vergrößert (wie in Figur 3 gezeigt), ist eine Nachpositionierung in der Transportrichtung x des Fördersystems notwendig. Diese Nachpositionierungen gelten für eine in Transportrichtung x sehene Videokamera.
  • Vorstehend wird beispielhaft stets von einem Verhältnis bzw. Faktor Formballenoberfläche C/Flüssigmetalloberfläche D innerhalb der Meßzone 16 von 1 (d.h. C=D) ausgegangen (bei korrekt positioniertem Gießsystem). Es sind selbstverständlich auch andere Faktoren vorgebbar.
  • In Figur 2 ist ein zur Gießspiegelregelung und Nachpositionierung des Gießsystems herangezogenes Videobild dargestellt. Auf dem Videobild 12 des Bildschirms 13 ist der Gießtrichterrand 14 des Gießtrichters einer Gußform zu erkennen. Die sichtbare Formballenoberfläche ist mit A bezeichnet. Aus der sichtbaren Flüssigmetalloberfläche B (und den bekannten Abmessungen des Gießtrichters) wird die Flüssigmetallhöhe im Gießtrichter ermittelt, wobei der gestrichelt angedeutete Gießstrahl 15 ausgeblendet wird. Die Meßzone 16 ist z.B. derart definiert, daß bei korrekter Gießtrichterposition unterhalb des Bodenlochs des Gießsystems die sichtbare Formballenoberfläche C innerhalb der Meßzone gleich der sichtbaren Flüssigmetalloberfläche D innerhalb der Meßzone ist. Zur Ermittlung der Abweichung zwischen Gießsystemposition und Gießtrichterposition wird der Gießstrahl 15 selbstverständlich nicht ausgeblendet, wie nachfolgend noch unter Figur 5 ersichtlich ist. Die Transportrichtung des Fördersystems ist mit x bezeichnet.
  • In Figur 3 ist ein Videobild dargestellt, bei dem die Lage des Gießtrichters verändert ist, d.h. der Gießtrichterrand 14 und die sichtbare Flüssigmetalloberfläche B sind innerhalb des Videobildes 12 nach oben "gewandert". Für die Ermittlung der Flüssigmetallhöhe im Gießtrichter verursacht diese Änderung keinen Meßfehler. Wie jedoch zu erkennen ist, ist die sichtbare Flüssigmetalloberfläche D innerhalb der Meßzone 16 wesentlich kleiner als die sichtbare Formballenoberfläche C innerhalb der Meßzone. Aus dem Verhältnis von D zu C läßt sich die Abweichung zwischen Gießsystemposition und Gießtrichterposition ermitteln.
  • In Figur 4 ist ein Videobild dargestellt, bei dem die Flüssigmetalloberfläche und die Ballenoberfläche verschmutzt sind. Wie zu erkennen ist, befindet sich ein Metallspritzer 17 auf der Formballenoberfläche C innerhalb der Meßzone 16. Ferner befindet sich Schlacke 18 auf der Flüssigmetalloberfläche D innerhalb der Meßzone. Diese Verschmutzungen verfälschen das Meßergebnis, denn der Metallspritzer 17 verkleinert die sichtbare Formballenoberfläche C und die Schlacke 18 verkleinert die sichtbare Flüssigmetalloberfläche D. Mittels der Histogrammauswertung 8 werden derartige falsche Messungen erkannt.
  • In Figur 5 ist ein Videobild dargestellt, bei dem der Gießtrichter noch nicht mit Flüssigmetall gefüllt ist. Es sind der Gießtrichterrand 14, der Gießstrahl 15 und die Meßzone 16 zu erkennen. Vorteilhaft wird auch bei noch nicht gefülltem Gießtrichter eine einwandfreie Messung von Formballenoberfläche C und Flüssigmetalloberfläche D innerhalb der Meßzone gewährleistet, da sich der Gießstrahl 15 bezüglich der y-Koordinate (Querrichtung zur Transportrichtung x) in Bildmitte befindet und seine Breite b größer als die Breite a der Meßzone 16 ist.

