EP0641143B1 - Verfahren zur Simulation eines Raum- und/oder Klangeindrucks - Google Patents
Verfahren zur Simulation eines Raum- und/oder Klangeindrucks Download PDFInfo
- Publication number
- EP0641143B1 EP0641143B1 EP94112549A EP94112549A EP0641143B1 EP 0641143 B1 EP0641143 B1 EP 0641143B1 EP 94112549 A EP94112549 A EP 94112549A EP 94112549 A EP94112549 A EP 94112549A EP 0641143 B1 EP0641143 B1 EP 0641143B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pulse response
- room
- spatial pulse
- impulse response
- threshold value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S7/00—Indicating arrangements; Control arrangements, e.g. balance control
- H04S7/30—Control circuits for electronic adaptation of the sound field
- H04S7/305—Electronic adaptation of stereophonic audio signals to reverberation of the listening space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S1/00—Two-channel systems
- H04S1/002—Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S1/00—Two-channel systems
- H04S1/002—Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
- H04S1/005—For headphones
Definitions
- the invention relates to a method with the necessary electroacoustic device for generating a Room and / or sound impression of an actually existing one or also calculated space, using as a hearing program any monophonic, stereophonic or multi-channel Audio program is usable.
- the playback takes place preferably binaural via headphones, but can also via Speakers are performed.
- Each audio program produced generally contains the existing room acoustics when recording, however in the previously known stereophonic reproduction methods never reproduced fully recognizable in its fine structure could be. More than that recording in one Room with a certain reverberation was created playback from the listener. Only additional ones Measures with corresponding electroacoustic Institutions could create better listening conditions that the listener will then recognize the room where the program was recorded to let.
- a true-to-original simulation of room acoustics is, for example, by folding any Audio program with the binaural impulse response, measured at a certain reception point in a room, feasible.
- binaural space pulse word understood two impulse responses, one impulse response one ear and the other impulse response to is assigned to another ear.
- the system theory forms the space together with the reception characteristics a linear of the human ear causal transmission system in the time domain through the Room impulse responses is described.
- the respective room impulse response is approximately the system response a sound pulse, the duration of which is a period of is twice the upper limit frequency of the audio signal.
- Such a simulation process which simulates the listener the unmistakably precise temporal, spectral, spatial and dynamic sound field structures that actually exist at the original listening location, is extremely complex, especially with regard to the technical equipment required for the simulation.
- the convolution is carried out by digitizing the audio signal and the spatial impulse responses, calculating the folded signal in a computer and converting it back into the analog signal. The number of calculation steps depends on the length of the impulse responses.
- the simulation of room acoustic events is complete generally feasible using a method that, for example is known from EP-A-0 505 949.
- the procedure is carried out using a transfer function simulator simulated a transfer function.
- This transfer function simulator is in an acoustic with System arranged sound sources, sound receiving devices and devices for measuring the acoustic transfer function fitted.
- For measuring the acoustic Transfer function can be the multitude of different possible Positions between any two points be considered in the acoustic system.
- the simulator itself is characterized in that means for appraisal that in the existing transfer function existing poles are provided, the AR eigen coefficients, those with physical poles of acoustic Systems correspond from the multitude of measured Transfer functions are estimated, and ARMA filters, which are composed of AR filters and MA filters are to replicate what is measured from the multitude acoustic transmission functions with the acoustic System matches.
- This extremely complicated process serves such an acoustic transfer function replicate that for echo suppressors, Anti-hall devices for active noise compensation and is also required for sound localization.
- the Simulation of the transmission characteristics takes place Signal processor before. In the simulation process itself the transfer function with little computing effort in consistently reproduces the shortest possible computing time.
- the object for the present invention is now in a simulation process with the necessary to create electro-acoustic device that simplifies is what makes its implementation technically and economically becomes justifiable.
- the new simulation process has the advantage that with greatly reduced effort for the process no deterioration Simulation quality occurs. Moreover can use simplified FIR filter structures for convolution be used. The folding process itself runs without noticeable time delay in real time.
- the essence of the invention is that one with Success-related lifelike simulation with very specific ones Share the room impulse responses from the acoustic happening is feasible. All it takes is the Knowledge of those parts of the room impulse responses that follow a critical selection essential for the auditory impression are. The path to knowledge about the respective room impulse responses leads over real or virtual room acoustic Measurements. Deciding which parts from the spatial replies are left out according to hearing psychological Principles.
