EP0641143B1 - Procédé pour simuler un effet spatial et/ou sonore - Google Patents

Procédé pour simuler un effet spatial et/ou sonore Download PDF

Info

Publication number
EP0641143B1
EP0641143B1 EP94112549A EP94112549A EP0641143B1 EP 0641143 B1 EP0641143 B1 EP 0641143B1 EP 94112549 A EP94112549 A EP 94112549A EP 94112549 A EP94112549 A EP 94112549A EP 0641143 B1 EP0641143 B1 EP 0641143B1
Authority
EP
European Patent Office
Prior art keywords
pulse response
room
spatial pulse
impulse response
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94112549A
Other languages
German (de)
English (en)
Other versions
EP0641143A2 (fr
EP0641143A3 (fr
Inventor
Martin Dipl.-Ing.Dr.Techn. Opitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKG Acoustics GmbH
Original Assignee
AKG Acoustics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKG Acoustics GmbH filed Critical AKG Acoustics GmbH
Publication of EP0641143A2 publication Critical patent/EP0641143A2/fr
Publication of EP0641143A3 publication Critical patent/EP0641143A3/fr
Application granted granted Critical
Publication of EP0641143B1 publication Critical patent/EP0641143B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • H04S1/005For headphones

Definitions

  • the invention relates to a method with the necessary electroacoustic device for generating a Room and / or sound impression of an actually existing one or also calculated space, using as a hearing program any monophonic, stereophonic or multi-channel Audio program is usable.
  • the playback takes place preferably binaural via headphones, but can also via Speakers are performed.
  • Each audio program produced generally contains the existing room acoustics when recording, however in the previously known stereophonic reproduction methods never reproduced fully recognizable in its fine structure could be. More than that recording in one Room with a certain reverberation was created playback from the listener. Only additional ones Measures with corresponding electroacoustic Institutions could create better listening conditions that the listener will then recognize the room where the program was recorded to let.
  • a true-to-original simulation of room acoustics is, for example, by folding any Audio program with the binaural impulse response, measured at a certain reception point in a room, feasible.
  • binaural space pulse word understood two impulse responses, one impulse response one ear and the other impulse response to is assigned to another ear.
  • the system theory forms the space together with the reception characteristics a linear of the human ear causal transmission system in the time domain through the Room impulse responses is described.
  • the respective room impulse response is approximately the system response a sound pulse, the duration of which is a period of is twice the upper limit frequency of the audio signal.
  • Such a simulation process which simulates the listener the unmistakably precise temporal, spectral, spatial and dynamic sound field structures that actually exist at the original listening location, is extremely complex, especially with regard to the technical equipment required for the simulation.
  • the convolution is carried out by digitizing the audio signal and the spatial impulse responses, calculating the folded signal in a computer and converting it back into the analog signal. The number of calculation steps depends on the length of the impulse responses.
  • the simulation of room acoustic events is complete generally feasible using a method that, for example is known from EP-A-0 505 949.
  • the procedure is carried out using a transfer function simulator simulated a transfer function.
  • This transfer function simulator is in an acoustic with System arranged sound sources, sound receiving devices and devices for measuring the acoustic transfer function fitted.
  • For measuring the acoustic Transfer function can be the multitude of different possible Positions between any two points be considered in the acoustic system.
  • the simulator itself is characterized in that means for appraisal that in the existing transfer function existing poles are provided, the AR eigen coefficients, those with physical poles of acoustic Systems correspond from the multitude of measured Transfer functions are estimated, and ARMA filters, which are composed of AR filters and MA filters are to replicate what is measured from the multitude acoustic transmission functions with the acoustic System matches.
  • This extremely complicated process serves such an acoustic transfer function replicate that for echo suppressors, Anti-hall devices for active noise compensation and is also required for sound localization.
  • the Simulation of the transmission characteristics takes place Signal processor before. In the simulation process itself the transfer function with little computing effort in consistently reproduces the shortest possible computing time.
  • the object for the present invention is now in a simulation process with the necessary to create electro-acoustic device that simplifies is what makes its implementation technically and economically becomes justifiable.
  • the new simulation process has the advantage that with greatly reduced effort for the process no deterioration Simulation quality occurs. Moreover can use simplified FIR filter structures for convolution be used. The folding process itself runs without noticeable time delay in real time.
