EP0612958B1 - Verbrennungsverfahren und Kraftstoffbrennervorrichtung mit divergierender Düse - Google Patents

Verbrennungsverfahren und Kraftstoffbrennervorrichtung mit divergierender Düse Download PDF

Info

Publication number
EP0612958B1
EP0612958B1 EP94300509A EP94300509A EP0612958B1 EP 0612958 B1 EP0612958 B1 EP 0612958B1 EP 94300509 A EP94300509 A EP 94300509A EP 94300509 A EP94300509 A EP 94300509A EP 0612958 B1 EP0612958 B1 EP 0612958B1
Authority
EP
European Patent Office
Prior art keywords
oxidant
fuel
jet
combustion
nozzle means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94300509A
Other languages
English (en)
French (fr)
Other versions
EP0612958A2 (de
EP0612958A3 (de
Inventor
Loo T. Yap
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde LLC
Original Assignee
BOC Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Group Inc filed Critical BOC Group Inc
Publication of EP0612958A2 publication Critical patent/EP0612958A2/de
Publication of EP0612958A3 publication Critical patent/EP0612958A3/de
Application granted granted Critical
Publication of EP0612958B1 publication Critical patent/EP0612958B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/32Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid using a mixture of gaseous fuel and pure oxygen or oxygen-enriched air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/20Burner staging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00006Liquid fuel burners using pure oxygen or O2-enriched air as oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00012Liquid or gas fuel burners with flames spread over a flat surface, either premix or non-premix type, e.g. "Flächenbrenner"
    • F23D2900/00013Liquid or gas fuel burners with flames spread over a flat surface, either premix or non-premix type, e.g. "Flächenbrenner" with means for spreading the flame in a fan or fishtail shape over a melting bath

