EP0625083B1 - Dispositif pour meuler des pieces a usiner - Google Patents
Dispositif pour meuler des pieces a usiner Download PDFInfo
- Publication number
- EP0625083B1 EP0625083B1 EP93903917A EP93903917A EP0625083B1 EP 0625083 B1 EP0625083 B1 EP 0625083B1 EP 93903917 A EP93903917 A EP 93903917A EP 93903917 A EP93903917 A EP 93903917A EP 0625083 B1 EP0625083 B1 EP 0625083B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- workpiece
- sonotrode
- ultrasonic
- grinding
- ultrasonic transducer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002604 ultrasonography Methods 0.000 claims description 47
- 239000007788 liquid Substances 0.000 claims description 30
- 239000012528 membrane Substances 0.000 claims description 12
- 230000010355 oscillation Effects 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 230000010363 phase shift Effects 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 1
- 230000014759 maintenance of location Effects 0.000 claims 1
- 230000000717 retained effect Effects 0.000 claims 1
- 238000003754 machining Methods 0.000 abstract description 9
- 229910010293 ceramic material Inorganic materials 0.000 abstract description 7
- 230000009466 transformation Effects 0.000 abstract description 5
- 238000005520 cutting process Methods 0.000 description 10
- 230000005284 excitation Effects 0.000 description 8
- 230000003534 oscillatory effect Effects 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 4
- 229910003460 diamond Inorganic materials 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 229910001004 magnetic alloy Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000006061 abrasive grain Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B1/00—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
- B24B1/04—Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes subjecting the grinding or polishing tools, the abrading or polishing medium or work to vibration, e.g. grinding with ultrasonic frequency
Definitions
- the invention relates to a device according to the preamble of claim 1.
- the grinding of workpieces serves to achieve the desired shape and dimensional accuracy as well as a special surface quality of the resulting workpieces, depending on the geometric design and application of the respective workpiece, external cylindrical grinding, internal cylindrical grinding, circumferential grinding, face grinding and the like can be considered.
- the cutting speed is relatively high. Even when using a diamond grinding wheel, however, the grinding wheel wears out quickly, which significantly increases the machining time required for the workpieces. In particular, the increasing technical use of Ceramic materials places increased demands on devices for grinding these workpieces, since their desired dimensional and dimensional accuracy and their surface quality are usually particularly high.
- a machine tool is known in which the workpiece is set in high-frequency vibration during machining by a piezoelectric or magnetostrictive ultrasonic transducer, which can also lie transversely to the machining direction. This additional vibration movement of the workpiece increases the service life of the tools, reduces the machining time of the workpieces and increases the surface quality of the workpieces machined in this way.
- JP abstract 63-312 051 A It is known from JP abstract 63-312 051 A to set the workpiece in high-frequency vibrations in the feed direction when grinding ceramic materials.
- JP-Abstract 61-61 759 A shows a device for grinding magnetic heads for video recorders, in which the workpiece is set in motion transversely to the machining direction by a piezoelectric ultrasound transducer. The movement of the piezoelectric vibrator is transmitted to the workpiece via an actuating rod.
- the disadvantage of this known device is that the amplitude of the oscillatory movement of the workpiece is essentially the amplitude of the oscillatory movement of the corresponds to piezoelectric vibrator and is correspondingly low.
- a device according to the preamble of claim 1 is known from the article "Grinding of magnetic alloys with the aid of ultrasonic vibrations" in "Workshop technology magazine for industrial production” 60 (1970), already cited above. Magnetic alloys in particular are ground using ultrasonic vibrations. The direction of vibration of the workpiece is transverse to the machining direction. The workpiece is clamped between a fixed part and a mandrel, the mandrel being connected to a magnetostrictive ultrasound transducer and transmitting the vibrations to the workpiece.
- This device also has the disadvantage that the amplitude of the oscillatory movement of the workpiece essentially corresponds to the amplitude of the oscillatory movement of the magnetostrictive ultrasound transducer, i.e. is relatively small.
- the object of the invention is to improve a device according to the preamble of claim 1 so that the device provides an improved grinding performance and a higher, reproducible surface quality of workpieces to be ground.
- an amplitude transformation of the vibrations takes place, which are generated by the ultrasound transducer and passed on to the oscillation transducer via the ultrasound resonance chamber.
- the Vibration transmitter is additionally designed as a sonotrode, an additional amplitude transformation results.
- a sonotrode is able, on the one hand, to increase the amplitude of an ultrasonic vibration and, on the other hand, to precisely define the direction of the vibration.
- Previously known vibration transmitters, which are hit by ultrasonic vibrations do not vibrate in a defined direction, but in several directions, which is not desirable during grinding, since the workpiece is only intended to be vibrated transversely to the machining direction.
- the workpiece is set to oscillate with a high amplitude in only one precisely defined direction, which significantly increases the grinding performance of the device.