- An essential execution of the method now lies in that the values of the room impulse response with a time-dependent Threshold are compared and only those Values of the room impulse responses are used that the Exceed threshold.
- the threshold is related to the room impulse response is time-dependent, insofar as it is his largest amount in the area of the beginning of the room impulse response and decays towards the end of the room impulse response. As a result, wide areas of the room impulse responses become zero.
- the advantage in such a division is strong reduced computing effort for the simulation processor.
- the area of the room impulse response that records the direct sound must with the area containing the reverberation so composed that the original quality in the simulation is retained.
- the above-mentioned method with the required electroacoustic can also be designed in such a way that the critical selection of essential parts to preserve the lifelike simulation by considering the psychoacoustic pre and post masking phenomena in the Room impulse response takes place.
- the application of the simulation method according to the invention will be especially in the HiFi and recording studio area, because there the benefits of binaural hearing for both headphone playback as well as speaker playback lie.
- the device according to the invention creates that level of good and authentic room acoustics, the known disadvantages of hearing in anechoic Picks up space, but not disturbing that of the Overlay given acoustics.
- the simulation of a for example, specific speaker arrangement in one certain space using headphone playback is an essential Application of the simulation method including the necessary electroacoustic Facility.
- 1a shows a possible method for determining the Room impulse response shown.
- a measurement signal is emitted, which with a Measurement microphone is recorded. From the received signal the room impulse response is obtained. If as a measurement signal an impulse is used, the duration of which is equal to one Period of the double frequency of the upper frequency limit of the audio signal range is the received signal equal to the room impulse response h (t). Because with this method the signal-to-noise ratio is small, in practice it becomes longer Measurement signal preferred and the room impulse response arithmetically determined.
- the binaural impulse response that is used for playback is needed via headphones, is obtained in that the measurement microphones in the ear canals of a test person for which the rum impulse response is determined should. Then the impulse response for the line speaker-room-ear and then the impulse response for measured the headphone-ear system. The impulse responses gained are transformed into the frequency domain that divided functions and the quotient in back transformed the time domain. If this process for If both ears are performed, there will be a binaural impulse response get out of a right and a left room impulse response.
- Fig. 1b shows the scheme for the procedure one of the two room impulse responses determined as above.
- the room impulse response h (t) is fed to the divider 1, the division into the direct sound component d (t) and to carry out the reverberation component r (t).
- r (t) In the reverberation portion r (t) are also all from the room walls Contain individual reflections of the measurement signal.
- the spatial impulse response is inherently continuous Time signal and is digitized for processing, with which h (t), d (t) or r (t) h (n), d (n) or r (n) becomes.
- ⁇ is the period of the sampling frequency.
- the corresponding time-dependent amplitude profiles are shown schematically in FIGS. 4a to 4c.
- T N the direct sound has arrived at the listening position, according to which only those portions are to be expected which result from reflections or from the reverberation.
- the impulse response would only consist of a first value;
- the room impulse response outlined here is also determined in the area of direct sound by the transfer function from the sound source to the ear canal entrance and is extended to a few milliseconds, for example, due to the reflections on the head and body.
- the one divided into the two sound components d (n) and r (n) The determined room impulse response now becomes that electronic one Device 2 supplied from the determined room impulse response extracted the proportions that those parameters the listening room acoustics, the sound field present in the listening room and the left and right assignable to the listener Outer ear transfer function included after the Convolution process with any audio program the lifelike simulation of the entire room acoustic Guarantee events.
- the extraction takes place according to criteria, which are described below.
- the extracted one or reduced room impulse response h '(n) is in one Processor 3 with the signal s (n) of any chosen Audio program folded, which formed the signal becomes. With correct sound reproduction on both ears the hearing person receives the hearing result desired according to the invention achieved, namely the lifelike simulation of a Listening place in a certain listening room.
- the extractor circuit 2 for selection of the essential Fractions from the determined room impulse response is given by the scheme of Fig. 2 explained in more detail.
- the room impulse response present at an input E and divided into the direct sound and reverberation components is divided into individual sections or portions with the length T i in a function block 4.
- FIGS. 5a to 5e show how the determined room impulse response is divided into individual blocks or portions T i with the sound components d (n), r 2 (n), r 3 (n) ... r i (n) by means of the function block 4 .
