EP0600003B1 - Procede de compensation de la temperature de diodes zener presentant des coefficients de temperature soit positifs soit negatifs - Google Patents

Procede de compensation de la temperature de diodes zener presentant des coefficients de temperature soit positifs soit negatifs Download PDF

Info

Publication number
EP0600003B1
EP0600003B1 EP92918698A EP92918698A EP0600003B1 EP 0600003 B1 EP0600003 B1 EP 0600003B1 EP 92918698 A EP92918698 A EP 92918698A EP 92918698 A EP92918698 A EP 92918698A EP 0600003 B1 EP0600003 B1 EP 0600003B1
Authority
EP
European Patent Office
Prior art keywords
voltage
temperature
segment
zener
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92918698A
Other languages
German (de)
English (en)
Other versions
EP0600003A4 (fr
EP0600003A1 (fr
Inventor
Adrian Paul Brokaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Analog Devices Inc
Original Assignee
Analog Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Analog Devices Inc filed Critical Analog Devices Inc
Publication of EP0600003A1 publication Critical patent/EP0600003A1/fr
Publication of EP0600003A4 publication Critical patent/EP0600003A4/fr
Application granted granted Critical
Publication of EP0600003B1 publication Critical patent/EP0600003B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
    • G05F1/463Sources providing an output which depends on temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/18Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using Zener diodes