- Such an oscillating movement of the workpiece to be ground for example during external cylindrical grinding perpendicular to the tangential speed component of the rotating grinding wheel, which can also be rotated, for example, either in the same direction or in the opposite direction to the grinding wheel rotation, ensures that the resulting trajectory curve of the individual center of the abrasive grain has a sinusoidal shape Trajectory is.
- This causes adjacent grain grinding tracks to overlap, so that no pronounced, parallel grooves form on the workpiece surface and the surface quality of the ground workpiece surface thus increases to an extent not achievable with conventional grinding methods.
- the direction of loading of the individual abrasive grain is no longer constant in the cutting direction, but varies in the course of an oscillation period by a predetermined loading angle.
- the plain bearing surfaces resulting from machining with the device according to the invention have substantially fewer "friction surface elements" which are distributed as it were “island-like" on the slide bearing surfaces.
- the oscillation frequency to be generated in a particular case depends in particular on the desired profile structure of the workpiece surface, the special material characteristics, the cutting speed of the grinding wheel and the like. The like. More, wherein the oscillating movement of a rotational movement of the workpiece can be superimposed relative to the grinding wheel.
- the amplitude of the oscillating movement of the workpiece is generally dependent on the cutting speed of the grinding wheel selected in the individual case, the general relationship being that the amplitude is approximately equal to half a grinding wheel feed.
- the excitation energy is coupled in the axial direction into the workpiece to be ground, which is accordingly axially movably supported.
- the excitation energy is advantageously coupled in at least one end face of the workpiece.
- the device for generating an oscillating workpiece movement has two ultrasonic resonance chambers which connect to the at least one ultrasound transducer, a first resonance chamber being liquid-filled and a second resonance room being gas-filled and a membrane separating the first resonance chamber from the second resonance chamber.
- an outer housing can be provided according to claim 4 for the device for generating an oscillating workpiece movement, in which the at least one ultrasound transducer, the at least two ultrasound resonance chambers, the membrane and the sonotrode are accommodated, the outer housing on its the end facing away from the sonotrode has a connecting member for connection to the grinding device.
- this connecting link can be designed in such a way that a fixed attachment to a tailstock or a headstock of the grinding device is possible.
- the at least one ultrasound transducer can be a piezoceramic transducer.
- the first resonance chamber which follows the ultrasonic transducer (s) essentially immediately is filled with a liquid; in a particularly advantageous manner, this is a prepolymeric liquid.
- a prepolymeric liquid is generally understood to mean a liquid with a macromolecular structure which has a very specific, predetermined surface tension.
- This prepolymeric liquid contained in the first resonance chamber primarily serves as it were for an amplitude transformation in the selected ultrasound frequency range, which is generated by the ultrasonic transducer or transducers.
- the geometric configuration of the ultrasound transducer or transducers basically determines the ultrasound frequency selected in the individual case, which, depending on the application, can be in particular in the frequency range from approximately 50 Hz to 40 MHz.
- the ultrasonic resonance rooms i.e.
- the first liquid-filled resonance chamber and the adjoining, second air-filled or gas-filled resonance chamber can be designed together in the manner of a paraboloid of revolution in order to achieve the required amplification of the amplitude of the ultrasound waves generated, the focal point of the resulting parabolic space preferably being between the ultrasound Membrane separating resonance spaces and the arrangement level of the at least one ultrasonic transducer comes to rest.
- the parabolic conversion of the liquid-filled, first resonance space can be formed by a predetermined inner housing section of an inner housing arranged inside the outer housing, while the parabolic conversion of the air or gas-filled, second resonance space that follows the membrane is formed by an end face Surface of the sonotrode is formed.
- a further advantageous embodiment of the device according to the invention is that within a further inner housing section of the inner housing arranged inside the outer housing, two successive bearings in the axial direction are provided for a rotatable and play-free mounting of the sonotrode.
- This sonotrode can moreover preferably have an end section protruding from the device for generating the oscillating workpiece movement, which serves for a preferably releasable coupling with an associated end section of the receiving device for a workpiece to be ground.
- generation of the oscillating movement of the workpiece thus uses at least one ultrasound source, the ultrasound energy of which is used as excitation energy for the workpiece.
- the ultrasound waves are preferably arranged in a predetermined frequency of, for example, two piezoceramic ultrasound transducers arranged one behind the other. 1 MHz is generated in the prepolymer liquid with which the first resonance chamber following the ultrasonic transducers is filled. These ultrasonic waves are then transmitted through the membrane, which is set into corresponding vibrations, to the air-filled second resonance chamber that follows.
- the air cushion of the second resonance chamber transmits the ultrasonic energy to the sonotrode directly adjoining the second resonance chamber, which is essentially a rod-shaped element made of a material with high sound conductivity, for example made of a ceramic material or hardened steel.