- Comparator 5 After the direct sound has been separated off, use a Comparator 5 the remaining portions of the room impulse response Set to zero after one of those described below Criteria below a set one Threshold. The number of samples in the remaining signal components of the reduced room impulse response are counted in a coefficient counter 6. The counter value obtained is in a setpoint comparator 7, compared with a limit that is based on the permissible Computing effort is fixed. If the border is not yet 5a - 5e, more are exceeded Blocks of the determined room impulse response requested. In this way, a later folding with the reduced room impulse response the computing capacity exhausted. If the specified target is reached, then the now available reduced room impulse response to one Given output A.
- FIG. 3 Arrangement required.
- a dynamic threshold adjustment added which consists of a comparator 9 and a threshold value transmitter 10 exists.
- the instantaneous value is in the comparator 9 the determined room impulse response with the current one Threshold value compared, the size of the threshold value from the previous values of the determined room impulse response depending on the concealment phenomenon.
- the threshold value generator 10 to the comparator 5 is the dynamic adaptation to the given psychoacoustic criteria according to the concealment phenomenon realized, for example, according to Zwicker.
- the critical selection of the signal components of the determined room impulse response that are essential for the simulation can be made in that all components of the determined room impulse response that are below a fixed fixed threshold value A are set to zero so that they are suitable for later use Convolution process are not taken into account, while the signal components exceeding the threshold value or the associated sample values are adopted with unchanged amplitude in the reduced spatial impulse response. Since there is a direct connection between the strength of the sound reflections and the values of the determined room impulse response that can be assigned to these reflections, the threshold value criterion offers significant help for extracting the values of the determined room impulse response that are essential for simulation.
- T V here denotes the areas of pre-masking and T N that of subsequent masking. These are the periods in which signals below a level limit, as outlined in FIG. 7a, are no longer perceptible to a main signal. As can be seen from the standard literature on this subject, these masking effects are dependent on the time interval, the level ratio and the frequency interval of the masked and masking signal. As a result, this cannot be fully illustrated. With the room impulse response, above all the time and level relationships are influenced. In any case, somewhat broader value ranges of the determined room impulse response must be used than would result directly from the boundary line criterion. Furthermore, the value ranges have to be extrapolated into the actually masked range in order not to obtain undesired filter effects in the frequency range.
- 8a and 8b show how the threshold value shrinks in steps and the signal components accordingly be removed for the simulation.
- FIG. 9 shows the manner in which, for example, the architecture of a conventional FIR filter can be implemented.
- a signal value is extracted from each connection in each sampling period and multiplied by the filter coefficient assigned to this location; the result is added in an adder with all other results and fed to the output and thus represents the direct implementation of the convolution on a processor.
- this convolution can of course also be carried out in other conjugate structures, as a result of which Saving computing power. In principle, however, this always involves an optimal chronological sequence of additions and multiplications, so that at best a factor of two to three can be gained in computing power.
- Fig. 10 illustrates how the architecture of the FIR filter is modified when the convolution with the extracted space impulse response is performed.
- the successive samples of the remaining signal components of the spatial impulse response form the filter coefficients d j , r 1k , r 2l , r 3m , r in . These are those which are of essential importance for the lifelike simulation in accordance with the designations from the example of FIG. 5.
