EP0619022A1 - Detecteur de tension a quartz et a fibres optiques - Google Patents

Detecteur de tension a quartz et a fibres optiques

Info

Publication number
EP0619022A1
EP0619022A1 EP93918862A EP93918862A EP0619022A1 EP 0619022 A1 EP0619022 A1 EP 0619022A1 EP 93918862 A EP93918862 A EP 93918862A EP 93918862 A EP93918862 A EP 93918862A EP 0619022 A1 EP0619022 A1 EP 0619022A1
Authority
EP
European Patent Office
Prior art keywords
quartz
axis
quartz body
eff
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93918862A
Other languages
German (de)
English (en)
Inventor
Mathias Ingold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0619022A1 publication Critical patent/EP0619022A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/248Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using a constant light source and electro-mechanically driven deflectors

Definitions

  • Fiber optic sensors of this type are known e.g. from EP-A1-O 316 619, EP-A1-O 316 635 and EP-A1-O 433 824 as well as from K. Bohnert, J. Nehring, Appl. Opt. 27, (1988) pp. 4814-4818 or K. Bohnert, J. Nehring, Opt. Lett. 14, (1989) pp. 290-292.
  • the measuring principle is based on the fact that a circular one is wrapped with a glass fiber
  • Disc made of a piezoelectric material experiences a change in circumference in the electrical or E field, which can be measured interferometrically by the resulting change in length of the glass fiber.
  • the two-mode interferometer has proven to be a simple one
  • Quartz is very well suited as a piezoelectric sensor material because it is sufficiently large
  • Earth electrode extends to the high-voltage electrode, or by connecting several such quartz disks in series along any integration path between earth and high-voltage electrode, the x-axis being oriented tangentially to the integration path and all quartz disks approximately evenly with one
  • A is usually used for the measurement signal compensation
  • the measurement signal typically decreases by a few percent between - 20 ° C and
  • Quartz body in a change in length with it
  • the invention solves the problem with a fiber optic sensor of the type mentioned, the temperature dependence of
  • the invention takes account of the fact that quartz has (only) two independent piezoelectric coefficients due to its crystal symmetry. As will be explained in more detail, these are the coefficients d 11 and d 14 . Their
  • the invention proposes the temperature dependence of the measurement signal (E field or electrical voltage) by a mixture of the two
  • the desired goal can also be to reduce the temperature dependence of the
  • FIG. 4 in a diagram belonging to Fig. 3
  • FIG. 8 shows in a diagram the associated course of d eff (0) as a function of e of the quartz body from FIG. 1,
  • Fig. 9 two cylindrical quartz body with an elliptical
  • Quartz body which has the crystallographic y-axis and the one to be measured in its disk plane Contains component of the E field, according to a fourth embodiment of the invention.
  • the total of 27 piezoelectric coefficients d kij form the piezoelectric tensor, which is a third stage tensor and symmetrical with respect to i and j. Because of this symmetry, at most 18 of the 27
  • d k1 d 21 d 22 d 23 d 24 d 25 d 26 (2) d 31 d 32 d 33 d 34 d 35 d 36
  • a right-hand quartz (left-hand quartz) is defined as a quartz which, when looking back into the light source, rotates the plane of polarization of linearly polarized light clockwise (counter-clockwise).
  • the positive x-direction shows where, when a left quartz is stretched along the x-axis, a positive charge is created by the direct piezoelectric effect.
  • a right-hand quartz creates a negative charge.
  • disk surfaces should be perpendicular to the crystallographic x-axis of the quartz crystal on which the quartz body is based
  • means an integration angle
  • ⁇ U is a linear function of d 11 and d 14 , the temperature dependence of these coefficients, which is shown in the diagram of FIG. 2, approximately
  • FIG. 2 The diagram of FIG. 2 is from the publication by J. Tichy, G. Gautschi,
  • the piezoelectric coefficients d 11 and d 14 and thus also their temperature coefficients d 11 (i) and d 14 (i) can be mixed, to be precise within the limits
  • the relative temperature coefficient Td eff (1) can be varied over a wide range, preferably with the ellipticity e 0 in the range 0.1 ⁇ 0 ⁇ 0.9 and the angle of rotation ⁇ in the range of 10 ° ⁇ ⁇ 80 °.
  • Td eff (1) can be made to disappear in particular for several combinations of ⁇ 0 and ⁇ .
  • C 0.5 arccos ⁇ [1 ⁇ D ⁇ [4 ⁇ (D 2 + 1) ⁇ ⁇ 2 - 1] 0 ' 5 ] /
  • Equation (19) has only for ⁇ 0 ⁇ 0.59 solutions, namely ⁇ a ( ⁇ 0 ) and ⁇ b ( ⁇ 0 ), which are shown in FIG. 5.
  • ⁇ 0 and ⁇ should be made taking into account the following two criteria in particular: -
  • the piezo effect should be sufficiently large that an adequate signal is obtained interferometrically (e.g. ⁇ d eff ( 0 ) ⁇ > 0.5 pm / V).
  • ⁇ 0 should be as close as possible to 1,
  • Quartz disc on the glass fiber is as uniform as possible.
  • Td eff (1) would have to have a value of approximately + 6 ⁇ 10 -4 K -1 .
  • both quartz bodies 4 and 5 and a glass fiber 6 both quartz bodies having the shape of an elliptical disk and the glass fiber 6 being wound in at least one turn around the outer surface of both disks.
  • Disk surfaces should be oriented perpendicular to the crystallographic x-axis of the quartz crystals on which the quartz bodies are based.
  • a ' ⁇ d 11 + B' ⁇ d 14 where A 'and B' are functions of ⁇ 1 , ⁇ 1 , ⁇ 2 , ⁇ 2 and M, the statements made above for a elliptical quartz body apply mutatis mutandis.
  • Td eff (1) can be chosen to be more positive even with a lower ellipticity (e closer to 1).
  • d eff is d) as a function of e for
  • Curves 10, 11 and 14 relate to an elliptical one
  • Quartz cylinder 1 according to the 1st embodiment of the invention.
  • Curve 10 represents an upper limit for d eff (1) and curve 14 a lower limit, which can be achieved by varying ⁇ and ⁇ .
  • the parameter ⁇ has a value of 34 °.
  • Curves 12, 13 and 15 relate to 2 elliptical quartz cylinders 4 and 5.
  • Curve 15 shows the lower limit for d eff (1) , which can be achieved by varying the parameters ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2 and M,
  • Winding ratio can also be influenced in a simple manner. 11 shows for two
  • Quartz bodies 4, 5 with opposite x-axis directions in a parallel electrical field is an arrangement with the same x-axis directions in 2 antiparallel
  • d eff (0) ( ⁇ , ⁇ 1 , ⁇ 2 ).
  • the magnitude of d eff (0) is greatest for ⁇ 1 ⁇ + 45 ° and ⁇ 2 ⁇ - 45 °, with deviations of ⁇ 10 ° having no significant influence.
  • the corresponding dependencies of d eff (0) and M are shown graphically in FIGS. 13 and 14. For comparison, in Fig. 15 the only one is elliptical
  • each quartz body (7) must be tangential to the integration path between 2 points (16, 17) in the
  • Quartz disk 8 are considered, which according to FIG. 19 contains both the crystallographic y-axis and the E field to be measured. With a rotation
  • the piezoelectric ones are obtained for any E field direction
  • a cylindrical quartz body with glass fiber wound at an angle to the cylinder axis should also be mentioned, the direction of the applied E field deviating from the direction of the cylinder axis of the quartz body.
  • Piezo coefficients d 11 and d 14 contribute to the fiber expansion so that their temperature dependencies
  • d eff (T) - cos 2 ⁇ d 11 (T) + sin (2 ⁇ ) d 14 (T).
  • 1st and 2nd are those in which one or two are elliptical
  • Quartz disks are used perpendicular to the crystallographic x-axis, to be regarded as preferred.
  • the glass fiber (2, 6) has a polyamide sheath, since such a glass fiber does not make any significant contribution to the temperature dependence of the measurement signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Gyroscopes (AREA)