Definitions

  • the present invention relates to a fuel burner apparatus and method for burning a fuel in an oxidant. More particularly, the present invention relates to such a fuel burner apparatus and method in which the oxidant is oxygen or oxygen enriched air.
  • the present invention also relates to a nozzle that is capable of producing a flat, divergent uniform flow of a fluid that is particularly suited for forming oxidant nozzles used in a fuel burner apparatus and method in accordance with the present invention.
  • Fuel burners are used in many industrial applications in which a material to be processed is melted, for example, glass, copper, aluminium, iron, and steel.
  • oxy-fuel burners have evolved in which the fuel is burned in oxygen or oxygen enriched air.
  • These burners generally produce flames having a highly concentrated power output which can in turn produce hot spots in the melt.
  • such burners utilise high velocity oxidant and high mass flow rates of fuel to produce the high power outputs.
  • the concentrated heating tends to evolve volatiles within the melt and the high velocities tend to entrain feed material to the exhaust of the furnace.
  • the entrained feed material and evolved volatiles can thereby be lost and pollute the atmosphere or can form a deposit which accumulates within the furnace or exhaust heat recovery systems used in conjunction with furnaces.
  • a still further problem in oxy-fuel burners is that the high temperature combustion of the fuel in oxygen or oxygen enriched air can produce polluting NO x .
  • the present invention provides a burner apparatus and method that is less susceptible than prior art apparatus and methodology to forming hot spots and entraining feed particles within the flow of oxidant and fuel and further, is readily adaptable to employ a NO x limiting form of combustion.
  • the present invention provides a method of burning fuel in an oxidant comprising producing a fuel jet of outwardly divergent, fan-shaped configuration so that the fuel jet will burn within the oxidant with an outwardly extending and divergent flame; and producing a lower oxidant jet separate and distinct from the fuel jet and below the fuel jet, characterised by producing an upper oxidant jet separate and distinct from the lower oxidant jet and from the fuel jet and above the fuel jet, and by producing the oxidant jets so as to have a lower velocity than the fuel jet such that the oxidant is aspirated into the fuel.
  • the present invention also provides a burner for burning fuel in an oxidant comprising fuel nozzle means for producing a fuel jet of outwardly divergent, fan-shaped configuration, the fuel jet adapted to burn within the oxidant with an outwardly extending and divergent flame, and lower oxidant nozzle means separate and distinct from the fuel nozzle means for producing a lower oxidant jet of outwardly divergent, fan-shaped configuration located below the fuel jet, characterised in that upper oxidant nozzle means are provided, separate and distinct from the lower oxidant nozzle means and from the fuel nozzle means, for producing an upper oxidant jet of outwardly-divergent, fan-shaped configuration located above the fuel jet, in that each of the upper and lower oxidant nozzle means comprises a passageway having an outlet for discharging the oxidant and an inlet to the passageway for introducing a flow of the oxidant into the passageway, and means dividing the passageways in a lengthwise direction thereof and the flow of the oxidant into a plurality of subflows having
  • the fuel jet and oxidant nozzle are outwardly divergent and fan-shaped to produce an outwardly extending flame burning over a wide area.
  • the wide area of combustion has the advantage of permitting high levels of heat input into a melt while eliminating hot spots within the melt.
  • the upper and lower oxidant nozzle means produce low velocity and therefore high pressure oxidant jets which in turn produces a pressure differential to aspirate the oxidant into the fuel. Since, however, the oxidant jets are of low velocity, they tend not to entrain feed particles and thus serve to shield the fuel jet.
  • a nozzle for producing a flat, uniformly divergent flow of a fluid which nozzle is particularly well suited for serving as the upper and lower oxidant nozzle means, comprises a body portion including a passageway.
  • the passageway has an outlet for discharging a fluid flow and an inlet to the passageway for introducing the fluid flow into the passageway.
  • a means is provided for dividing the passageway in a lengthwise direction thereof and thus, the flow of the fluid into a plurality of subflows having velocities of essentially equal magnitude and oriented so as to gradually diverge in a transverse direction of the flow of the fluid.
  • the present invention can be adapted to reduce NO x formation.