  • the essence of the invention is that one with Success-related lifelike simulation with very specific ones Share the room impulse responses from the acoustic happening is feasible. All it takes is the Knowledge of those parts of the room impulse responses that follow a critical selection essential for the auditory impression are. The path to knowledge about the respective room impulse responses leads over real or virtual room acoustic Measurements. Deciding which parts from the spatial replies are left out according to hearing psychological Principles.
  • An essential execution of the method now lies in that the values of the room impulse response with a time-dependent Threshold are compared and only those Values of the room impulse responses are used that the Exceed threshold.
  • the threshold is related to the room impulse response is time-dependent, insofar as it is his largest amount in the area of the beginning of the room impulse response and decays towards the end of the room impulse response. As a result, wide areas of the room impulse responses become zero.
  • the advantage in such a division is strong reduced computing effort for the simulation processor.
  • the area of the room impulse response that records the direct sound must with the area containing the reverberation so composed that the original quality in the simulation is retained.
  • the above-mentioned method with the required electroacoustic can also be designed in such a way that the critical selection of essential parts to preserve the lifelike simulation by considering the psychoacoustic pre and post masking phenomena in the Room impulse response takes place.
  • the application of the simulation method according to the invention will be especially in the HiFi and recording studio area, because there the benefits of binaural hearing for both headphone playback as well as speaker playback lie.
  • the device according to the invention creates that level of good and authentic room acoustics, the known disadvantages of hearing in anechoic Picks up space, but not disturbing that of the Overlay given acoustics.
  • the simulation of a for example, specific speaker arrangement in one certain space using headphone playback is an essential Application of the simulation method including the necessary electroacoustic Facility.
  • 1a shows a possible method for determining the Room impulse response shown.
  • a measurement signal is emitted, which with a Measurement microphone is recorded. From the received signal the room impulse response is obtained. If as a measurement signal an impulse is used, the duration of which is equal to one Period of the double frequency of the upper frequency limit of the audio signal range is the received signal equal to the room impulse response h (t). Because with this method the signal-to-noise ratio is small, in practice it becomes longer Measurement signal preferred and the room impulse response arithmetically determined.
  • the binaural impulse response that is used for playback is needed via headphones, is obtained in that the measurement microphones in the ear canals of a test person for which the rum impulse response is determined should. Then the impulse response for the line speaker-room-ear and then the impulse response for measured the headphone-ear system. The impulse responses gained are transformed into the frequency domain that divided functions and the quotient in back transformed the time domain. If this process for If both ears are performed, there will be a binaural impulse response get out of a right and a left room impulse response.
  • Fig. 1b shows the scheme for the procedure one of the two room impulse responses determined as above.
  • the room impulse response h (t) is fed to the divider 1, the division into the direct sound component d (t) and to carry out the reverberation component r (t).
  • r (t) In the reverberation portion r (t) are also all from the room walls Contain individual reflections of the measurement signal.
  • the spatial impulse response is inherently continuous Time signal and is digitized for processing, with which h (t), d (t) or r (t) h (n), d (n) or r (n) becomes.
  • is the period of the sampling frequency.
  • the corresponding time-dependent amplitude profiles are shown schematically in FIGS. 4a to 4c.
  • T N the direct sound has arrived at the listening position, according to which only those portions are to be expected which result from reflections or from the reverberation.
  • the impulse response would only consist of a first value;
  • the room impulse response outlined here is also determined in the area of direct sound by the transfer function from the sound source to the ear canal entrance and is extended to a few milliseconds, for example, due to the reflections on the head and body.
  • the one divided into the two sound components d (n) and r (n) The determined room impulse response now becomes that electronic one Device 2 supplied from the determined room impulse response extracted the proportions that those parameters the listening room acoustics, the sound field present in the listening room and the left and right assignable to the listener Outer ear transfer function included after the Convolution process with any audio program the lifelike simulation of the entire room acoustic Guarantee events.
  • the extraction takes place according to criteria, which are described below.
  • the extracted one or reduced room impulse response h '(n) is in one Processor 3 with the signal s (n) of any chosen Audio program folded, which formed the signal becomes. With correct sound reproduction on both ears the hearing person receives the hearing result desired according to the invention achieved, namely the lifelike simulation of a Listening place in a certain listening room.