- the number of all filter coefficients is one to two orders of magnitude less than the number of buffers. Since the filter coefficients no longer occur equidistantly in time, the filter processor is simultaneously informed of the delay time or the sample number with a filter coefficient.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Reverberation, Karaoke And Other Acoustics (AREA)
- Stereophonic System (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Stringed Musical Instruments (AREA)
- Circuit For Audible Band Transducer (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
Description
- Fig. 1a
- die Anordnung bei der Messung der Raumimpulsantwort,
- Fig. 1b
- das Schema der elektroakustischen Einrichtung zur Erzeugung und Faltung der reduzierten Raumimpulsantwort,
- Fig. 2
- das Schema zur Auswahl der wesentlichen Anteile aus der ermittelten Raumimpulsantwort,
- Fig. 3
- das Schema zur Auswahl der wesentlichen Anteile aus der ermittelten Raumimpulsantwort, unter Verwendung eines veränderlichen Schwellwertes,
- Fig. 4a
- eine einfache ermittelte Raumimpulsantwort,
- Fig. 4b
- den Anteil des Direktschalls der ermittelten Raumimpulsantwort nach Fig. 4a,
- Fig. 4c
- die reflektierten Schallanteile aus der ermittelten Raumimpulsantwort nach Fig. 4a,
- Fig. 5a
- eine vereinfachte ermittelte Raumimpulsantwort,
- Fig. 5b
- den Bereich des Direktschalls der ermittelten Raumimpulsantwort nach Fig. 5a,
- Fig. 5c
- den wesentlichen Teil des reflektierten Anteils der ermittelten Raumimpulsantwort nach Fig. 5a,
- Fig. 5d
- den wesentlichen Teil einer zweiten Reflexion aus der ermittelten Raumimpulsantwort nach Fig. 5a,
- Fig. 5e
- den wesentlichen Teil einer noch später liegenden Reflexion aus der ermittelten Raumimpulsantwort nach Fig.5a,
- Fig. 6a
- die ermittelte Raumimpulsantwort mit darübergelegten Schwellwerten,
- Fig. 6b
- die reduzierte Raumimpulsantwort aus der ermittelten Raumimpulsantwort nach Fig. 6a,
- Fig. 7a
- eine ermittelte Raumimpulsantwort mit darübergelegten Schwellwerten unter Berücksichtigung des Verdeckungsphänomens.
- Fig. 7b
- die reduzierte Raumimpulsantwort aus der ermittelten Raumimpulsantwort nach Fig. 7a,
- Fig. 8a
- eine ermittelte Raumimpulsantwort mit darübergelegten Schwellwerten, die stufenförmig abnehmen,
- Fig. 8b
- die reduzierte Raumimpulsantwort aus der Raumimpulsantwort nach Fig. 8a,
- Fig. 9
- ein Schema für ein übliches Transversal oder FIR - Filter und
- Fig. 10
- eine aus der Erfindung sich ergebende Struktur eines FIR-Filters für den Faltungsprozess mit der erfindungsgemäß reduzierten Raumimpulsantwort.
Claims (14)
- Verfahren zur Simulation eines an einem repräsentativen Hörplatz in einem Raum auftretenden Raum- und/oder Klangeindrucks bei monofoner, stereofoner oder mehrkanaliger Wiedergabe, bei demein Raum ausgewählt wird, dessen Raumklang simuliert werden soll,innerhalb des Raumes die Lage des repräsentativen Hörplatzes festgelegt wird.an dem repräsentativen Hörplatz zumindest für einen Kanal die zugehörige Raumimpulsantwort ermittelt wird,für die ermittelte Raumimpulsantwort ein sich über zumindest einen Abschnitt der Länge der ermittelten Raumimpulsantwort erstreckender Schwellwert festgelegt wird ,durch Vergleich der ermittelten Raumimpulsantwort mit dem Schwellwert eine reduzierte Raumimpulsantwort erzeugt wird, die innerhalb des Abschnitts der Länge der ermittelten Raumimpulsantwort nur diejenigen Teile der ermittelten Raumimpulsantwort aufweist, bei denen die momentane Amplitude über dem Schwellwert liegt, während für diejenigen Teile der ermittelten Raumimpulsantwort, deren momentane Amplitude unter dem Schwellwert liegt, die reduzierte Raumimpulsantwort auf den Wert null gesetzt wird, und die außerhalb des Abschnitts der Länge der ermittelten Raumimpulsantwort die ermittelte Raumimpulsantwort in unveränderter Form enthält.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mit Ausnahme des dem Direktschall entsprechenden Bereiches der ermittelten Raumimpulsantwort der Abschnitt die gesamte übrige zeitliche Dauer der ermittelten Raumimpulsantwort beinhaltet.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet. daß der Abschnitt die gesamte zeitliche Dauer der ermittelten Raumimpulsantwort beinhaltet.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Schwellwert ein dynamisch veränderlicher Schwellwert ist, der einen fest vorgegebenen Mindestwert aufweist, und daß der Schwellwert durch eine den jeweils gültigen Schwellwert oder den Mindestgrenzwert übersteigende Halbschwingung der ermittelten Raumimpulsantwort in Richtung auf größere Werte angehoben wird und nach dem Anheben allmählich auf seinen Mindestwert abklingt.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Schwellwert nach einer Exponentialfunktion abklingt.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Schwellwert entprechend einem psychoakustischen Verdeckungseffekt festgelegt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Schwellwert fest ist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß sich der Schwellwert treppenförmig verändert.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der ausgewählte Raum ein theoretischer oder virtueller Raum ist und daß die jeweilige ermittelte Raumimpulsantwort eine auf Grund der Annahmen über die Gestalt des Raumes, den Ort der Schallquelle, den Hörplatz, die Richtung der Schallquelle und/oder die Ausrichtung des Kopfes berechnete Raumimpulsantwort ist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der ausgewählte Raum ein real existierender Raum ist und daß die jeweilige ermittelte Raumimpulsantwort in dem realen Raum gemessen wurde.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß es für wenigstens zwei unterschiedliche Hörkanäle durchgeführt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Audiosignal mit der reduzierten Raumimpulsantwort gefaltet wird.