  • atmospheric nitrogen can react with oxygen to produce thermal NO x .
  • fuel radicals such as CH can react with atmospheric nitrogen to form prompt NO x .
  • combustion of the fuel occurs in two stages in order to reduce both thermal and prompt NO x formation. In a first of the two stages of combustion, combustion of the fuel within the oxidant supplied by the upper and lower oxidant jets is substoichiometric.
  • the burner further comprises secondary upper and lower oxidant nozzle means separate and distinct from one another and the upper and lower oxidant nozzle and fuel jet means.
  • the upper and lower oxidant nozzle and fuel jet means produce at least one pair of upper and lower secondary oxidant jets of outwardly divergent, fan-shaped configuration located above and below the upper and lower oxidant jets, respectively, for supplying sufficient amounts of oxidant to complete combustion of the fuel.
  • the combustion of the fuel is thereby completed in a second of two stages of combustion.
  • the sufficient amounts of oxidant can either be just that required to complete combustion or alternatively, can be in superstoichiometric amounts.
  • the methodology involved in this aspect of the present invention comprises producing at least one pair of upper and lower secondary oxidant jets of outwardly divergent, fan-shaped configurations at locations above and below the upper and lower oxidant jets, respectively, so as to supply sufficient amounts of oxidant to complete combustion of the fuel.
  • This staging of combustion has been found to lower NO x formation.
  • Burner 10 includes a fuel nozzle 12, which, as will be described, is designed to produce a fuel jet of outwardly divergent, fan-shaped configuration. Such a fuel jet will burn within suitably shaped oxidant jets with an outwardly extending and divergent flame.
  • Upper and lower oxidant nozzles 14 and 16 are provided for producing upper and lower oxidant jets of outwardly divergent, fan-shaped configuration located above and below the fuel jet.
  • the upper and lower oxidant jets of upper and lower oxidant nozzles 14 and 16 have a lower velocity than the fuel jet.
  • Burner 10 is specifically designed to burn natural gas in an oxidant of essentially pure oxygen. It is understood that more generally the teachings set forth herein have applicability to different fuel gases such as hydrogen, ethane, propane, butane, acetylene and liquid fuels such as diesel fuel, heating oils, etc. Additionally the oxidant can be oxygen enriched air.
  • lower oxidant nozzle means 16 can be designed such that the lower oxidant jet has a higher mass flow rate than that of the upper oxidant jet issuing from upper oxidant nozzle 14. This will result in the combustion of the fuel being primarily in oxidant supplied by the lower oxidant jet of higher mass flow rate with the increasingly more buoyant unburned fuel burning in the oxidant supplied by the upper oxidant jet.
  • an embodiment of the present invention could be constructed with upper and lower oxidant nozzles producing oxidant jets of equal mass flow rates.
  • Burner 10 is provided with a body 18 of elongated configuration having top and bottom walls 20 and 22 and side walls 24 and 26. Angled reinforcement members 28-34 are provided to stiffen body portion 18. Central fuel nozzle 12 divides body portion 18 into upper and lower oxidant nozzles 14 and 16 which include upper and lower passageways 36 and 38 having outlets 40 and 42 and inlets 44 and 46.
  • a coupling assembly 48 is connected to the rear of body portion 18 to introduce oxidant into body portion 18 which in turn flows into inlets 44 and 46 of upper and lower oxidant nozzles 14 and 16 and thereafter, flows of outlets 40 and 42 thereof.
  • Fuel nozzle 12 is supported within body 18 by upper and lower sets of vanes 50 and 52. Vanes 50 and 52 are connected to top and bottom walls 20 and 22 and to fuel nozzle 12. Vanes 50 and 52 divide passageways 36 and 38 in the lengthwise direction and therefore the flow of oxidant passing through upper and lower passageways 36 and 38 into a plurality of subflows. Vanes 50 and 52 are specifically designed such that the velocities of the subflows will have an essentially equal magnitude and be oriented so as to gradually diverge in a transverse direction to the flow of the oxidant.
  • vanes 50 and 52 which are designed such that tangents drawn at their maximum curvatures all intersect at one location within the respective of the passageways 40 and 42 of which vanes 50 and 52 subdivide. Although hidden, the vanes extend rearwardly to the inlets 44 and 46 of upper and lower oxidant nozzles 14 and 16.
  • a further advantage of the vaned upper and lower oxidant nozzles is that the vanes allow for effective self cooling of burner 10 without external water cooling.