  • the extractor circuit 2 for selection of the essential Fractions from the determined room impulse response is given by the scheme of Fig. 2 explained in more detail.
  • the room impulse response present at an input E and divided into the direct sound and reverberation components is divided into individual sections or portions with the length T i in a function block 4.
  • FIGS. 5a to 5e show how the determined room impulse response is divided into individual blocks or portions T i with the sound components d (n), r 2 (n), r 3 (n) ... r i (n) by means of the function block 4 .
  • Comparator 5 After the direct sound has been separated off, use a Comparator 5 the remaining portions of the room impulse response Set to zero after one of those described below Criteria below a set one Threshold. The number of samples in the remaining signal components of the reduced room impulse response are counted in a coefficient counter 6. The counter value obtained is in a setpoint comparator 7, compared with a limit that is based on the permissible Computing effort is fixed. If the border is not yet 5a - 5e, more are exceeded Blocks of the determined room impulse response requested. In this way, a later folding with the reduced room impulse response the computing capacity exhausted. If the specified target is reached, then the now available reduced room impulse response to one Given output A.
  • FIG. 3 Arrangement required.
  • a dynamic threshold adjustment added which consists of a comparator 9 and a threshold value transmitter 10 exists.
  • the instantaneous value is in the comparator 9 the determined room impulse response with the current one Threshold value compared, the size of the threshold value from the previous values of the determined room impulse response depending on the concealment phenomenon.
  • the threshold value generator 10 to the comparator 5 is the dynamic adaptation to the given psychoacoustic criteria according to the concealment phenomenon realized, for example, according to Zwicker.
  • the critical selection of the signal components of the determined room impulse response that are essential for the simulation can be made in that all components of the determined room impulse response that are below a fixed fixed threshold value A are set to zero so that they are suitable for later use Convolution process are not taken into account, while the signal components exceeding the threshold value or the associated sample values are adopted with unchanged amplitude in the reduced spatial impulse response. Since there is a direct connection between the strength of the sound reflections and the values of the determined room impulse response that can be assigned to these reflections, the threshold value criterion offers significant help for extracting the values of the determined room impulse response that are essential for simulation.
  • T V here denotes the areas of pre-masking and T N that of subsequent masking. These are the periods in which signals below a level limit, as outlined in FIG. 7a, are no longer perceptible to a main signal. As can be seen from the standard literature on this subject, these masking effects are dependent on the time interval, the level ratio and the frequency interval of the masked and masking signal. As a result, this cannot be fully illustrated. With the room impulse response, above all the time and level relationships are influenced. In any case, somewhat broader value ranges of the determined room impulse response must be used than would result directly from the boundary line criterion. Furthermore, the value ranges have to be extrapolated into the actually masked range in order not to obtain undesired filter effects in the frequency range.
  • 8a and 8b show how the threshold value shrinks in steps and the signal components accordingly be removed for the simulation.
  • FIG. 9 shows the manner in which, for example, the architecture of a conventional FIR filter can be implemented.
  • a signal value is extracted from each connection in each sampling period and multiplied by the filter coefficient assigned to this location; the result is added in an adder with all other results and fed to the output and thus represents the direct implementation of the convolution on a processor.
  • this convolution can of course also be carried out in other conjugate structures, as a result of which Saving computing power. In principle, however, this always involves an optimal chronological sequence of additions and multiplications, so that at best a factor of two to three can be gained in computing power.
  • Fig. 10 illustrates how the architecture of the FIR filter is modified when the convolution with the extracted space impulse response is performed.
  • the successive samples of the remaining signal components of the spatial impulse response form the filter coefficients d j , r 1k , r 2l , r 3m , r in . These are those which are of essential importance for the lifelike simulation in accordance with the designations from the example of FIG. 5.
  • the number of all filter coefficients is one to two orders of magnitude less than the number of buffers. Since the filter coefficients no longer occur equidistantly in time, the filter processor is simultaneously informed of the delay time or the sample number with a filter coefficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Reverberation, Karaoke And Other Acoustics (AREA)
  • Stereophonic System (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Stringed Musical Instruments (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Claims (14)