- Vorrichtung, dadurch gekennzeichnet, daß sie eine elektronische Schaltung enthält, in der die reduzierte Raumimpulsantwort gemäß dem Verfahren nach einem der vorstehenden Ansprüche programmiert ist, daß die Schaltung einen oder mehrere Eingänge zum Einspeisen eines monofonen, stereofonen oder vielkanaligen Audioprogramms, wenigstens einen Kanal sowie wenigstens je Kanal einen Audioausgang aufweist, an dem ein bearbeitetes Audioprogrammm ausgegeben wird, das durch Faltung des eingespeisten Audioprogramms mit der/den dem jeweiligen Kanal zugeordneten reduzierten Raumimpulsantwort/-en erhalten wird.
- Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß sie je Kanal wenigstens ein FIR-Filter enthält, dessen Filterkoeffizienten den Amplitudenwerten der mit einer vorgegeben Samplingfrequenz digitalisierten reduzierten Raumimpulsantwort entsprechen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4328620 | 1993-08-26 | ||
DE4328620A DE4328620C1 (de) | 1993-08-26 | 1993-08-26 | Verfahren zur Simulation eines Raum- und/oder Klangeindrucks |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0641143A2 EP0641143A2 (de) | 1995-03-01 |
EP0641143A3 EP0641143A3 (de) | 1999-05-19 |
EP0641143B1 true EP0641143B1 (de) | 2001-12-05 |
Family
ID=6496012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94112549A Expired - Lifetime EP0641143B1 (de) | 1993-08-26 | 1994-08-11 | Verfahren zur Simulation eines Raum- und/oder Klangeindrucks |
Country Status (6)
Country | Link |
---|---|
US (1) | US5544249A (de) |
EP (1) | EP0641143B1 (de) |
JP (1) | JP3565908B2 (de) |
AT (1) | ATE210362T1 (de) |
DE (2) | DE4328620C1 (de) |
DK (1) | DK0641143T3 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1740016A1 (de) | 2005-06-28 | 2007-01-03 | AKG Acoustics GmbH | Verfahren zur Simulierung eines Raumeindrucks und/oder Schalleindrucks |
CN105981412A (zh) * | 2014-03-21 | 2016-09-28 | 华为技术有限公司 | 用于基于至少第一对空间脉冲响应估计总体混合时间的装置和方法以及对应的计算机程序 |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19545623C1 (de) * | 1995-12-07 | 1997-07-17 | Akg Akustische Kino Geraete | Verfahren und Vorrichtung zur Filterung eines Audiosignals |
GB9616755D0 (en) * | 1996-08-09 | 1996-09-25 | Kemp Michael J | Audio effects synthesizer with or without analyser |
EP0866638B1 (de) * | 1997-03-10 | 2011-06-15 | Panasonic Corporation | Audiovisueller Verstärker |
US6307941B1 (en) | 1997-07-15 | 2001-10-23 | Desper Products, Inc. | System and method for localization of virtual sound |
US6166744A (en) * | 1997-11-26 | 2000-12-26 | Pathfinder Systems, Inc. | System for combining virtual images with real-world scenes |
US5872743A (en) * | 1998-02-10 | 1999-02-16 | Vlsi Technology, Inc. | Method and apparatus for locating the user of a computer system |
US6038330A (en) * | 1998-02-20 | 2000-03-14 | Meucci, Jr.; Robert James | Virtual sound headset and method for simulating spatial sound |
ATE501606T1 (de) * | 1998-03-25 | 2011-03-15 | Dolby Lab Licensing Corp | Verfahren und vorrichtung zur verarbeitung von audiosignalen |
US6707918B1 (en) * | 1998-03-31 | 2004-03-16 | Lake Technology Limited | Formulation of complex room impulse responses from 3-D audio information |
AU2004203538B2 (en) * | 1998-09-25 | 2006-11-16 | Sony Corporation | Sound effect adding apparatus |
JP2000099061A (ja) * | 1998-09-25 | 2000-04-07 | Sony Corp | 効果音付加装置 |