  • upper and lower oxidant nozzles 14 and 16 are designed such that the lower oxidant jet will have a higher mass flow rate than the upper oxidant nozzle jet. This is effected by appropriately sizing the rectangular, transverse cross-section of upper and lower oxidant nozzles to be in a ratio of cross-sectional areas smaller than unity. The ratios are preferably in a range of between about 0.125 and about 0.5.
  • oxidant nozzles 14 and 16 could be used in other applications.
  • an oxidant nozzle could be designed in the manner provided herein for use in creating a flat, fan-shaped outwardly divergent field of oxidant below a fuel jet or burner or in other words, for oxygen-lancing purposes.
  • fuel nozzle 12 is preferably formed in two sections 56 and 58.
  • Fuel nozzle 12 is in the form therefore of a central body portion having a chamber 60 and a plurality of passageways 62 of equal length, spaced apart from one another, and gradually fanning out from chamber 60.
  • Chamber 60 communicates between passages 62 and a fuel inlet 64 such that fuel flows from fuel inlet 64 and out of passages 62.
  • Passages 62 gradually fan out from chamber 60 so that the resultant fuel jet will fan out.
  • the equal length of passages 62 produce an equal pressure drop and therefore equal velocity so that the fuel jet will fan out or horizontally diverge with little decay.
  • the ratio of the average velocities of the fuel versus oxidant is approximately 13.5 to 1.0.
  • a conduit 66 of rectangular-transverse cross-section connects to a coupling 68 by means of a transition piece 70 which transitions from a circular, transverse cross-section to a rectangular, transverse cross-section. If fuel nozzle 12 were to be employed to burn liquid fuels, suitable fuel nozzles (known well in the art) would have to be attached to passages 62.
  • FIGs. 5, 6 and 7 an alternative embodiment of a fuel burner apparatus of the present invention is illustrated.
  • the illustrated embodiment stages oxidant into the fuel to reduce polluting NO x emissions while producing a flame pattern illustrated in Figs. 8 and 9 which is horizontally divergent, fan-shaped and resistant to decay along the length of the flame pattern.
  • This is effected with the use of burner 10 such that fuel and oxidant is supplied from oxidant nozzles 14 and 16 in substoichiometric amounts or in other words the oxidant supplied does not completely support combustion of the fuel.
  • combustion of fuel is completed in upper and lower secondary oxidant jets of outwardly divergent, fan-shaped configuration supplied at locations above and below the upper and lower oxidant jets, respectively, by upper and lower secondary oxidant nozzles 72 and 74 set within a burner block 75 along with burner 10.
  • the incomplete combustion occurs in a first stage of the combustion and the completed combustion occurs in a second stage of the combustion located downstream from the first stage of the combustion.
  • NO x emissions are also lowered by the spacing of passages 62 of fuel nozzle 12. The spaces between passages 62 permit recirculation zones to aspirate combustion gases into the fuel and thereby reduce NO x emissions.
  • Upper and lower secondary oxidant nozzles 72 and 74 have opposed side walls 76 and 78 (for upper secondary oxidant nozzle 72) and 80 and 82 (for lower secondary oxidant nozzle 74) connected to sets of top and bottom walls 84, 85, 86 and 87 are provided which are connected to side walls 76 and 78 and 80 and 82 of upper and lower secondary oxidant nozzles 72 and 74, respectively.
  • the nozzles are also provided with back walls 88 and 90.
  • Nozzles 72 and 74 are also provided with rectangular discharge outlets 92 and 94 and vanes 96 and 98 having the same configuration as vanes 34 and 36 of upper and lower nozzles 14 and 16.
  • discharge outlets 92 and 94 are designed to inject oxidant in the same ratio as upper and lower nozzles 14 and 16, an embodiment of the present invention is possible in which discharge outlets 92 and 94 have the same cross-sectional area and therefore possibly not in the same ratio of upper and lower nozzles 14 and 16.
  • nozzle 72 is provided with a front wall 97 within which discharge outlet 92 is defined.
  • Nozzles 72 and 74 and burner 10 are set within passages 100, 102, and 104 provided in burner block 75. It should be noted that passage 102 recesses burner 10 from nozzles 72 and 74 to allow for the downstream injection of oxidant by nozzles 72 and 74 and therefore the second stage of combustion. Furthermore, the surfaces 106, 108, 110, and 112 of burner block 75, located in front of burner 10 and forming the front of passage 102, are designed to allow the flame produced by burner 10 to gradually diverge.
  • Conventional quick-disconnect fittings 114 and 116 are connected to upper and lower secondary oxidant nozzles 72 and 74, respectively, for introducing the secondary oxidant into the upper and lower secondary oxidant nozzles 72 and 74, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Combustion Of Fluid Fuel (AREA)