Claims (5)

  1. Verfahren zur Nachpositionierung eines Gießsystems bei einem ballenpressenden Form- und Fördersystem, wobei die Abweichung zwischen der Position des Bodenlochs eines Gießsystems und der Position des Gießtrichters einer Gußform ermittelt wird und nach erfolgtem Abguß die Position des Gießsystems entsprechend dieser Abweichung verändert wird, wenn die Abweichung einen Toleranzwert überschreitet, dadurch gekennzeichnet, daß die Abweichung zwischen Gießsystemposition und Gießtrichterposition während des Gießens bestimmt wird, indem in einem zur Ermittlung der Flüssigmetallhöhe im Gießtrichter für eine Gießspiegelregelung dienenden Videobild (12) eine Meßzone (16) derart definiert wird, daß bei einem korrekt über einem Gießtrichter positionierten Gießsystem das Flächenverhältnis zwischen der sichtbaren Formballenoberfläche (C) innerhalb der Meßzone und der sichtbaren Flüssigmetalloberfläche (D) innerhalb der Meßzone einem vorgebbaren Faktor entspricht und indem bei erneuten Messungen festgestellte Abweichungen der Flächenverhältnisse vom vorgebbaren Faktor als Maß für die Abweichung zwischen Gießsystemposition und Gießtrichterposition herangezogen werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verteilung der Formballenoberfläche (C) und/oder der Flüssigmetalloberfläche (D) innerhalb der Meßzone (16) überprüft wird, um eventuelle Verunreinigungen der Formballenoberfläche und/oder der Flüssigmetalloberfläche zu ermitteln.
  3. Verfahren nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß die Koordinaten für die Nachpositionierung mittels off-line bestimmter Zusammenhänge zwischen Abweichungen des Flächenverhältnisses zwischen Formballenoberfläche (C) und Flüssigmetalloberfläche (D) innerhalb der Meßzone (16) und Abweichung zwischen Gießsystemposition und Gießtrichterposition bestimmt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Ermittlung der Abweichung zwischen Gießsystemposition und Gießtrichterposition mehrere einzelne Messungen mit gleicher oder unterschiedlicher Gewichtung herangezogen werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Breite (a) der Meßzone (16) schmaler als die Breite (b) des Gießstrahles (15) ist.
EP94118953A 1993-12-07 1994-12-01 Verfahren zur Nachpositionierung eines Giesssystems bei einem ballenpressenden Form- und Fördersystem Expired - Lifetime EP0659504B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4341593 1993-12-07
DE4341593A DE4341593A1 (de) 1993-12-07 1993-12-07 Verfahren zur Nachpositionierung eines Gießsystems bei einem ballenpressenden Form- und Fördersystem

Publications (3)

Publication Number Publication Date
EP0659504A2 true EP0659504A2 (de) 1995-06-28
EP0659504A3 EP0659504A3 (de) 1996-12-18
EP0659504B1 EP0659504B1 (de) 1999-01-20

Family

ID=6504326

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94118953A Expired - Lifetime EP0659504B1 (de) 1993-12-07 1994-12-01 Verfahren zur Nachpositionierung eines Giesssystems bei einem ballenpressenden Form- und Fördersystem

Country Status (4)

Country Link
EP (1) EP0659504B1 (de)
DE (2) DE4341593A1 (de)
DK (1) DK0659504T3 (de)
ES (1) ES2130337T3 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747152A1 (de) * 1995-06-07 1996-12-11 Inductotherm Corp. Videosystem zur Positionierung einer Giesspfanne
CN113770340A (zh) * 2021-08-26 2021-12-10 山东创新金属科技有限公司 一种用于铝合金铸造的自动化控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265206A2 (de) * 1986-10-20 1988-04-27 Inductotherm Corp. Vorrichtung und Verfahren zum Regeln des Eingiessens von Schmelze in eine Giessform
DE4103243A1 (de) * 1990-02-21 1991-08-29 Inductotherm Corp Verfahren zur steuerung des giessens einer fluessigkeit aus einem gefaess in einzelne gussformen sowie einrichtung zur durchfuehrung des verfahrens
DE4202020A1 (de) * 1992-01-25 1993-07-29 Abb Patent Gmbh Verfahren und anordnung zur positionierung eines giesssystems bei einem ballenpressenden form- und foerdersystem