- the sonotrode Due to the two associated bearings, which are arranged one after the other in the axial direction, the sonotrode is rotatably and free of play, in particular the first bearing by means of a union nut inner housing arranged inside the outer housing is pressed, while the second bearing is fixed against the union nut by means of a lock nut which can be screwed onto the sonotrode, or more precisely, the end section of the sonotrode which projects from the device for producing an oscillating workpiece movement. Since, as already mentioned above, the end section of the sonotrode is coupled to an assigned end section of the receiving device for the workpiece to be ground, the ultrasound energy transmitted by the sonotrode is converted at the given frequency into corresponding oscillatory movements of the subsequent workpiece.
- the device for generating an oscillating workpiece movement is further combined with at least one cooling device and associated cooling channels in order to circulate and cool the prepolymeric liquid contained in the first ultrasonic resonance chamber so that a constant temperature is ensured.
- a grinding wheel 24 is shown schematically and partially, which is arranged rotatably about a horizontal axis of rotation A1 in the direction of rotation according to the arrow Pf1.
- the grinding wheel 24 is in particular a diamond grinding wheel.
- the workpiece 23, which is arranged directly below the grinding wheel 24 in turn is also arranged rotatably about an axis A2 parallel to the axis A1, the direction of rotation being indicated by an arrow Pf2.
- the grinding wheel 24 and the workpiece 23 rotate in opposite directions to one another about their respectively assigned axes of rotation A 1 and A 2 during the grinding of the workpiece surface.
- its geometrically undetermined cutting edges move at a relatively high cutting speed relative to the workpiece 23.
- the grinding wheel 24 continues to perform a pendulum movement in the usual way, which is indicated in FIG. 1 by arrows arrows 4 and 5.
- the rotating grinding wheel 24 is simultaneously given a type of reciprocating feed along the opposite surface of the workpiece 23 to be ground.
- the device 20 provides virtually an excitation energy, as indicated in Figure 1 by the arrow E A, which is coupled into the workpiece 23, and thus this causes, according to the direction of a double arrow Pf3 during grinding in the axial direction back and herzuschwingen.
- Such an oscillating movement of the workpiece 23, which preferably takes place at a high frequency is practically superimposed on its rotational movement relative to the grinding wheel 24.
- the frequency of the oscillating workpiece movement is preferably selected from a frequency range between 50 Hz and 40 MHz.
- the amplitude of this oscillating workpiece movement is set so that it is due to approximately half the advance of the grinding wheel 24 whose pendulum movement corresponds to during the grinding process.
- the device 20 for generating an oscillating workpiece movement is preferably an ultrasound source whose ultrasound energy is used as excitation energy E A for the workpiece 23, as will be explained in more detail below with reference to FIGS. 2 and 3.
- FIG. 2 shows a preferred exemplary embodiment of the device designated overall by reference numeral 20 for generating an oscillating movement of the workpiece 23 according to FIG. 1 relative to the cutting edges of the grinding wheel 24 according to FIG. 1.
- the device 20 according to FIG. 2 thus practically corresponds to the device 20 according to FIG. 1, this device 20 being arranged in practice in the area of a clamping of the workpiece 23 within a grinding machine (cf. also FIG. 2).
- the device 20 shown in FIG. 2 for generating an oscillating workpiece movement essentially has a cylindrical outer housing 11, in which the following components are contained:
- Two ultrasound transducers 1 arranged directly in succession, preferably in the form of piezoceramic ultrasound transducers, followed by a first ultrasound resonance room 2, consisting of two partial resonance rooms 2 'and 2'', one adjoining the partial resonance room 2'' subsequent second ultrasonic resonance chamber 4, a membrane 3, which separates the first resonance chamber 2 from the second resonance chamber 4, and a sonotrode 5, which directly adjoins the second resonance chamber 4 at one end and another end with one shown in FIG. 3
- Pick-up device 22 for the workpiece 23 can be coupled.
- the outer housing 11 In an area facing away from the sonotrode 5, the outer housing 11 continues in a substantially rod-shaped connecting member 12, which serves to connect the device 20 to a tailstock or a headstock of a grinding machine, as will be described in more detail below with reference to FIG. 2 becomes.
- An inner housing 8 with two inner housing sections 8a and 8b is slidably arranged in the interior of the outer housing 11.
- the membrane 3 is practically clamped between these two inner housing sections 8a and 8b and glued to the inner housing section 8b.
- the first resonance chamber 3 immediately following the two piezoceramic ultrasound transducers 1 with its partial resonance chambers 2 'and 2' ' is filled with a prepolymer liquid, whereas the second resonance chamber 4 following the membrane 3 contains only air.
- the prepolymer liquid contained in the first resonance chamber 2 is a liquid with a macromolecular structure, which primarily serves for an amplitude transformation in the ultrasound frequency range generated by the two piezoceramic ultrasound transducers 1.
- a special, geometric configuration of the two piezoceramic ultrasound transducers 1 predetermines the ultrasound frequency required in individual cases in practical use, for example a frequency of 1 MHz.
- the two piezoceramic ultrasound transducers 1 are each connected to an electrical voltage source 42 via lines 40 and 41, e.g. the voltage applied is 2000 volts.