AUPQ941600A0 (en) * | 2000-08-14 | 2000-09-07 | Lake Technology Limited | Audio frequency response processing sytem |
DE10138949B4 (de) * | 2001-08-02 | 2010-12-02 | Gjon Radovani | Verfahren zur Beeinflussung von Raumklang sowie Verwendung eines elektronischen Steuergerätes |
GB2414369B (en) | 2004-05-21 | 2007-08-01 | Hewlett Packard Development Co | Processing audio data |
GB0419346D0 (en) * | 2004-09-01 | 2004-09-29 | Smyth Stephen M F | Method and apparatus for improved headphone virtualisation |
WO2006090589A1 (ja) * | 2005-02-25 | 2006-08-31 | Pioneer Corporation | 音分離装置、音分離方法、音分離プログラムおよびコンピュータに読み取り可能な記録媒体 |
US7184557B2 (en) * | 2005-03-03 | 2007-02-27 | William Berson | Methods and apparatuses for recording and playing back audio signals |
US8175286B2 (en) * | 2005-05-26 | 2012-05-08 | Bang & Olufsen A/S | Recording, synthesis and reproduction of sound fields in an enclosure |
DE102005030855A1 (de) * | 2005-07-01 | 2007-01-11 | Müller-BBM GmbH | Elektroakustisches Verfahren |
GB2437399B (en) * | 2006-04-19 | 2008-07-16 | Big Bean Audio Ltd | Processing audio input signals |
US8036767B2 (en) * | 2006-09-20 | 2011-10-11 | Harman International Industries, Incorporated | System for extracting and changing the reverberant content of an audio input signal |
US9761061B1 (en) | 2006-10-26 | 2017-09-12 | Stamps.Com Inc. | Shipping interface for a user interface |
US8363843B2 (en) * | 2007-03-01 | 2013-01-29 | Apple Inc. | Methods, modules, and computer-readable recording media for providing a multi-channel convolution reverb |
KR100899836B1 (ko) * | 2007-08-24 | 2009-05-27 | 광주과학기술원 | 실내 충격응답 모델링 방법 및 장치 |
KR100970920B1 (ko) * | 2008-06-30 | 2010-07-20 | 권대훈 | 튜닝음향 피드백 장치 |
WO2012093352A1 (en) | 2011-01-05 | 2012-07-12 | Koninklijke Philips Electronics N.V. | An audio system and method of operation therefor |
US20150010170A1 (en) * | 2012-01-10 | 2015-01-08 | Actiwave Ab | Multi-rate filter system |
US9369818B2 (en) * | 2013-05-29 | 2016-06-14 | Qualcomm Incorporated | Filtering with binaural room impulse responses with content analysis and weighting |
EP3767970B1 (de) * | 2013-09-17 | 2022-09-28 | Wilus Institute of Standards and Technology Inc. | Verfahren und vorrichtung zur verarbeitung von multimediasignalen |
WO2015060654A1 (ko) | 2013-10-22 | 2015-04-30 | 한국전자통신연구원 | 오디오 신호의 필터 생성 방법 및 이를 위한 파라메터화 장치 |
WO2015099429A1 (ko) | 2013-12-23 | 2015-07-02 | 주식회사 윌러스표준기술연구소 | 오디오 신호 처리 방법, 이를 위한 파라메터화 장치 및 오디오 신호 처리 장치 |
EP3122073B1 (de) | 2014-03-19 | 2023-12-20 | Wilus Institute of Standards and Technology Inc. | Audiosignalverarbeitungsverfahren und -vorrichtung |
KR101856540B1 (ko) | 2014-04-02 | 2018-05-11 | 주식회사 윌러스표준기술연구소 | 오디오 신호 처리 방법 및 장치 |
JP6311430B2 (ja) * | 2014-04-23 | 2018-04-18 | ヤマハ株式会社 | 音響処理装置 |
US10229672B1 (en) | 2015-12-31 | 2019-03-12 | Google Llc | Training acoustic models using connectionist temporal classification |
CN113470628B (zh) * | 2021-07-14 | 2024-05-31 | 青岛信芯微电子科技股份有限公司 | 一种语音识别方法及装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8800745A (nl) * | 1988-03-24 | 1989-10-16 | Augustinus Johannes Berkhout | Werkwijze en inrichting voor het creeren van een variabele akoestiek in een ruimte. |
AT394650B (de) * | 1988-10-24 | 1992-05-25 | Akg Akustische Kino Geraete | Elektroakustische anordnung zur wiedergabe stereophoner binauraler audiosignale ueber kopfhoerer |