Definitions

  • This invention relates to temperature-compensated Zener-diode voltage references. More particularly, this invention relates to a so-called "auto-TC" voltage reference wherein trimming of a circuit resistance to give a predetermined output voltage will simultaneously optimize the temperature compensation for that output voltage.
  • EP-A-0 220 789 shows a Zener-diode circuit for use with CMOS processes where parasitic bipolar transistors are produced as part of the CMOS process. Such bipolar-transistors are formed in such a fashion that the circuit designer cannot make independent connections to their collector. Thus, a special circuit arrangement is required.
  • the object of the present invention is to provide a temperature-compensated Zener-diode voltage reference and a corresponding method which automatically produces zero TC at the output voltage.
  • the present invention in one preferred embodiment provides an auto-TC voltage reference wherein an operational amplifier receives at one input the voltage of a Zener diode and at its other input receives a compensation signal from a feedback circuit comprising a transistor and resistor network. When one of the resistors of the network is trimmed to give a nominal output voltage for the reference, the TC of the reference voltage will have been reduced to zero, or nearly so.
  • the circuitry is capable of compensating Zener diodes of either positive or negative TC.
  • the graph of Figure 1 depicts in an idealized manner the temperature response characteristics of the avalanche voltage (V z ) versus temperature of a group of Zener diodes produced by the same process.
  • the slopes of upper and lower solid lines 10 and 12 illustrate extremes of positive and negative temperature coefficients (TC) respectively. Any one diode made by the process can have a TC which lies anywhere between these extremes. It will be assumed in the following discussion that the temperature response characteristic is linear, which is approximately correct as a practical matter.
  • T m is shown as being negative on the absolute or Kelvin scale, which is generally true in practice. Although such a negative T m is not a realizable operating point, it is useful for analysis as an extrapolation of Zener behavior in a normal operating temperature range.
  • This circuit includes an operational amplifier 20 having its non-inverting input terminal 22 connected to the positive electrode of a Zener diode 24 producing a voltage V z .
  • the other Zener electrode is connected to a common line 26.
  • the Zener voltage generally is temperature sensitive, as discussed above with reference to Figure 1.
  • the output terminal 28 of the amplifier 20 produces an output voltage V o responsive to the applied Zener voltage.
  • a negative feedback circuit generally indicated at 30 is connected between the output terminal 28 and the common line 26.
  • This feedback circuit 30 includes a number of series-connected elements comprising a first segment 32 with a resistor R1 and diode D1, a second segment 34 with a resistor R2 and a diode D2, and a resistor R3.
  • the junction point 36 between the two segments 32, 34 is connected to the inverting input terminal 38 of the amplifier 20.
  • the Zener diode 24 has a zero TC (rare, but possible)
  • the output V o will be temperature invariant.
  • the V BE of a diode has a negative TC, the current in the feedback circuit nevertheless will vary with temperature.
  • R3 now is made greater than zero (R3 > 0)
  • the output V o will increase due to the added voltage drop across R3 resulting from the feedback current.
  • This added increment to the output voltage will have a positive TC (since the feedback current will in the circumstances noted above have a positive TC).
  • the positive TC of the voltage across R3 can compensate for the negative TC of the Zener voltage V z , so that the output V o can be made (essentially) invariant with temperature.
  • the initial value of R2 can be set significantly less than R1 (R2 ⁇ R1), and R2 can be thought of as R2 "nominal" in series with an initially negative R3 of relatively large value.
  • the circuit without any trimming should be capable of compensating for a limiting (maximum) positive TC in the Zener 24. Since the actual Zener normally will have a less positive TC than this limiting value, R2 can be trimmed up (increased in ohmic value) until the correct magnitude is reached to provide compensation for the actual Zener involved (including Zeners with negative TC).
  • Zener TC The range of Zener TC which can be compensated is constrained by the relationship between the diode V BE and the magnitude of the Zener voltage V z which determines the maximum TC of the current in R1 and R2. To increase this range, more diodes can be added to both feedback segments 32, 34.
  • V BE voltage multiplier
  • the feedback voltage for input terminal 38 is tapped off an intermediate point 36A between R4 and R5.
  • the V BE of one transistor can be "multiplied" to provide effective junction drops in both feedback segments 32A and 34A.