  1. Procédé pour simuler un effet spatial et/ou sonore, qui apparaít dans une pièce en un point d'écoute représentatif, dans le cas d'une reproduction monophonique, stéréophonique ou à plusieurs canaux, selon lequel
    on choisit une pièce, dont l'acoustique doit être simulée,
    on fixe la position du point d'écoute représentatif à l'intérieur de la pièce,
    on détermine au moins pour un canal la réponse impulsionnelle spatiale associée, au niveau du point d'écoute représentatif,
    pour la réponse impulsionnelle spatiale déterminée, on fixe une valeur de seuil qui s'étend au moins sur une partie de la longueur de la réponse impulsionnelle spatiale déterminée,
    par comparaison de la réponse impulsionnelle spatiale déterminée à une valeur de seuil, on forme une réponse impulsionnelle spatiale réduite, qui possède dans la section de la longueur de la réponse impulsionnelle spatiale déterminée, uniquement les parties de la réponse impulsionnelle spatiale déterminée, pour lesquelles l'amplitude instantanée est supérieure à la valeur de seuil, tandis que pour les parties de la réponse impulsionnelle spatiale déterminée, dont l'amplitude instantanée est inférieure à la valeur de seuil, la réponse impulsionnelle spatiale réduite est réglée sur la valeur zéro, et qui contient, à l'extérieur de la section de la longueur de la réponse impulsionnelle spatiale déterminée, la réponse impulsionnelle spatiale déterminée sous une forme non modifiée.
  2. Procédé selon la revendication 1, caractérisé en ce qu'à l'exception de la gamme correspondant au son direct, de la réponse impulsionnelle spatiale déterminée, la section contient toute la durée restante de la réponse impulsionnelle spatiale déterminée.
  3. Procédé selon la revendication 1, caractérisé en ce que la section contient la durée totale de la réponse impulsionnelle spatiale déterminée.
  4. Procédé selon la revendication 1, caractérisé en ce que la valeur de seuil est une valeur de seuil variable d'une manière dynamique, qui possède une valeur minimale prédéterminée de façon fixe, et que la valeur de seuil augmente vers des valeurs plus élevées dans le cas où la demi-oscillation de la réponse impulsionnelle spatiale déterminée dépasse la valeur de seuil respectivement valable ou la valeur de seuil minimale, et retombe progressivement à sa valeur minimale après avoir augmenté.
  5. Procédé selon la revendication 4, caractérisé en ce que la valeur de seuil décroít selon une fonction exponentielle.
  6. Procédé selon la revendication 4, caractérisé en ce que la valeur de seuil est fixée conformément à un effet de masquage psycho-acoustique.
  7. Procédé selon la revendication 1, caractérisé en ce que la valeur de seuil est fixe.
  8. Procédé selon la revendication 1, caractérisé en ce que la valeur de seuil varie selon une forme en trapèze.
  9. Procédé selon la revendication 1, caractérisé en ce que l'espace sélectionné est un espace théorique ou virtuelle et que la réponse impulsionnelle spatiale détermine respective est une réponse impulsionnelle spatiale calculée sur la base des hypothèses concernant la configuration de l'espace, l'emplacement de la source acoustique, le point d'écoute, la direction de la source acoustique et/ou l'orientation de la tête.
  10. Procédé selon la revendication 1, caractérisé en ce que l'espace sélectionné est un espace existant réellement et que la réponse impulsionnelle spatiale déterminée respective a été mesurée dans l'espace réel.
  11. Procédé selon la revendication 1, caractérisé en ce qu'il est mis en oeuvre pour au moins deux canaux acoustiques différents.
  12. Procédé selon la revendication 1, caractérisé en ce qu'un signal audio est délivré avec la réponse impulsionnelle spatiale réduite.
  13. Dispositif caractérisé en ce qu'il contient un circuit électronique dans lequel la réponse impulsionnelle spatiale réduite est programmée conformément au procédé selon l'une des revendications précédentes, que le circuit comporte une ou plusieurs entrées pour l'envoi d'un programme audio monophonique, stéréophonique ou à quatre canaux, au moins un canal ainsi qu'au moins, pour chaque canal, une sortie audio, sur laquelle est délivrée un programme audio préparé, qui est obtenu par délivrance d'un programme audio introduit, avec la ou les réponses impulsionnelles spatiales réduites associées au canal respectif ou aux canaux respectifs.
  14. Dispositif selon la revendication 13, caractérisé en ce qu'il contient pour chaque canal au moins un filtre FIR, dont les coefficients de filtre correspondent aux valeurs d'amplitude de la réponse impulsionnelle spatiale réduite numérisée avec une fréquence d'échantillonnage prédéterminée.
EP94112549A 1993-08-26 1994-08-11 Procédé pour simuler un effet spatial et/ou sonore Expired - Lifetime EP0641143B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4328620A DE4328620C1 (de) 1993-08-26 1993-08-26 Verfahren zur Simulation eines Raum- und/oder Klangeindrucks
DE4328620 1993-08-26