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4724894A (en) * 1986-11-25 1988-02-16 Selective Electronic, Inc. Molten metal pour control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265206A2 (de) * 1986-10-20 1988-04-27 Inductotherm Corp. Vorrichtung und Verfahren zum Regeln des Eingiessens von Schmelze in eine Giessform
DE4103243A1 (de) * 1990-02-21 1991-08-29 Inductotherm Corp Verfahren zur steuerung des giessens einer fluessigkeit aus einem gefaess in einzelne gussformen sowie einrichtung zur durchfuehrung des verfahrens
DE4202020A1 (de) * 1992-01-25 1993-07-29 Abb Patent Gmbh Verfahren und anordnung zur positionierung eines giesssystems bei einem ballenpressenden form- und foerdersystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BBC-NACHRICHTEN, Bd. 66, Nr. 7, 1984, MANNHEIM (D), Seiten 252-262, XP000577299 G.W. DREES, P. HILDENBRAND: "Giesspiegelregelung beim Guss von Formst}cken" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747152A1 (de) * 1995-06-07 1996-12-11 Inductotherm Corp. Videosystem zur Positionierung einer Giesspfanne
US5757506A (en) * 1995-06-07 1998-05-26 Inductotherm Corp. Video positioning system for a pouring vessel
CN113770340A (zh) * 2021-08-26 2021-12-10 山东创新金属科技有限公司 一种用于铝合金铸造的自动化控制系统

Also Published As

Publication number Publication date
DK0659504T3 (da) 1999-09-13
EP0659504B1 (de) 1999-01-20
EP0659504A3 (de) 1996-12-18
ES2130337T3 (es) 1999-07-01
DE59407694D1 (de) 1999-03-04
DE4341593A1 (de) 1995-06-08

Similar Documents

Publication Publication Date Title
DE68920951T2 (de) Vorrichtung zum Einstellen der Giessbetriebsbedingungen in einer Spritzgiessmaschine.
DE69520944T2 (de) Biegepresse.
DE19542640C2 (de) Verfahren und Einrichtung zum Betreiben einer automatischen Form- und Gießanlage
DE19604254B4 (de) Verfahren und Vorrichtung zur Gewinnung gewichtskonstanter Portionen oder Scheiben aus aufgeschnittenen Lebensmittelprodukten
DE69108336T2 (de) Lötmittelaufbringung.
EP0897786A2 (de) Verfahren zum Regeln einer Spritzgiessanlage für Kunststoff-Materialien
DE69304485T2 (de) Messvorrichtung für Blechbiegewinkel
WO2019068792A1 (de) Verfahren zur schichtweisen additiven herstellung dreidimensional ausgebildeter bauteile
DE69511071T2 (de) Videosystem zur Positionierung einer Giesspfanne
DE3530681C2 (de)
DE69401811T2 (de) Verfahren und vorrichtung zur regelung des metallspiegels in einer strangusskokille
DE3715077C2 (de)
DE19514666A1 (de) Verfahren und Apparat zum Spritzgießen
DE3329705A1 (de) Druckgiessmaschine mit steuervorrichtung zur druckabhaengigen giessprozesssteuerung
EP0659504A2 (de) Verfahren zur Nachpositionierung eines Giesssystems bei einem ballenpressenden Form- und Fördersystem
EP3720623A1 (de) Streck-biege-richtanlage und verfahren zu deren betätigung
DE3221708C1 (de) Verfahren und Vorrichtung zum Füllen einer Stranggießkokille beim Angießen eines Stranges
DE102020209794A1 (de) Verfahren zur Steuerung oder Regelung der Temperatur eines Gießstrangs in einer Stranggießanlage
WO2008034500A1 (de) Verfahren zum stranggiessen eines metallstranges
EP0560024B1 (de) Verfahren zum Stranggiessen von Metallen
EP0698481A1 (de) Fuzzysteuerungsverfahren zur Qualitätssicherung bei der Tablettenherstellung
DE102018220386A1 (de) Verfahren und Vorrichtung zum Einstellen der Solltemperaturen von Kühlsegmenten einer Stranggießanlage
DE3020843C2 (de) Verfahren zur Regelung der Breite eines Glasbandes bei der Herstellung von Schwimmglas
EP3628416B1 (de) Verfahren und anlage zum stranggiessen eines metallischen produkts
DE102015107951A1 (de) Verfahren und Vorrichtung einer Regelung des Gießprozesses beim Abgießen einer Gießform mittels einer schwerkraftentleerten drehbaren Gießpfanne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE DK ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE DK ES FR GB IT

17P Request for examination filed

Effective date: 19970321

17Q First examination report despatched

Effective date: 19970626

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES FR GB IT

REF Corresponds to:

Ref document number: 59407694

Country of ref document: DE

Date of ref document: 19990304

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2130337

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20131219

Year of fee payment: 20

Ref country code: DE

Payment date: 20131231

Year of fee payment: 20

Ref country code: GB

Payment date: 20131219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20131226

Year of fee payment: 20

Ref country code: IT

Payment date: 20131217

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59407694

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20141201

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20141202