  • the V BE is effectively multiplied by ( 1 + (R4 + R5)/R6 ), and this multiplied voltage is divided between the lower and upper segments in proportions determined by the resistance values.
  • V o can be made a convenient value higher than V m .
  • the nominal value of V o to which the output will be trimmed must be higher than the maximum anticipated Zener voltage by an amount which allows for the temperature compensation voltage.
  • trimming to increase the output TC will increase the output voltage V o .
  • trimming to decrease the output TC (by making R2 ⁇ kR1) will lower the output voltage V o .
  • the direction of voltage change is correct for providing an auto-TC compensation. To achieve that result, it is necessary to establish correct proportions between the output voltage adjustment (change in V o ), and the induced TC.
  • the output voltage V o changed only about 4 millivolts peak-to-peak, in a convex curve centered roughly about 6 volts, with the output lower than 6V at both ends of the curve.
  • a V o of 6 volts at room temperature was obtained when R2 was trimmed to 4.56K.
  • the output changed by only about 5mV peak-to-peak over the same 180° temperature sweep, in a curve which was inverted relative to the positive TC Zener curve.
  • R1 can be chosen to give any nominal current through the feedback network at a given temperature. Since V c has a TC proportional to its value, the TC of the current can be adjusted by adjusting V C . Thus it is possible to independently choose the current and the TC of the current, over some range. This is what makes it possible to find a single value of R3 which compensates both the TC of V o to zero (or nearly so) and simultaneously sets the output voltage at (1 + k)V m .
  • V c the voltage at which the Zener has a voltage V m and zero TC. In this case, it will not be necessary to adjust R3 away from zero, the feedback ratio will be (1 + k) at all temperatures, and both V x and V o will equal (1 + k)V m .
  • V o should be at (1 + k)V m at any temperature, including T m .
  • R3 is not zero, the ratio of the resistive parts of the feedback would not be (1 + k), although the voltage source component ratio always is.
  • V BE has a negative TC and its voltage extrapolates to go through the bandgap voltage (approximately 1.2V) at 0°K.
  • V c to be a multiple of V BE makes it possible to develop such a voltage which extrapolates to V m at T m .
  • Using k times this multiple of V BE as the voltage source in the upper segment 34B of the feedback completes the compensation so that trimming R3 to bring V o to (1 + k)V m should also cause the TC of V o to be zero.
  • the magnitude of V c is set by the values of the resistors in the feedback network.
  • the total voltage across all three feedback resistors R4, R5 and R6 similarly will be 6V, since that is the selected output voltage.
  • R5 +R6 R4 4.52 6 - 4.52 ⁇ 3.04 It will be seen that the V BE multiplier should produce a total of about 4 V BE s, with one V BE across R6, about two V BE s across R5, and about one V BE across R4.
  • V o V x + V 3
  • V c is not a battery, but something constructed of forward-biased diode drops. Therefore, it must have some bias current to operate which implies that the voltage across R1 must be positive for all operating temperatures and bias conditions.
  • T-T m will always be positive, since T m is often less than 0° Kelvin. Therefore the constraint that ( ⁇ 1 - ⁇ 2 ) (T-T m ) > 0 requires that ⁇ 1 - ⁇ 2 > 0 or ⁇ 1 > ⁇ 2 . Since it is desired to accommodate a range of ⁇ 1 which may be positive or negative, ⁇ 2 must be made more negative than the most negative value of ⁇ 1 . That is, the TC of the compensating voltage must be more negative than the most negative Zener TC expected from the process.
  • the largest component of this expression is the second term which is linear in T.
  • the third term usually reduces the effect of the fourth term, although the circuit described here does not force a strictly PTAT collector current as is often done in bandgap circuits.
  • FIG. 5 presents a detailed circuit diagram of a voltage reference in accordance with this invention and suitable for adaptation to IC format.
  • a dashed-line box 20 indicates the operational amplifier, as shown in the somewhat simplified diagrams previously discussed.
  • the feedback circuit 30A is of the V BE -multiplier type described with reference to Figure 3.
  • a start-up circuit 46 is provided in the usual way.
  • Figure 6 presents a modified form of feedback circuit 30C for the voltage reference of Figure 5, to reduce errors due to base current in the V BE multiplier transistor Q4.
  • a pair of diode-connected transistors Q10 and Q11 have been connected in series with the transistor Q4 to produce the required integral number of V BE s, with the fractional part for the lower feedback segment being supplied by the V BE multiplier across R5.
  • an additional transistor-connected diode Q5 has been inserted between R4 and R2 with the fractional part of V BE for the upper segment appearing across R4.
  • the voltage between the network junction point 36C and the top of R1 will be about 3-1/3 V BE s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)