Claims (13)

  1. Verfahren zum Verbrennen von Brennstoff in einem Oxidationsmittel, wobei das Verfahren umfaßt:
    Erzeugen eines Brennstoffstrahls mit nach außen divergierender fächerförmiger Konfiguration, so daß der Brennstoffstrahl innerhalb des Oxidationsmittels mit einer auswärts verlaufenden und divergierenden Flamme verbrennt, und Erzeugen eines unteren Oxidationsmittelstrahls getrennt und verschieden von dem Brennstoffstrahl und unterhalb des Brennstoffstrahls,
    gekennzeichnet durch Erzeugen eines oberen Oxidationsmittelstrahls getrennt und verschieden von dem unteren Oxidationsmittelstrahl und von dem Brennstoffstrahl und oberhalb des Brennstoffstrahls, und durch Erzeugen der Oxidationsmittelstrahlen derart, daß diese eine kleinere Geschwindigkeit als der Brennstoffstrahl haben, derart, daß das Oxidationsmittel in den Brennstoff hineingesaugt wird.
  2. Verfahren nach Anspruch 1, wobei unverbrannter Brennstoff entlang der Flammenlänge fortschreitend mehr aufschwimmt wird, dadurch gekennzeichnet, daß der untere Oxidationsmittelstrahl einen größeren Massendurchsatz als der obere Oxidationsmittelstrahl hat, derart, daß die Verbrennung des Brennstoffs hauptsächlich in dem von dem unteren Oxidationsmittelstrahl zugeführten Oxidationsmittel erfolgt und der zunehmend stärker aufschwimmende unverbrannte Brennstoff in dem von dem oberen Oxidationsmittelstrahl zugeführten Oxidationsmittel verbrannt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der obere und der untere Oxidationsmittelstrahl jeweils eine auswärts divergierende und fächerförmige Konfiguration haben.
  4. Verfahren nach Anspruch 1, 2 oder 3, weiter dadurch gekennzeichnet, daß die Verbrennung des Brennstoffs innerhalb des von dem oberen und dem unteren Oxidationsmittelstrahl zugeführten Oxidationsmittel substöchiometrisch erfolgt und eine erste Stufe der Verbrennung darstellt, und daß das Verfahren weiter das Erzeugen mindestens eines Paars oberer und unterer Sekundäroxidationsmittelstrahlen mit auswärts divergierender fächerförmiger Konfiguration an Stellen oberhalb und unterhalb des oberen und des unteren Oxidationsmittelstrahls umfaßt, um ausreichende Mengen an Oxidationsmittel zur vollständigen Verbrennung des Brennstoffs in einer zweiten Verbrennungsstufe stromab der ersten Verbrennungsstufe zuzuführen.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der bzw. jeder Oxidationsmittelstrahl durch Aufteilen einer Oxidationsmittelströmung in eine Vielzahl von Teilströmungen mit Geschwindigkeiten von im wesentlichen gleicher Größe und solcher Orientierung erzeugt wird, daß der Strahl in Richtung quer zur Oxidationsmittelströmung allmählich divergiert.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verhältnis der mittleren Geschwindigkeiten des Brennstoffs gegenüber dem Oxidationsmittel etwa 13,5 zu 1,0 beträgt.
  7. Brenner (10) zum Verbrennen von Brennstoff in einem Oxidationsmittel, mit einer Brennstoffdüsenanordnung (12) zum Erzeugen eines Brennstoffstrahls mit auswärts divergierender fächerförmiger Konfiguration, wobei der Brennstoffstrahl für eine Verbrennung in dem Oxidationsmittel mit einer auswärts verlaufenden und divergierenden Flamme ausgelegt ist, und mit einer unteren Oxidationsmitteldüsenanordnung (16), die von der Brennstoffdüsenanordnung (12) getrennt und verschieden ist, um einen unteren Oxidationsmittelstrahl mit auswärts divergierender fächerförmiger Konfiguration zu erzeugen, der sich unterhalb des Brennstoffstrahls befindet, dadurch gekennzeichnet, daß eine obere Oxidationsmitteldüsenanordnung (14) getrennt und verschieden von der unteren Oxidationsmitteldüsenanordnung (16) und von der Brennstoffdüsenanordnung (12) vorgesehen ist, um einen oberen Oxidationsmittelstrahl mit auswärts divergierender fächerförmiger Konfiguration zu erzeugen, der sich oberhalb des Brennstoffstrahls befindet, wobei die obere und die untere Oxidationsmitteldüsenanordnung (14, 16) jeweils einen Kanal (16, 38) mit einem Auslaß (40, 42) für den Austritt des Oxidationsmittels