JPH03127599A (ja) * | 1989-10-12 | 1991-05-30 | Matsushita Electric Ind Co Ltd | 音場可変装置 |
JPH0736866B2 (ja) * | 1989-11-28 | 1995-04-26 | ヤマハ株式会社 | ホール音場支援装置 |
JPH03219800A (ja) * | 1990-01-24 | 1991-09-27 | Toshiba Corp | 音響効果装置 |
JPH04150200A (ja) * | 1990-10-09 | 1992-05-22 | Yamaha Corp | 音場制御装置 |
JPH04149598A (ja) * | 1990-10-12 | 1992-05-22 | Pioneer Electron Corp | 音場補正装置 |
DE4134130C2 (de) * | 1990-10-15 | 1996-05-09 | Fujitsu Ten Ltd | Vorrichtung zum Aufweiten und Ausbalancieren von Schallfeldern |
GB9026906D0 (en) * | 1990-12-11 | 1991-01-30 | B & W Loudspeakers | Compensating filters |
JPH0739968B2 (ja) * | 1991-03-25 | 1995-05-01 | 日本電信電話株式会社 | 音響伝達特性模擬方法 |
EP0553832B1 (de) * | 1992-01-30 | 1998-07-08 | Matsushita Electric Industrial Co., Ltd. | Schallfeldsteuerungssystem |
-
1993
- 1993-08-26 DE DE4328620A patent/DE4328620C1/de not_active Expired - Fee Related
-
1994
- 1994-08-11 DK DK94112549T patent/DK0641143T3/da active
- 1994-08-11 EP EP94112549A patent/EP0641143B1/de not_active Expired - Lifetime
- 1994-08-11 AT AT94112549T patent/ATE210362T1/de active
- 1994-08-11 DE DE59409989T patent/DE59409989D1/de not_active Expired - Lifetime
- 1994-08-19 US US08/293,134 patent/US5544249A/en not_active Expired - Lifetime
- 1994-08-26 JP JP20235294A patent/JP3565908B2/ja not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1740016A1 (de) | 2005-06-28 | 2007-01-03 | AKG Acoustics GmbH | Verfahren zur Simulierung eines Raumeindrucks und/oder Schalleindrucks |
CN105981412A (zh) * | 2014-03-21 | 2016-09-28 | 华为技术有限公司 | 用于基于至少第一对空间脉冲响应估计总体混合时间的装置和方法以及对应的计算机程序 |
US9936328B2 (en) | 2014-03-21 | 2018-04-03 | Huawei Technologies Co., Ltd. | Apparatus and method for estimating an overall mixing time based on at least a first pair of room impulse responses, as well as corresponding computer program |
CN105981412B (zh) * | 2014-03-21 | 2019-05-24 | 华为技术有限公司 | 一种估计总体混合时间的装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
EP0641143A2 (de) | 1995-03-01 |
DE59409989D1 (de) | 2002-01-17 |
EP0641143A3 (de) | 1999-05-19 |
DK0641143T3 (da) | 2002-04-02 |
JPH0787589A (ja) | 1995-03-31 |
US5544249A (en) | 1996-08-06 |
ATE210362T1 (de) | 2001-12-15 |
JP3565908B2 (ja) | 2004-09-15 |
DE4328620C1 (de) | 1995-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0641143B1 (de) | Verfahren zur Simulation eines Raum- und/oder Klangeindrucks | |
EP1977626B1 (de) | Verfahren zur aufnahme einer tonquelle mit zeitlich variabler richtcharakteristik und zur wiedergabe | |
DE2720984C3 (de) | Elektrische Anordnung für die Steigerung des Raumeffekts bei einer Tonwiedergabe | |
DE2244162C3 (de) | «system | |
DE69522971T2 (de) | Binaurale Synthese, kopfbezogene Übertragungsfunktion, und ihre Verwendung | |
DE68917980T2 (de) | Anmessung von Hörgeräten mit Hilfe von Vektoren. | |
DE69417571T2 (de) | Vorrichtung zur verarbeitung von binauralen signalen | |
DE3934671C2 (de) | Stereophones binaurales Aufnahme- oder Wiedergabeverfahren für über Kopfhörer dargebotene Audiosignale und Vorrichtung zur Durchführung des Verfahrens | |
DE3519644A1 (de) | Verfahren und vorrichtung zur tonwiedergabe mit einem realistischen raumklangeindruck | |
DE19720217A1 (de) | Vorrichtung und Verfahren zum automatischen Ausgleich eines Mehrkanal-Audiosystems | |