- the piezoceramic ultrasound transducers 1 are excited to vibrate in the ultrasound range, the amplitude height per transducer being 0.023 mm.
- the two successive first and second ultrasonic resonance rooms are 2 and 4 are formed essentially together in the form of a paraboloid of revolution, a focal point 45 of the resulting parabolic resonance space preferably being between the membrane 3 and the piezoceramic ultrasound transducers 1.
- the required amplification of the amplitude of the ultrasonic waves generated by the piezoceramic ultrasonic transducers 1 is achieved by this parabolic spatial design. While the parabolic wall of the first resonance chamber 2, more precisely the parabolic partial wall of the partial resonance chamber 2 ′′, is formed by the inner housing section 8b, the adjoining parabolic wall 4 ′ of the second resonance chamber 4 is formed by the adjacent, front-side surface the sonotrode 5 is formed.
- the essentially rod-shaped and rotationally symmetrical sonotrode 5 is mounted inside the inner housing 8 of the device 20 in a manner that is on the one hand rotatable and on the other hand free of play.
- two consecutive bearings in the axial direction are provided within the inner housing section 8a, specifically in the direction from right to left in FIG. 2, a first bearing 6b and a second bearing 6a, which are separated by a spacing or Sealing ring 44 are separated from each other.
- the first bearing 6b is pressed against this inner housing section 8a by means of a union nut 7 which can be screwed onto the inner housing section 8a from the outside, whereas the second bearing 6a is pressed against the sonotrode 5 and in particular the end section 5 'of the sonotrode projecting to the left from the device 20 5 screwable lock nut 9 is fixed against the union nut 7.
- the end section 5 'of the sonotrode 5 is, as can be seen more clearly from FIG. 3, coupled with an associated end section 22a of a receiving device 22 for the workpiece 23 to be machined, for example in a detachable manner.
- the ultrasound energy transmitted through the sonotrode 5 is converted at the given frequency into corresponding oscillatory movements of the workpiece 23 in accordance with the double arrow Pf3.
- the excess ultrasound energy which is not converted into corresponding mechanical vibrations via the sonotrode 5 and transmitted to the workpiece 23, is due to the parabolic design of the two resonance spaces 2 and 4, in particular due to the paraboloid shape of the air-filled directly upstream of the sonotrode 5
- Resonance chamber 4 is not converted into thermal energy, but is reflected in a focal point, for example in focal point 45 within the prepolymer liquid in the first resonance chamber 2, and then absorbed by this liquid, as a result of which it heats up.
- FIG. 3 A complete grinding machine is shown schematically in FIG. 3, which is used for external cylindrical grinding of the workpiece 23 made of ceramic material already mentioned above, the workpiece surface being designated by 23 '.
- the rotatably mounted diamond grinding wheel 24 is used, which can be set in rotation about its axis A 1 in the direction of rotation according to the arrow Pf 1.
- the geometrically undefined cutting edges 25 of the diamond grinding wheel 24 move with a predetermined, high cutting speed of, for example, 30 m per second relative to the workpiece 23.
- the workpiece 23 is set into an oscillating movement according to the double arrow Pf 3 during the grinding process.
- a tailstock 21 of the grinding machine according to FIG. 3 is connected to a first device 20 for generating the oscillating movement of the workpiece 23, and in addition the workpiece holding device 22 is connected on the one hand to the first device 20 and on the other hand to the second device 30 coupled.
- the structure of the two aforementioned devices 20 and 30 for generating the oscillating movement of the workpiece 23 corresponds completely to the device 20 already illustrated and explained in FIG. 2. Therefore, all the matching components in the two devices 20 and 30 are designated by the same reference numbers.
- the two devices 20 and 30 are arranged in the grinding device according to FIG.
- a recess 31 is provided in the end section 22b of the workpiece holding device 22 such that both the rotation with respect to the end section 5 'of the sonotrode 5 and certain axial displacements of the workpiece holding device 22 including the workpiece 23 in the direction the axis A2 are possible.
- the excitation of the piezoceramic ultrasound transducers 1 contained in the two devices 20 and 30 takes place in each case via correspondingly assigned electrical voltage sources, which are not shown in FIG. 3 for the sake of simplicity, with appropriate circuit measures ensuring that the mutual control is phase-shifted by ⁇ peo-ceramic ultrasound transducer 1 in the respective devices 20 and 30.
- the respective ultrasound excitation energy with a corresponding phase shift is transmitted to the two-sided sonotrodes 5 in the devices 20 and 30, so that the directions of oscillation of the ultrasound energy in the mutually opposing, identical devices 20 and 30 match each other.
- Figure 3 is also shown schematically that the headstock 26 of the grinding device is coupled to a drive unit 43 so that the headstock 26 can be set in rotation according to the direction of rotation indicated by the arrow Pf2.
- the outer housing 11 of the second device 30 on the left-hand side in FIG. 3 is in turn provided with a connecting element 12 ′, which serves to couple the device 30 to the headstock 26 in a rotationally fixed manner.