Abstract

Le détecteur comprend au moins un corps en quartz (1) découpé dans un cristal de quartz, une fibre de verre reliée au corps quartzeux, au moins dans une section linéaire, et des moyens pour détecter des déformations linéaires de la fibre de verre, générées dans un champ électrique par des déformations du corps quartzeux, d'origine piézoélectrique. L'invention révèle comment la variabilité généralement indésirable du signal de mesure du détecteur, due à la température, peut se laisser influencer purement passivement par un mélange des coefficients piézoélectriques d11 et d14 participant à la modification dimensionnelle d'origine piézoélectrique du corps quartzeux, voire être éliminée.
EP93918862A 1992-09-03 1993-09-02 Detecteur de tension a quartz et a fibres optiques Withdrawn EP0619022A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4229449 1992-09-03
DE4229449A DE4229449A1 (de) 1992-09-03 1992-09-03 Faseroptischer Quarz-Spannungs-Sensor
PCT/CH1993/000216 WO1994006025A1 (fr) 1992-09-03 1993-09-02 Detecteur de tension a quartz et a fibres optiques

Publications (1)

Publication Number Publication Date
EP0619022A1 true EP0619022A1 (fr) 1994-10-12

Family

ID=6467154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93918862A Withdrawn EP0619022A1 (fr) 1992-09-03 1993-09-02 Detecteur de tension a quartz et a fibres optiques

Country Status (4)