Publications (3)

Publication Number Publication Date
EP0641143A2 EP0641143A2 (fr) 1995-03-01
EP0641143A3 EP0641143A3 (fr) 1999-05-19
EP0641143B1 true EP0641143B1 (fr) 2001-12-05

Family

ID=6496012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94112549A Expired - Lifetime EP0641143B1 (fr) 1993-08-26 1994-08-11 Procédé pour simuler un effet spatial et/ou sonore

Country Status (6)

Country Link
US (1) US5544249A (fr)
EP (1) EP0641143B1 (fr)
JP (1) JP3565908B2 (fr)
AT (1) ATE210362T1 (fr)
DE (2) DE4328620C1 (fr)
DK (1) DK0641143T3 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1740016A1 (fr) 2005-06-28 2007-01-03 AKG Acoustics GmbH Procédé pour simuler un effet spatial et/ou sonore
CN105981412A (zh) * 2014-03-21 2016-09-28 华为技术有限公司 用于基于至少第一对空间脉冲响应估计总体混合时间的装置和方法以及对应的计算机程序

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545623C1 (de) 1995-12-07 1997-07-17 Akg Akustische Kino Geraete Verfahren und Vorrichtung zur Filterung eines Audiosignals
GB9616755D0 (en) * 1996-08-09 1996-09-25 Kemp Michael J Audio effects synthesizer with or without analyser
EP0866638B1 (fr) * 1997-03-10 2011-06-15 Panasonic Corporation Amplificateur audiovisuel
US6307941B1 (en) 1997-07-15 2001-10-23 Desper Products, Inc. System and method for localization of virtual sound
US6166744A (en) * 1997-11-26 2000-12-26 Pathfinder Systems, Inc. System for combining virtual images with real-world scenes
US5872743A (en) * 1998-02-10 1999-02-16 Vlsi Technology, Inc. Method and apparatus for locating the user of a computer system
US6038330A (en) * 1998-02-20 2000-03-14 Meucci, Jr.; Robert James Virtual sound headset and method for simulating spatial sound
KR100598003B1 (ko) * 1998-03-25 2006-07-06 레이크 테크놀로지 리미티드 오디오 신호 처리 방법 및 장치
WO1999051062A1 (fr) * 1998-03-31 1999-10-07 Lake Technolgy Limited Formulation de reponses impulsionnelles spatiales complexes a partir d'informations audio en 3d
JP2000099061A (ja) * 1998-09-25 2000-04-07 Sony Corp 効果音付加装置
AU2004203538B2 (en) * 1998-09-25 2006-11-16 Sony Corporation Sound effect adding apparatus
AUPQ941600A0 (en) * 2000-08-14 2000-09-07 Lake Technology Limited Audio frequency response processing sytem
DE10138949B4 (de) * 2001-08-02 2010-12-02 Gjon Radovani Verfahren zur Beeinflussung von Raumklang sowie Verwendung eines elektronischen Steuergerätes
GB2414369B (en) 2004-05-21 2007-08-01 Hewlett Packard Development Co Processing audio data
GB0419346D0 (en) * 2004-09-01 2004-09-29 Smyth Stephen M F Method and apparatus for improved headphone virtualisation
JP4767247B2 (ja) * 2005-02-25 2011-09-07 パイオニア株式会社 音分離装置、音分離方法、音分離プログラムおよびコンピュータに読み取り可能な記録媒体
US7184557B2 (en) * 2005-03-03 2007-02-27 William Berson Methods and apparatuses for recording and playing back audio signals
EP1900252B1 (fr) 2005-05-26 2013-07-17 Bang & Olufsen A/S Enregistrement, synthese et reproduction de champs sonores dans un espace ferme
DE102005030855A1 (de) * 2005-07-01 2007-01-11 Müller-BBM GmbH Elektroakustisches Verfahren
US8626321B2 (en) * 2006-04-19 2014-01-07 Sontia Logic Limited Processing audio input signals
US8036767B2 (en) * 2006-09-20 2011-10-11 Harman International Industries, Incorporated System for extracting and changing the reverberant content of an audio input signal
US9761061B1 (en) 2006-10-26 2017-09-12 Stamps.Com Inc. Shipping interface for a user interface