- the outer housing 11 of the first device 20 is firmly connected to the tailstock 21 via the connecting member 12 assigned to it.
- a torque drive not shown
- a “turning heart” not shown in FIG. 3
- the liquid contained in the first resonance chamber 2 of the first device 20 is cooled externally, for this purpose via inlet and outlet channels 10 provided in the housing 11 and correspondingly assigned connecting lines 28 and 28 ′, which lead to the cooling device 27 lead, the required liquid circulation can be carried out.
- a grinding device can also be provided such that the second device 30 arranged on the left-hand side for generating the oscillating movement of the workpiece 23 does not have any ultrasonic transducers 1, instead a connecting line 29 between the respective liquid-filled resonance chambers 2 the first device 20 and the second device 30 is provided.
- the resonance liquids in the mutual devices 20 and 30 are permanently connected to one another, so that the ultrasound excitation energies generated by the ultrasound transducers 1 in the first device 20 via the liquid contained in the line 29 to the resonance chamber 2 in the second device 30 can be transferred.
- the connecting line 29 is dimensioned in such a way that a relative ultrasound phase shift of ⁇ results from the transit time delay, such that the first device 20 and the second device 30 can be controlled in a phase-shifted manner, analogously to the embodiment already described above.
- a further modification can also be provided in that an electromagnetic plunger coil is provided instead of the second device 30 for generating an oscillating movement of the workpiece 23, which is on the one hand connected to the workpiece holding device 22 and on the other hand is coupled to the headstock 26.
- the first device 20 and / or the second device 30 for generating the oscillating movement of the workpiece 23 are each replaced by a magnetostrictive oscillator.
- the tailstock 21 can be connected to a first magnetostrictive vibrator and the headstock 26 to a second similar vibrator.
- the workpiece holding device 22 is then coupled on the one hand to the first magnetostrictive vibrator and on the other hand to the second vibrator such that the workpiece 23 contained in the holding device 22 can in turn be set to vibrate in the area between the tailstock 21 and the headstock 26 in in an analogous manner, as has already been explained above with reference to FIGS. 1 and 3.
- the present invention can also be applied not only to external cylindrical grinding, but also, for example, to surface grinding or linear grinding, in particular of workpieces made of ceramic materials.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
Abstract
Claims (15)
- Dispositif de meulage d'une pièce (23), comportant au moins un mécanisme (20) pour provoquer un mouvement oscillant de la pièce (23) par rapport à une meule (24), ledit au moins un mécanisme (20) comportant au moins un transducteur à ultrasons (1) et un transmetteur d'ondes (5) disposé entre le transducteur à ultrasons (1) et la pièce (23), caractérisé en ce que le transmetteur d'ondes (5) est une sonotrode et en ce qu'au moins une chambre de résonance à ultrasons (2, 4) est disposée entre ledit au moins un transducteur à ultrasons (1) et la sonotrode (5).
- Dispositif selon la revendication 1, caractérisé en ce que ledit au moins un transducteur à ultrasons (1) est un transducteur piézocéramique ou magnétostrictif.
- Dispositif selon la revendication 1 ou 2, caractérisé en ce que des première et deuxième chambres de résonance à ultrasons (2, 4) sont disposées entre ledit au fins un transducteur à ultrasons (1) et la sonotrode (5), en ce qu'une membrane (3) sépare les première et deuxième chambres de résonance (2, 4) l'une de l'autre, et en ce que la première chambre de résonance (2) est remplie de liquide et la deuxième chambre de résonance (4) remplie d'air ou de gaz.
- Dispositif selon la revendication 3, caractérisé par un boîtier externe (11) dans lequel sont disposés ledit au moins un transducteur à ultrasons (1), les chambres de résonance à ultrasons (2, 4), la membrane (3), et la sonotrode (5), le boîtier externe (11) comportant, de son extrémité éloignée de la sonotrode (5), un élément (12, 12') de liaison au dispositif de meulage.
- Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que deux transducteurs à ultrasons (1) sont disposés l'un à la suite de l'autre dans le boîtier externe (11).
- Dispositif selon la revendication 3 ou 4, caractérisé en ce que la première chambre de résonance (2) est remplie d'un liquide prépolymère.
- Dispositif selon la revendication 3 ou 4, caractérisé en ce que les chambres de résonance à ultrasons (2, 4) ont ensemble, au moins partiellement, une forme de paraboloïde de rotation pour réaliser une amplification d'amplitude des ondes d'ultrasons générées, le foyer du paraboloïde de rotation étant situé entre la membrane (3) et ledit au moins un transducteur à ultrasons (1).
- Dispositif selon la revendication 7, caractérisé en ce qu'une paroi parabolique de la première chambre de résonance (2) est constituée par une première partie (8b) d'un boîtier interne (8) disposé à l'intérieur du boîtier externe (11), et en ce qu'une paroi parabolique (4') de la deuxième chambre de résonance (4) est constituée par une face frontale de la sonotrode (5).