und einem Einlaß (44, 46) in den Kanal (36, 38) zum Einleiten einer Oxidationsmittelströmung in dem Kanal (36, 38) aufweist und Mittel (50, 52) zur Unterteilung der Kanäle (36, 38) in dessen Längsrichtung und der Oxidationsmittelströmung in eine Vielzahl von Teilströmungen mit im wesentlichen gleicher Größe und solcher Orientierung vorgesehen sind, daß sie in Richtung quer zur Oxidationsmittelströmung allmählich divergieren, und daß jede Oxidationsmitteldüsenanordnung (14, 16) zur Erzeugung eines Oxidationsmittelstrahl mit einer niedrigeren Geschwindigkeit als der Brennstoffstrahl ausgelegt ist, derart, daß das Oxidationsmittel in den Brennstoff eingesaugt wird.
  8. Brenner (10) nach Anspruch 7, wobei unverbrannter Brennstoff entlang der Flammenlänge fortschreitend mehr aufschwimmt, dadurch gekennzeichnet, daß die obere und die untere Oxidationsmitteldüsenanordnung (14, 16) so ausgelegt sind, daß der untere Oxidationsmittelstrahl einen höheren Massendurchsatz als der obere Oxidationsmittelstrahl hat, derart, daß die Verbrennung des Brennstoffs hauptsächlich in dem vom unteren Oxidationsmittelstrahl zugeführten Oxidationsmittel stattfindet und der zunehmend stärker aufschwimmende unverbrannte Brennstoff in dem vom oberen Oxidationsmittelstrahl zugeführten Oxidationsmittel verbrennt.
  9. Brenner (10) nach Anspruch 8, dadurch gekennzeichnet, daß der rechteckige Querschnitt des Kanals der unteren Oxidationsmitteldüsenanordnung in (16) eine größere Querschnittsfläche als derjenige der oberen Oxidationsmitteldüsenanordnung (14) aufweist, derart, daß der untere Oxidationsmittelstrahl einen größeren Massendurchsatz als der obere Oxidationsmittelstrahl aufweist.
  10. Brenner (10) nach Anspruch 7, 8 oder 9, wobei die Verbrennung des Brennstoffs in den von dem oberen und dem unteren Oxidationsmittelstrahl zugeführten Oxidationsmittel substöchiometrisch erfolgt und in einer ersten Verbrennungsstufe auftritt, dadurch gekennzeichnet, daß der Brenner (10) jeweils eine sekundäre obere und untere Oxidationsmitteldüsenanordnung (72, 74) getrennt und verschieden voneinander und von der unteren und er oberen Oxidationsmitteldüsenanordnung (14, 16) und der Brennstoffdüsenanordnung (12) aufweist, die mindestens ein Paar von oberen und unteren Sekundär-Oxidationsmittelstrahlen mit auswärts divergierender fächerförmiger Konfiguration oberhalb und unterhalb des oberen und unteren Oxidationsmittelstrahls erzeugen, um ausreichende Mengen Oxidationsmittel zuzuführen, um die Verbrennung des Brennstoffs in einer zweiten Verbrennungsstufe vollständig zu bewerkstelligen.
  11. Brenner (10) nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß jeder Kanal (36, 38) einen rechteckigen Querschnitt hat und das die Brennstoffdüsenanordnung (12) einen mittigen Düsenteil mit einer Kammer (60), einem Brennstoffeinlaß (64) zur Kammer (60), einem Brennstoffeinlaß (64) zur Kammer (60), und einer Mehrzahl von Kanälen (62) mit gleicher Länge und mit Abstand voneinander und allmählich fächerförmig von der Kammer (60) aus verlaufend aufweist, derart, daß Brennstoff aus dem Brennstoffeinlaß (64) in die Kammer (60) und dann aus den Kanälen (62) mit gleichem Druckgefälle und daher gleicher Geschwindigkeit ausströmt, um dann zu verschmelzen und den Brennstoffstrahl zu erzeugen.
  12. Brenner (10) nach Anspruch 11, wobei das Verhältnis der Querschnittsflächen der Querschnitte der oberen und der unteren Oxidationsmitteldüsenanordnung (14, 16) im Bereich zwischen etwa 0,125 und etwa 0,5 liegt.
  13. Brenner (10) nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß die den Kanal unterteilenden Mittel eine Mehrzahl von auswärts bogenförmig verlaufenden Leitwänden (50, 52) sind.
EP94300509A 1993-02-26 1994-01-24 Verbrennungsverfahren und Kraftstoffbrennervorrichtung mit divergierender Düse Expired - Lifetime EP0612958B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23511 1979-03-23
US08/023,511 US5299929A (en) 1993-02-26 1993-02-26 Fuel burner apparatus and method employing divergent flow nozzle