Country Link
US (1) US5475773A (fr)
EP (1) EP0619022A1 (fr)
DE (1) DE4229449A1 (fr)
WO (1) WO1994006025A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408127A1 (de) * 1994-03-10 1995-09-14 Siemens Ag Streckenneutraler optischer Spannungssensor
DE4436181A1 (de) * 1994-10-10 1996-04-11 Siemens Ag Verfahren und Vorrichtung zum Messen einer elektrischen Wechselgröße mit Temperaturkompensation durch Fitting
DE19743658B4 (de) * 1997-10-02 2007-02-08 Abb Research Ltd. Faseroptischer Spannungssensor
US6252388B1 (en) 1998-12-04 2001-06-26 Nxtphase Corporation Method and apparatus for measuring voltage using electric field sensors
US6380725B1 (en) 2000-02-15 2002-04-30 Nxtphase Corporation Voltage sensor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH536561A (de) * 1971-03-15 1973-04-30 Kistler Instrumente Ag Piezoelektrisches Kristallelement
US3766616A (en) * 1972-03-22 1973-10-23 Statek Corp Microresonator packaging and tuning
US4319186A (en) * 1978-05-05 1982-03-09 National Research Development Corporation Signal sensors
DE2856183A1 (de) * 1978-12-27 1980-07-10 Aeg Telefunken Kabelwerke Mechano- oder thermooptischer messwandler
JPS5748819A (en) * 1980-09-08 1982-03-20 Seiko Epson Corp Coupling tuning fork type quartz oscillator
US4447753A (en) * 1981-03-25 1984-05-08 Seiko Instruments & Electronics Ltd. Miniature GT-cut quartz resonator
US4477723A (en) * 1981-11-04 1984-10-16 Optical Technologies, Inc. Fiber optic electric field sensor/phase modulator
CH650897GA3 (fr) * 1982-07-14 1985-08-30
US4524322A (en) * 1982-11-18 1985-06-18 The United States Of America As Represented By The Secretary Of The Navy Fiber optic system for measuring electric fields
US4729622A (en) * 1983-12-05 1988-03-08 Litton Systems, Inc. Fiber optic polarizer with error signal feedback
US4735506A (en) * 1985-04-01 1988-04-05 Litton Systems, Inc. Phase nulling optical gyroscope
EP0316619B1 (fr) * 1987-11-05 1993-12-29 Asea Brown Boveri Ag Capteur à fibre optique
DE3851606D1 (de) * 1987-11-13 1994-10-27 Abb Management Ag Faseroptischer Spannungssensor.
CH678894A5 (fr) * 1989-09-25 1991-11-15 Asea Brown Boveri
DE59004780D1 (de) * 1989-12-22 1994-04-07 Asea Brown Boveri Faseroptischer Sensor.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9406025A1 *

Also Published As

Publication number Publication date
DE4229449A1 (de) 1994-03-10
US5475773A (en) 1995-12-12
WO1994006025A1 (fr) 1994-03-17

Similar Documents

Publication Publication Date Title
EP0316619B1 (fr) Capteur à fibre optique
EP0011110B1 (fr) Dispositif pour la mesure électro-optique de la tension
EP0316635B1 (fr) Capteur de tension à fibre optique
DE3404608C2 (fr)
EP1115000B1 (fr) Capteur de courant à fibre optique
DE69608593T2 (de) Magnetooptisches Element und optischer Magnetfeldfühler
DE3626060C2 (de) Polarisationsunabhängiger optoelektronischer Koppler
DE4208154C2 (de) Magnetischer Sensor
DE2835794B2 (de) Faseroptische Anordnung zur Messung der Stärke eines elektrischen Stromes
EP0410234B1 (fr) Procédé et appareil pour la mesure d'un champ électrique ou d'une tension électrique
DE2541072C3 (de) Magnetooptischer Meßwandler zur Herstellung von Hochspannungsströmen
DE872643C (de) Vorrichtung zum Messen der Abstandsaenderung zweier Elemente durch Messung der AEnderung der Kapazitaet
DE3917764C2 (de) Magnetische Trimmanordnung zur Korrektur der harmonischen Komponenten n-ter Ordnung einer Komponente des Hauptmagnetfeldes einer mit magnetischer Kernresonanz arbeitenden Vorrichtung
DE69409686T2 (de) Aufnehmerspule eines Lichtleitfaserkreisels
EP0619022A1 (fr) Detecteur de tension a quartz et a fibres optiques
DE2207852C3 (de) Piezoelektrisches Kristallelement
DE2600453C2 (de) Gerät zur Messung der Bandebenheit beim Kaltwalzen magnetischen Materials
DE2442313B2 (de) Kompensationsanordnung bei magnetoelastischen Gebern
EP1421393B1 (fr) Capteurs de courant optiques
DE3871806T2 (de) Kontaktlose messanordnung fuer spannungen bei stangenfoermigen koerpern.
AT401201B (de) Piezoelektrisches messelement
DE1226328B (de) Vorrichtung zur gleichzeitigen Messung von optischer Drehung und Zirkular-Dichroismus
DE2433432C2 (de) Magnetooptischer HochspannungsstrommeBwandler
DE4434921A1 (de) Achromatisches Phasenverzögerungselement und Verfahren zu seiner Herstellung
DE1541847C (de) Drehspulmeßinstrument

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB LI

17Q First examination report despatched

Effective date: 19970522

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980710