EP0905933A2 (de) | Verfahren und Vorrichtung zum Mischen von Tonsignalen | |
DE4307008C2 (de) | Verfahren und Vorrichtung zum Korrigieren eines Tonfeldes | |
DE3040896C2 (de) | Schaltungsanordnung zur Erzeugung und Aufbereitung stereophoner Signale aus einem monophonen Signal | |
DE3806915C2 (de) | ||
EP0825800A2 (de) | Verfahren und Vorrichtung zum Generieren eines Mehrton-Signals aus einem Mono-Signal | |
DE3112874C2 (de) | Verfahren zur Signalaufbereitung für die Wiedergabe einer Tonaufnahme über Kopfhörer und Vorrichtung zur Durchführung des Verfahrens | |
DE1148269B (de) | Schaltungsanordnung zur Schallaufnahme und/oder Schallwiedergabe mit zwei Wiedergabekanaelen und Verfahren zur stereophonischen Schallaufzeichnung | |
DE19983334B4 (de) | Aktive digitale Audio/Videosignalmodifikation zur Korrektur von Wiedergabesystemunzulänglichkeiten | |
DE10318191A1 (de) | Verfahren zur Erzeugung und Verwendung einer Übertragungsfunktion | |
EP0156334B1 (de) | Simulationsverfahren und Vorrichtung (elektronischer Kunstkopf) zur Nachbildung der Übertragungseigenschaften des menschlichen Aussenohrs bei Freifeldbeschallung | |
DE69707847T2 (de) | Vorrichtung zur vearbeitung von stereosignalen | |
DE19847689B4 (de) | Vorrichtung und Verfahren zur dreidimensionalen Tonwiedergabe | |
EP0025509B1 (de) | Stereophones Übertragungsverfahren und Mittel zur Durchführung des Verfahrens | |
DE102007011436A1 (de) | Vorrichtung und Verfahren zum Formen eines digitalen Audiosignals | |
DE2918831C2 (de) | Schaltungsanordnung zum Anpassen eines raumbezogen stereophonen Programmsignals an einen freifeldentzerrten Kopfhörer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT DE DK FR GB NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT DE DK FR GB NL SE |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AKG ACOUSTICS GMBH |
|
17P | Request for examination filed |
Effective date: 19991110 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010326 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE DK FR GB NL SE |
|
REF | Corresponds to: |
Ref document number: 210362 Country of ref document: AT Date of ref document: 20011215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REF | Corresponds to: |
Ref document number: 59409989 Country of ref document: DE Date of ref document: 20020117 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020130 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20130826 Year of fee payment: 20 Ref country code: DE Payment date: 20130828 Year of fee payment: 20 Ref country code: SE Payment date: 20130828 Year of fee payment: 20 Ref country code: NL Payment date: 20130826 Year of fee payment: 20 Ref country code: AT Payment date: 20130801 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20130819 Year of fee payment: 20 Ref country code: GB Payment date: 20130827 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59409989 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EUP Effective date: 20140811 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20140811 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140810 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 210362 Country of ref document: AT Kind code of ref document: T Effective date: 20140811 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140810 |