- Dispositif selon la revendication 8, caractérisé en ce qu'il comprend des paliers (6a, 6b) disposés l'un à la suite de l'autre axialement dans une deuxième partie (8a) du boîtier interne (8) disposé dans le boîtier externe (11), pour assurer un guidage en rotation sans jeu de la sonotrode (5).
- Dispositif selon l'une des revendications 1 à 9, caractérisé en ce que ledit au moins un mécanisme (20) est combiné avec un dispositif de refroidissement (27) et des canaux de refroidissement correspondants (10, 28, 28') pour entourer et refroidir le liquide contenu dans la chambre de résonance à ultrasons (2, 4).
- Dispositif selon l'une des revendications 1 à 10, caractérisé en ce que la sonotrode (5) présente une partie extrême (5') faisant saillie dudit au moins un mécanisme (20), qui sert à réaliser un accouplement, de préférence amovible, avec une partie extrême correspondante (22a, 22b) d'un dispositif de réception (22) de la pièce (23).
- Dispositif selon l'une des revendications 1 à 10, notamment un dispositif de meulage de surfaces cylindriques externes, caractérisé par la combinaison des caractéristiques suivantes :a) une contre-poupée (21) reliée à un premier mécanisme (20) pour provoquer un mouvement oscillant de la pièce (23), qui comporte au moins un transducteur à ultrasons (1) et un transmetteur d'ondes (5) disposé entre le transducteur à ultrasons (1) et la pièce (23),b) une poupée (26) reliée à un deuxième mécanisme (30) pour provoquer un mouvement d'oscillation de la pièce (23), de même configuration que le premier mécanisme (20) ; etc) un dispositif de réception de pièce (22) susceptible de s'accoupler, par un côté, au premier mécanisme (20) et, par l'autre côté, au deuxième mécanisme (30), d'où il résulte que la pièce (23) maintenue par le dispositif de réception (22) est susceptible d'être déplacée en oscillation dans la zone entre la contre-poupée (21) et la poupée (26).
- Dispositif selon la revendication 12, caractérisé en ce que le deuxième mécanisme (30) pour provoquer un mouvement oscillant de la pièce comprend un conduit de liaison (29) de remplacement du transducteur à ultrasons (1) entre les chambres de résonance remplies de liquide (2) du premier mécanisme (20) et du deuxième mécanisme (30).
- Dispositif selon la revendication 13, caractérisé en ce que le conduit de liaison (29) est dimensionné de manière qu'il provoque un retard correspondant à un déphasage relatif d'ultrasons de π, de sorte que le premier mécanisme (20) et le deuxième mécanisme (30) agissent en déphasage corrélativement.
- Dispositif selon l'une des revendications 12 à 14, caractérisé en ce qu'il comprend, à la place du deuxième mécanisme pour provoquer un mouvement oscillant de la pièce (23), une bobine électromagnétique mobile qui est accouplée, par un côté, au dispositif de réception (22) et, par l'autre côté, à la poupée (26).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4203434A DE4203434C2 (de) | 1992-02-06 | 1992-02-06 | Maschine zum Schleifen eines Werkstücks |
DE4203434 | 1992-02-06 | ||
PCT/EP1993/000280 WO1993015877A1 (fr) | 1992-02-06 | 1993-02-05 | Dispositif pour meuler des pieces a usiner |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0625083A1 EP0625083A1 (fr) | 1994-11-23 |
EP0625083B1 true EP0625083B1 (fr) | 1996-06-05 |
Family
ID=6451099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93903917A Expired - Lifetime EP0625083B1 (fr) | 1992-02-06 | 1993-02-05 | Dispositif pour meuler des pieces a usiner |
Country Status (8)
Country | Link |
---|---|
US (1) | US5540614A (fr) |
EP (1) | EP0625083B1 (fr) |
JP (1) | JPH07503668A (fr) |
CN (1) | CN1078676A (fr) |
AU (1) | AU3495493A (fr) |
DE (2) | DE4203434C2 (fr) |
PL (1) | PL171656B1 (fr) |
WO (1) | WO1993015877A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011104840A1 (de) * | 2011-06-21 | 2012-12-27 | PP-Tech GmbH | Verfahren und Vorrichtung zum Ultraschallstanzen |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4439470C2 (de) * | 1994-11-08 | 1999-05-20 | Herrmann Ultraschalltechnik | Vorrichtung zum Ultraschallbearbeiten eines Werkstücks |
DE10041925A1 (de) * | 2000-08-25 | 2002-03-21 | Adrian Riegel | Schleifverfahren und Vorrichtung zur Durchführung |