Publications (3)

Publication Number Publication Date
EP0612958A2 EP0612958A2 (de) 1994-08-31
EP0612958A3 EP0612958A3 (de) 1994-10-26
EP0612958B1 true EP0612958B1 (de) 1998-09-09

Family

ID=21815527

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94300509A Expired - Lifetime EP0612958B1 (de) 1993-02-26 1994-01-24 Verbrennungsverfahren und Kraftstoffbrennervorrichtung mit divergierender Düse

Country Status (10)

Country Link
US (2) US5299929A (de)
EP (1) EP0612958B1 (de)
JP (1) JP3426320B2 (de)
CN (1) CN1094146A (de)
AT (1) ATE170967T1 (de)
AU (1) AU673871B2 (de)
CA (1) CA2110829C (de)
DE (1) DE69413091T2 (de)
NZ (1) NZ250362A (de)
PL (1) PL174969B1 (de)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5516279A (en) 1994-07-06 1996-05-14 The Boc Group, Inc. Oxy-fuel burner system designed for alternate fuel usage
US5575637A (en) * 1994-11-04 1996-11-19 Air Products And Chemicals, Inc. Method and device for low-NOx high efficiency heating in high temperature furnaces
US5546874A (en) * 1994-12-22 1996-08-20 Duquesne Light Company Low nox inter-tube burner for roof-fired furnaces
US5694869A (en) * 1994-12-29 1997-12-09 Duquesne Light Company And Energy Systems Associates Reducing NOX emissions from a roof-fired furnace using separated parallel flow overfire air
US5545031A (en) * 1994-12-30 1996-08-13 Combustion Tec, Inc. Method and apparatus for injecting fuel and oxidant into a combustion burner
US5567141A (en) * 1994-12-30 1996-10-22 Combustion Tec, Inc. Oxy-liquid fuel combustion process and apparatus
US5725367A (en) * 1994-12-30 1998-03-10 Combustion Tec, Inc. Method and apparatus for dispersing fuel and oxidant from a burner
US5500033A (en) * 1995-01-23 1996-03-19 The Boc Group, Inc. Melt heating method
EP0754912B1 (de) * 1995-07-17 2004-06-09 L'air Liquide, S.A. à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Verbrennungsverfahren und Vorrichtung dafür mit getrennter Einspritzung von Brennstoff und Oxydationsmittel
US5984667A (en) * 1995-07-17 1999-11-16 American Air Liquide, Inc. Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
US5611682A (en) * 1995-09-05 1997-03-18 Air Products And Chemicals, Inc. Low-NOx staged combustion device for controlled radiative heating in high temperature furnaces
US5814121A (en) * 1996-02-08 1998-09-29 The Boc Group, Inc. Oxygen-gas fuel burner and glass forehearth containing the oxygen-gas fuel burner
US5975886A (en) 1996-11-25 1999-11-02 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
TW393675B (en) * 1998-03-04 2000-06-11 United Microelectronics Corp Reacting gas injector for the horizontal oxidation chamber pipe
FR2777068B1 (fr) * 1998-04-02 2000-05-05 Air Liquide Procede de combustion par injections separees du combustible et du comburant
US6132204A (en) 1998-06-30 2000-10-17 Praxair Technology, Inc. Wide flame burner
US6705117B2 (en) 1999-08-16 2004-03-16 The Boc Group, Inc. Method of heating a glass melting furnace using a roof mounted, staged combustion oxygen-fuel burner
DE60025924D1 (de) * 1999-08-17 2006-04-20 Nippon Furnace Kogyo K K Verbrennungsverfahren und brenner
CA2395482C (en) * 1999-12-21 2007-07-17 Black Clawson Company, Inc. Multiple layer combining adapter
WO2002061163A2 (en) * 2001-02-01 2002-08-08 Microcoating Technologies, Inc. Chemical vapor deposition devices and methods
FR2823290B1 (fr) 2001-04-06 2006-08-18 Air Liquide Procede de combustion comportant des injections separees de combustible et d oxydant et ensemble bruleur pour la mise en oeuvre de ce procede
US6659762B2 (en) 2001-09-17 2003-12-09 L'air Liquide - Societe Anonyme A' Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Oxygen-fuel burner with adjustable flame characteristics
US7390189B2 (en) * 2004-08-16 2008-06-24 Air Products And Chemicals, Inc. Burner and method for combusting fuels
SE527766C2 (sv) * 2004-10-22 2006-05-30 Sandvik Intellectual Property Förfarande för förbränning med brännare för industriugnar, jämte brännare
US7802452B2 (en) * 2005-12-21 2010-09-28 Johns Manville Processes for making inorganic fibers
US7581948B2 (en) * 2005-12-21 2009-09-01 Johns Manville Burner apparatus and methods for making inorganic fibers
US7901204B2 (en) * 2006-01-24 2011-03-08 Exxonmobil Chemical Patents Inc. Dual fuel gas-liquid burner
US7909601B2 (en) * 2006-01-24 2011-03-22 Exxonmobil Chemical Patents Inc. Dual fuel gas-liquid burner
US8075305B2 (en) * 2006-01-24 2011-12-13 Exxonmobil Chemical Patents Inc. Dual fuel gas-liquid burner
US20070232739A1 (en) * 2006-03-30 2007-10-04 General Electric Company Thermoplastic polycarbonate compositions with improved mechanical properties, articles made therefrom and method of manufacture
US20100159409A1 (en) * 2006-06-05 2010-06-24 Richardson Andrew P Non-centric oxy-fuel burner for glass melting systems
US20070281264A1 (en) * 2006-06-05 2007-12-06 Neil Simpson Non-centric oxy-fuel burner for glass melting systems
US20080096146A1 (en) * 2006-10-24 2008-04-24 Xianming Jimmy Li Low NOx staged fuel injection burner for creating plug flow
JP5229957B2 (ja) * 2008-02-27 2013-07-03 信越化学工業株式会社 光ファイバ用ガラス母材製造用バーナ
DE102008063101A1 (de) 2008-12-24 2010-07-01 Messer Austria Gmbh Flachflammenbrenner und Verfahren zum Betreiben eines Flachflammenbrenners
JP5395535B2 (ja) * 2009-06-26 2014-01-22 大阪瓦斯株式会社 燃焼設備構造
CN101696800B (zh) * 2009-10-22 2011-01-19 中国计量学院 变截面微油燃烧室
JP5421728B2 (ja) * 2009-10-23 2014-02-19 大阪瓦斯株式会社 溶解炉用の燃焼装置及び溶解炉
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US8707739B2 (en) 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass
US8769992B2 (en) 2010-06-17 2014-07-08 Johns Manville Panel-cooled submerged combustion melter geometry and methods of making molten glass
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US8650914B2 (en) 2010-09-23 2014-02-18 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
EP2903941A4 (de) 2012-10-03 2016-06-08 Johns Manville Verfahren und systeme zur destabilisierung von schaumstoffen in einer einem unterwasserverbrennungsschmelzofen nachgeschalteten vorrichtung
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US10138151B2 (en) 2013-05-22 2018-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
WO2014189502A1 (en) 2013-05-22 2014-11-27 Johns Manville Improved burner for submerged combustion melting
US10654740B2 (en) 2013-05-22 2020-05-19 Johns Manville Submerged combustion burners, melters, and methods of use
US10183884B2 (en) 2013-05-30 2019-01-22 Johns Manville Submerged combustion burners, submerged combustion glass melters including the burners, and methods of use
US9731990B2 (en) 2013-05-30 2017-08-15 Johns Manville Submerged combustion glass melting systems and methods of use
WO2015007252A1 (en) 2013-07-15 2015-01-22 Flammatec, Spol. S R.O. The way of gas combustion in industrial furnaces and burner for realization of this method
WO2015009300A1 (en) 2013-07-18 2015-01-22 Johns Manville Fluid cooled combustion burner and method of making said burner
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
JP6121024B1 (ja) * 2016-04-22 2017-04-26 大阪瓦斯株式会社 溶解炉用の燃焼装置、及びそれを備えた溶解炉
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
US20230184427A1 (en) 2020-05-19 2023-06-15 Flammatec, Spol. S R.O. Method and burner of hydrogen combustion in industrial furnace, especially in a glass furnace or a furnace for metal melting, by means of a multi nozzle burner