US8363843B2 (en) * 2007-03-01 2013-01-29 Apple Inc. Methods, modules, and computer-readable recording media for providing a multi-channel convolution reverb
KR100899836B1 (ko) * 2007-08-24 2009-05-27 광주과학기술원 실내 충격응답 모델링 방법 및 장치
KR100970920B1 (ko) * 2008-06-30 2010-07-20 권대훈 튜닝음향 피드백 장치
EP2661912B1 (fr) 2011-01-05 2018-08-22 Koninklijke Philips N.V. Système audio et son procédé de fonctionnement
US20150010170A1 (en) * 2012-01-10 2015-01-08 Actiwave Ab Multi-rate filter system
US9420393B2 (en) * 2013-05-29 2016-08-16 Qualcomm Incorporated Binaural rendering of spherical harmonic coefficients
EP3806498B1 (fr) * 2013-09-17 2023-08-30 Wilus Institute of Standards and Technology Inc. Procédé et appareil de traitement de signal audio
US10204630B2 (en) 2013-10-22 2019-02-12 Electronics And Telecommunications Research Instit Ute Method for generating filter for audio signal and parameterizing device therefor
CN108922552B (zh) 2013-12-23 2023-08-29 韦勒斯标准与技术协会公司 生成用于音频信号的滤波器的方法及其参数化装置
US9832585B2 (en) 2014-03-19 2017-11-28 Wilus Institute Of Standards And Technology Inc. Audio signal processing method and apparatus
EP3128766A4 (fr) 2014-04-02 2018-01-03 Wilus Institute of Standards and Technology Inc. Procédé et dispositif de traitement de signal audio
JP6311430B2 (ja) * 2014-04-23 2018-04-18 ヤマハ株式会社 音響処理装置
US10229672B1 (en) 2015-12-31 2019-03-12 Google Llc Training acoustic models using connectionist temporal classification
CN113470628B (zh) * 2021-07-14 2024-05-31 青岛信芯微电子科技股份有限公司 一种语音识别方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8800745A (nl) * 1988-03-24 1989-10-16 Augustinus Johannes Berkhout Werkwijze en inrichting voor het creeren van een variabele akoestiek in een ruimte.
AT394650B (de) * 1988-10-24 1992-05-25 Akg Akustische Kino Geraete Elektroakustische anordnung zur wiedergabe stereophoner binauraler audiosignale ueber kopfhoerer
JPH03127599A (ja) * 1989-10-12 1991-05-30 Matsushita Electric Ind Co Ltd 音場可変装置
JPH0736866B2 (ja) * 1989-11-28 1995-04-26 ヤマハ株式会社 ホール音場支援装置
JPH03219800A (ja) * 1990-01-24 1991-09-27 Toshiba Corp 音響効果装置
JPH04150200A (ja) * 1990-10-09 1992-05-22 Yamaha Corp 音場制御装置
JPH04149598A (ja) * 1990-10-12 1992-05-22 Pioneer Electron Corp 音場補正装置
US5305386A (en) * 1990-10-15 1994-04-19 Fujitsu Ten Limited Apparatus for expanding and controlling sound fields
GB9026906D0 (en) * 1990-12-11 1991-01-30 B & W Loudspeakers Compensating filters
JPH0739968B2 (ja) * 1991-03-25 1995-05-01 日本電信電話株式会社 音響伝達特性模擬方法
DE69319456T2 (de) * 1992-01-30 1999-03-25 Matsushita Electric Ind Co Ltd Schallfeldsteuerungssystem

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1740016A1 (fr) 2005-06-28 2007-01-03 AKG Acoustics GmbH Procédé pour simuler un effet spatial et/ou sonore
CN105981412A (zh) * 2014-03-21 2016-09-28 华为技术有限公司 用于基于至少第一对空间脉冲响应估计总体混合时间的装置和方法以及对应的计算机程序
US9936328B2 (en) 2014-03-21 2018-04-03 Huawei Technologies Co., Ltd. Apparatus and method for estimating an overall mixing time based on at least a first pair of room impulse responses, as well as corresponding computer program
CN105981412B (zh) * 2014-03-21 2019-05-24 华为技术有限公司 一种估计总体混合时间的装置和方法

Also Published As

Publication number Publication date
JP3565908B2 (ja) 2004-09-15
EP0641143A2 (fr) 1995-03-01
US5544249A (en) 1996-08-06
EP0641143A3 (fr) 1999-05-19
DK0641143T3 (da) 2002-04-02
JPH0787589A (ja) 1995-03-31
DE59409989D1 (de) 2002-01-17
DE4328620C1 (de) 1995-01-19
ATE210362T1 (de) 2001-12-15