JP2006062017A (ja) * | 2004-08-26 | 2006-03-09 | Honda Motor Co Ltd | 加振装置 |
DE102005014108A1 (de) * | 2005-03-22 | 2006-09-28 | Schott Ag | Schleifverfahren und Schleifmaschine |
DE102005041031A1 (de) | 2005-08-24 | 2007-03-01 | Blohm Maschinenbau Gmbh | Verfahren zum spanabhebenden Bearbeiten von Werkstücken mit gekrümmten Oberflächen, insbesondere zum Schleifen von Turbinenschaufeln, Werkzeugmaschine und Programmiersystem |
US20100173567A1 (en) * | 2006-02-06 | 2010-07-08 | Chien-Min Sung | Methods and Devices for Enhancing Chemical Mechanical Polishing Processes |
US8142261B1 (en) * | 2006-11-27 | 2012-03-27 | Chien-Min Sung | Methods for enhancing chemical mechanical polishing pad processes |
US7316600B1 (en) * | 2007-03-30 | 2008-01-08 | Rolls-Royce Corporation | Metal working method to reduce thermal damage |
EP2389273B1 (fr) * | 2009-01-26 | 2013-07-17 | Elpro Oy | Dispositif de traitement par ultrasons |
FR2949204B1 (fr) * | 2009-08-21 | 2011-10-14 | Snecma | Machine d'usinage pour cmc par fraisage et abrasion par ultrasons |
EP2650081B1 (fr) * | 2012-04-13 | 2013-11-27 | Supfina Grieshaber GmbH & Co. KG | Procédé et dispositif de finition d'une surface de pièce usinée |
RU2543025C2 (ru) * | 2013-07-09 | 2015-02-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Способ плоского шлифования с наложением ультразвуковых колебаний |
RU2542209C1 (ru) * | 2013-07-19 | 2015-02-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Способ плоского шлифования с наложением ультразвуковых колебаний |
RU2569865C1 (ru) * | 2014-08-22 | 2015-11-27 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" | Способ круглого наружного шлифования с наложением ультразвуковых колебаний |
RU2660535C1 (ru) * | 2017-05-30 | 2018-07-06 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" | Способ шлифования периферией круга с продольной подачей за несколько ходов и наложением ультразвуковых колебаний на заготовку |
RU2685323C1 (ru) * | 2017-11-22 | 2019-04-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" | Способ шлифования периферией круга с продольной подачей за несколько ходов с выхаживанием и наложением ультразвуковых колебаний на заготовку |
EP3530603B1 (fr) | 2018-02-27 | 2022-08-10 | Otis Elevator Company | Cabine d'ascenseur comprenant une plate-forme de travail et méthode de déplacement d'une plate-forme de travail |
CN108788974B (zh) * | 2018-05-31 | 2023-01-03 | 中国地质大学(武汉) | 一种水平超声振动辅助磨削加工装置 |
DE102018132771A1 (de) * | 2018-12-19 | 2020-06-25 | Schaeffler Technologies AG & Co. KG | Verfahren zur Oberflächenbehandlung, Wälzlagerbauteil und Vorrichtung |
CN110153849A (zh) * | 2019-06-17 | 2019-08-23 | 深圳磨霸智能科技有限公司 | 一种多工位曲面高速数控磨床 |
CN111569749B (zh) * | 2020-05-19 | 2020-12-22 | 中国石油大学(北京) | 一种非常规气藏压裂用纳米颗粒强化泡沫发生装置及其应用 |
WO2022095456A1 (fr) * | 2020-11-06 | 2022-05-12 | 华侨大学 | Procédé de meulage d'un substrat de diamant |
CN112892809B (zh) * | 2021-02-05 | 2023-01-24 | 惠州大唐伟业电子有限公司 | 一种光学玻璃的超声加工装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE915769C (de) * | 1938-07-10 | 1954-07-29 | Siemens Ag | Werkzeugmaschine oder Geraet mit einem spanabhebenden Werkzeug |
US3699719A (en) * | 1971-01-25 | 1972-10-24 | Nicholas Rozdilsky | Ultrasonic machining |
US4369603A (en) * | 1978-11-30 | 1983-01-25 | Gebel Iosif D | Method of positioning and rotating workpiece and arrangement implementing same |
DD200721A1 (de) * | 1981-07-31 | 1983-06-08 | Lothar Urban | Verfahren num behandeln von sproedharten oberflaechen |
JPS6161759A (ja) * | 1984-08-31 | 1986-03-29 | Nec Kansai Ltd | 棒材の曲面研磨装置 |
CH665784A5 (de) * | 1985-03-21 | 1988-06-15 | Hansen Dieter Ag | Ultraschallbearbeitungswerkzeug. |
FR2613651B1 (fr) * | 1987-04-10 | 1994-07-22 | Onera (Off Nat Aerospatiale) | Machine d'usinage par abrasion ultrasonore |
JPS63312051A (ja) * | 1987-06-15 | 1988-12-20 | Seiko Instr & Electronics Ltd | 硬脆材研削加工方法 |
JPH0722876B2 (ja) * | 1987-06-24 | 1995-03-15 | 新技術事業団 | 研削用ワークテーブル装置 |
WO1989003278A1 (fr) * | 1987-10-13 | 1989-04-20 | Extrude Hone Corporation | Porte-outil pour machine d'usinage par ultrasons |
JPH0639052B2 (ja) * | 1988-06-08 | 1994-05-25 | 常磐精機工業株式会社 | 超精密研削装置 |
JPH05253817A (ja) * | 1992-03-13 | 1993-10-05 | Nikon Corp | 超音波研削加工用カップ砥石 |
-
1992