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US441810A (en) * 1890-12-02 strawson
US1159249A (en) * 1915-05-22 1915-11-02 Andrew J Morton Twin oil-burner.
US1513828A (en) * 1922-01-10 1924-11-04 Robert B Kernohan Structure and method of operation of heating furnaces
US1870066A (en) * 1930-03-27 1932-08-02 Olson Louis Oil burner
US2314078A (en) * 1941-02-26 1943-03-16 Elizabeth Anderton Window drier
DE874562C (de) * 1943-02-16 1953-04-23 Daimler Benz Ag Luftduese, insbesondere Entfroster- und Frischluftduese fuer Heizungs- und Lueftungseinrichtungen von Kraftfahrzeugen
US2684690A (en) * 1949-10-01 1954-07-27 Paper Patents Co Flow control apparatus
US2864406A (en) * 1954-09-01 1958-12-16 Schewel Abe Exhaust deflector
US3685740A (en) * 1969-10-29 1972-08-22 Air Reduction Rocket burner with flame pattern control
US3998393A (en) * 1976-01-20 1976-12-21 The United States Of America As Represented By The Secretary Of The Air Force Supersonic diffuser
FR2369005A1 (fr) * 1976-10-29 1978-05-26 Neu Ets Dispositif pour epandage de poudre
SU858932A1 (ru) * 1979-12-13 1981-08-30 Проектно-конструкторское бюро по проектированию оборудования для производства пластических масс и синтетических смол Щелевое сопло
CA1337097C (en) * 1988-04-01 1995-09-26 Loo Tjay Yap Method and apparatus for gas lancing
US5199867A (en) * 1991-09-30 1993-04-06 The Boc Group, Inc. Fuel-burner apparatus and method for use in a furnace

Also Published As

Publication number Publication date
DE69413091T2 (de) 1999-06-02
EP0612958A2 (de) 1994-08-31
AU673871B2 (en) 1996-11-28
ATE170967T1 (de) 1998-09-15
JPH074623A (ja) 1995-01-10
PL174969B1 (pl) 1998-10-30
CA2110829C (en) 1996-07-23
EP0612958A3 (de) 1994-10-26
AU5503594A (en) 1994-09-01
US5360171A (en) 1994-11-01
DE69413091D1 (de) 1998-10-15
US5299929A (en) 1994-04-05
CA2110829A1 (en) 1994-08-27
CN1094146A (zh) 1994-10-26
NZ250362A (en) 1995-04-27
PL302394A1 (en) 1994-09-05
JP3426320B2 (ja) 2003-07-14

Similar Documents

Publication Publication Date Title
EP0612958B1 (de) Verbrennungsverfahren und Kraftstoffbrennervorrichtung mit divergierender Düse
RU2288405C2 (ru) Способ сжигания, включающий раздельное инжектирование топлива и окислителя, а также устройство для сжигания, предназначенное для осуществления данного способа
US5934899A (en) In-line method of burner firing and NOx emission control for glass melting
CN100381755C (zh) 具有辅助点火燃料喷管的分段燃烧系统
US5545031A (en) Method and apparatus for injecting fuel and oxidant into a combustion burner
EP1627855B1 (de) Brenner und Verfahren zum Verbrennen von Brennstoffen
RU2426030C2 (ru) УЗЕЛ ГОРЕЛОК С УЛЬТРАНИЗКОЙ ЭМИССИЕЙ NOx
US5346524A (en) Oxygen/fuel firing of furnaces with massive, low velocity, turbulent flames
EP0877203A1 (de) Verbrennungsvorrichtung mit zweifacher Oxidationsmitteleinfuhr
CN101852430A (zh) 柯恩达气体燃烧器装置和方法
EP0535846B1 (de) Brenner
US5643348A (en) Oxygen/fuel fired furnaces having massive, low velocity, turbulent flame clouds
JPH05141631A (ja) 囲い内の加熱方法及びバーナ
US8021145B2 (en) Gas burners
AU2008200617B2 (en) Burner and method for combusting fuels
CA2175934C (en) Fuel burner apparatus and method employing divergent flow nozzle
SU1763801A1 (ru) Способ ступенчатого сжигани топлива

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IE IT LI LU NL PT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19941109

17Q First examination report despatched

Effective date: 19960926

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980909

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980909

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980909

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980909

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980909

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980909

REF Corresponds to:

Ref document number: 170967

Country of ref document: AT

Date of ref document: 19980915

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69413091

Country of ref document: DE

Date of ref document: 19981015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990114

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990118

Year of fee payment: 6

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19990126

Year of fee payment: 6

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19990218

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000124

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000124

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050117

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050228

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080129

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090124