Similar Documents

Publication Publication Date Title
EP0641143B1 (fr) Procédé pour simuler un effet spatial et/ou sonore
EP1977626B1 (fr) Procédé pour enregistrer et reproduire les signaux sonores d'une source sonore présentant des caractéristiques directives variables dans le temps
DE2720984C3 (de) Elektrische Anordnung für die Steigerung des Raumeffekts bei einer Tonwiedergabe
DE2244162C3 (de) «system
DE68917980T2 (de) Anmessung von Hörgeräten mit Hilfe von Vektoren.
DE3934671C2 (de) Stereophones binaurales Aufnahme- oder Wiedergabeverfahren für über Kopfhörer dargebotene Audiosignale und Vorrichtung zur Durchführung des Verfahrens
DE3519644A1 (de) Verfahren und vorrichtung zur tonwiedergabe mit einem realistischen raumklangeindruck
DE19720217A1 (de) Vorrichtung und Verfahren zum automatischen Ausgleich eines Mehrkanal-Audiosystems
EP0905933A2 (fr) Méthode et système pour mélanger des signaux audio
DE4307008C2 (de) Verfahren und Vorrichtung zum Korrigieren eines Tonfeldes
DE3040896C2 (de) Schaltungsanordnung zur Erzeugung und Aufbereitung stereophoner Signale aus einem monophonen Signal
DE3806915C2 (fr)
EP0825800A2 (fr) Méthode et appareil pour générer des signaux multi-audio d'un signal audio-mono
DE3112874C2 (de) Verfahren zur Signalaufbereitung für die Wiedergabe einer Tonaufnahme über Kopfhörer und Vorrichtung zur Durchführung des Verfahrens
DE1148269B (de) Schaltungsanordnung zur Schallaufnahme und/oder Schallwiedergabe mit zwei Wiedergabekanaelen und Verfahren zur stereophonischen Schallaufzeichnung
DE19983334B4 (de) Aktive digitale Audio/Videosignalmodifikation zur Korrektur von Wiedergabesystemunzulänglichkeiten
DE10318191A1 (de) Verfahren zur Erzeugung und Verwendung einer Übertragungsfunktion
EP0156334B1 (fr) Méthode et dispositif de simulation (tête artificielle électronique) pour la simulation des caractéristiques de transmission de l'oreille en champ libre
DE19847689B4 (de) Vorrichtung und Verfahren zur dreidimensionalen Tonwiedergabe
EP0025509B1 (fr) Procédé de transmission stéréophonique et moyens pour la mise en oeuvre de ce procédé
DE2918831C2 (de) Schaltungsanordnung zum Anpassen eines raumbezogen stereophonen Programmsignals an einen freifeldentzerrten Kopfhörer
DE1927401C3 (de) Verfahren zur hörrichtigen Aufnahme und Wiedergabe von Schallereignissen und Vorrichtung zu seiner Durchführung
DE10361954B4 (de) Hörsystem und Verfahren zur Einstellung eines solchen, Verfahren zur Erkennung von charakteristischen Schallspektren, sowie entsprechende Computerprogramme und entsprechende computerlesbare Speichermedien
DE102007026219A1 (de) Audiologische Messvorrichtung zur Erzeugung von akustischen Testsignalen für audiologische Messungen
DE1941636B2 (de) Verfahren und anordnung zur richtungsgetreuen breitbandigen abbildung von schallfeldern unter verwendung kompensierender hilfssignale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE DK FR GB NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE DK FR GB NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AKG ACOUSTICS GMBH

17P Request for examination filed

Effective date: 19991110

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010326

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE DK FR GB NL SE

REF Corresponds to:

Ref document number: 210362

Country of ref document: AT

Date of ref document: 20011215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59409989

Country of ref document: DE

Date of ref document: 20020117

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020130

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20130826

Year of fee payment: 20

Ref country code: DE

Payment date: 20130828

Year of fee payment: 20

Ref country code: SE

Payment date: 20130828

Year of fee payment: 20

Ref country code: NL

Payment date: 20130826

Year of fee payment: 20

Ref country code: AT

Payment date: 20130801

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130819

Year of fee payment: 20

Ref country code: GB

Payment date: 20130827

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59409989

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Effective date: 20140811

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20140811

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20140810

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 210362

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140811

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140810