- 1992-02-06 DE DE4203434A patent/DE4203434C2/de not_active Expired - Fee Related
-
1993
- 1993-02-05 DE DE59302828T patent/DE59302828D1/de not_active Expired - Fee Related
- 1993-02-05 US US08/284,459 patent/US5540614A/en not_active Expired - Fee Related
- 1993-02-05 WO PCT/EP1993/000280 patent/WO1993015877A1/fr active IP Right Grant
- 1993-02-05 EP EP93903917A patent/EP0625083B1/fr not_active Expired - Lifetime
- 1993-02-05 JP JP5513762A patent/JPH07503668A/ja active Pending
- 1993-02-05 PL PL93309013A patent/PL171656B1/pl unknown
- 1993-02-05 AU AU34954/93A patent/AU3495493A/en not_active Abandoned
- 1993-02-06 CN CN 93102521 patent/CN1078676A/zh active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011104840A1 (de) * | 2011-06-21 | 2012-12-27 | PP-Tech GmbH | Verfahren und Vorrichtung zum Ultraschallstanzen |
Also Published As
Publication number | Publication date |
---|---|
WO1993015877A1 (fr) | 1993-08-19 |
EP0625083A1 (fr) | 1994-11-23 |
CN1078676A (zh) | 1993-11-24 |
PL171656B1 (pl) | 1997-05-30 |
DE4203434C2 (de) | 1994-03-31 |
DE59302828D1 (de) | 1996-07-11 |
US5540614A (en) | 1996-07-30 |
JPH07503668A (ja) | 1995-04-20 |
AU3495493A (en) | 1993-09-03 |
DE4203434A1 (de) | 1993-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0625083B1 (fr) | Dispositif pour meuler des pieces a usiner | |
EP0591104B1 (fr) | Dispositif d'érosion d'une pièce par ultra-sons | |
DE3919895A1 (de) | Hochfrequenzhonen | |
DE69014283T2 (de) | Verfahren zum mikroskopischen Schleifen und Gerät zum mikroskopischen Schleifen. | |
EP3250340B1 (fr) | Ensemble broche | |
DE3337846A1 (de) | Verfahren und vorrichtung zur schwingungsschleifendbearbeitung einer profilierten werkstueckoberflaeche | |
DE2211774A1 (de) | Ultraschallgeber | |
EP2650081A1 (fr) | Procédé et dispositif de finition d'une surface de pièce usinée | |
DE202017100736U1 (de) | Ultraschall-Handbohrmaschine | |
EP0340661A2 (fr) | Dispositif d'usinage d'un matériau très dur au moyen d'un outil d'usinage et procédé correspondant | |
EP0555285B1 (fr) | Procede pour l'usinage des surfaces interieures d'alesages | |
DE102013104923B3 (de) | Vorrichtung zur vibrationsunterstützten Werkstückbearbeitung | |
DE4233929A1 (de) | Vorrichtung zur Verbindung von Bauteilen durch Vibrationsschweißung | |
DE3007314A1 (de) | Verfahren und vorrichtung zum bearbeiten von lagerflaechen | |
EP0633827A1 (fr) | Outil de honage excite par ultrasons et procede pour son rajustage | |
EP0659516B2 (fr) | Appareil de soudage par ultrasons | |
EP2663416B1 (fr) | Procédé et dispositif pour conférer un mouvement oscillant à une masse | |
CH671530A5 (en) | Ultrasonic machining tool for milling or boring applications - has tool crown subjected to both axial and radial oscillations | |
EP2937149B1 (fr) | Dispositif de traitement de pièces au moyen de vibrations à haute fréquence | |
DE10161243B4 (de) | Mikrostrukturierung mit ultraschallunterstütztem Schleifen | |
DE4241630A1 (de) | Werkzeug zur Bearbeitung von Bohrungen | |
DE3938779A1 (de) | Verfahren zur herstellung von mittels laserstrahlung erzeugter, hochpraeziser durchgangsbohrungen in werkstuecken | |
DE3523389A1 (de) | Verfahren und vorrichtung zur optimierung des zerstaeubungsverhaltens eines piezoelektrischen ultraschall-koppelschwingers | |
DE1502379C (de) | Schwingschleifvorrichtung | |
DE1608411C (de) | Schwingsystem mit einem Korper veran derhcher Masse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940726 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 19950720 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REF | Corresponds to: |
Ref document number: 59302828 Country of ref document: DE Date of ref document: 19960711 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: OK PAT AG |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960909 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19970228 Ref country code: CH Effective date: 19970228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990115 Year of fee payment: 7 Ref country code: FR Payment date: 19990115 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990122 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000205 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050205 |