Claims (16)

  1. Référence de tension compensée en température à utiliser avec une classe de diodes Zener fabriquée par un seul processus, ladite référence de tension comprenant:
    un amplificateur (20) ayant des moyens d'entrée et un circuit de sortie permettant de produire une tension de référence;
    une diode Zener (24) de ladite classe connectée auxdits moyens d'entrée de l'amplificateur;
    un réseau de contre-réaction (30) couplé audit circuit de sortie;
    ledit réseau de contre-réaction comprenant des premier et deuxième segments série (32, 34), dans lequel ledit deuxième segment est connecté au circuit de sortie de l'amplificateur;
    lesdits premier et deuxième segments (32, 34) incluant respectivement des premier et deuxième moyens de résistance;
    des moyens connectant un point intermédiaire entre lesdits segments série (32, 34) auxdits moyens d'entrée afin de fournir à ceux-ci un signal de contre-réaction représentant la tension à travers ledit premier segment de tension (32), ledit signal de contre-réaction étant fait pour correspondre à la tension de diode Zener fournie auxdits moyens d'entrée;
    des moyens développant une tension sensible à la température ayant un coefficient de température négatif associé audit premier segment afin de développer un courant sensible à la température dans ledit premier segment ayant un coefficient de température positif;
    caractérisée par
    ledit courant circulant à travers ledit premier segment (32) circulant également à travers lesdits moyens de résistance dudit deuxième segment (34) afin de produire une chute de tension correspondante à travers ceux-ci;
    l'amplitude de la tension produite dans ledit deuxième segment (34) étant proportionnelle de façon prédéterminée à l'amplitude de la tension produite dans ledit premier segment (32);
    les valeurs desdits premier et deuxième moyens de résistance étant fixées afin d'effectuer une compensation en température de cette tension de référence afin de compenser un coefficient de température soit positif soit négatif de la tension de diode Zener de telle manière que le courant dans ledit moyen de résistance du premier segment soit en accord avec ladite tension de diode Zener et la tension sensible à la température développée par lesdits moyens de tension sensibles à la température associés audit premier segment (32).
  2. Référence de tension de diode Zener compensée en température selon la revendication 1, dans laquelle les moyens de tension sensibles à la température dudit premier segment (32) sont calibrés pour être égaux audit niveau de tension particulier lorsqu'ils sont extrapolés à ladite température particulière.
  3. Référence de tension de diode Zener compensée en température selon la revendication 1 ou 2, dans laquelle le coefficient de température desdits moyens sensibles à la température dudit premier segment (32) est plus négatif que le coefficient de température le plus négatif prévu par ladite classe de diodes Zener.
  4. Référence de tension de diode Zener compensée en température selon l'une quelconque des revendications 1 à 3, dans laquelle ledit réseau de contre-réaction comprend un transistor bipolaire (Q4) avec un circuit multiplieur de VBE (40) monté de telle manière qu'une première partie de la tension VBE totale soit effectivement dans ledit premier segment (32) et qu'une deuxième partie soit effectivement dans ledit deuxième segment (34).
  5. Référence de tension de diode Zener compensée en température selon la revendication 4, incluant au moins une diode série (Q10, Q11) montée dans ledit premier segment (32) afin d'assurer des résistances réduites dans ledit circuit multiplieur de VBE (40) de manière à réduire les erreurs dues au courant de base dudit transistor (Q4).
  6. Référence de tension de diode Zener compensée en température selon l'une quelconque des revendications 1 à 5, dans laquelle l'élément résistif dans ledit deuxième segment (34) est ajustable afin de régler la tension de référence à un niveau nominal prédéterminé tout en optimisant la compensation en température de ladite tension de référence.
  7. Référence de tension compensée en température selon l'une quelconque des revendications 1 à 6, dans laquelle les valeurs nominales de ladite résistance de deuxième segment et de la tension des moyens produisant la tension du deuxième segment sont calibrées pour être (1 + k) fois la résistance du premier segment et de la tension des moyens produisant la tension du premier segment, où "k" est une constante présélectionnée.
  8. Référence de tension de diode Zener compensée en température selon l'une quelconque des revendications 1 à 7, dans laquelle les valeurs desdits premier et deuxième moyens de résistance sont fixées afin de produire une tension de référence nominale prédéterminée.
  9. Procédé de compensation en température de la tension d'une diode Zener comprenant:
    l'orientation vers les moyens d'entrée d'un amplificateur (20) d'une tension dérivée de la tension de diode Zener, ledit amplificateur ayant un circuit de sortie produisant une tension de référence; dans lequel
    un réseau de contre-réaction (30) étant relié audit circuit de sortie;
    ledit réseau de contre-réaction comprenant des premier et deuxième segments série (32, 34) dans lequel ledit deuxième segment est connecté au circuit de sortie de l'amplificateur,
    lesdits premier et deuxième segments (32, 34) incluant respectivement des premier et deuxième moyens de résistance;
    la fourniture d'un signal de contre-réaction représentant la tension à travers ledit premier segment de tension (32) auxdits moyens d'entrée, dans lequel des moyens connectent un point intermédiaire entre lesdits segments série (32, 34) auxdits moyens d'entrée, ledit signal de contre-réaction étant fait pour correspondre à la tension de diode Zener fournie auxdits moyens d'entrée;
    le développement d'un courant sensible à la température dans ledit premier segment ayant un coefficient de température positif, dans lequel des moyens développant une tension sensible à la température ayant un coefficient de température négatif sont associés audit premier segment,
    caractérisé par
    la production d'une chute de tension correspondant audit courant circulant à travers ledit premier segment (32) circulant également à travers ledit moyen de résistance dudit deuxième segment (34),
    la sélection de l'amplitude de la tension produite dans ledit deuxième segment (34) pour qu'elle soit proportionnelle de manière prédéterminée à l'amplitude de la tension produite dans ledit premier segment (32);
    la détermination des valeurs desdits premier et deuxième moyens de résistance afin d'effectuer la compensation en température de cette tension de référence afin de compenser un coefficient de température soit positif soit négatif de la tension de diode Zener de telle manière que le courant dans lesdits moyens de résistance du premier segment soit en accord avec ladite tension de diode Zener et la tension sensible à la température développée par lesdits moyens de tension sensibles à la température associés audit premier segment (32).
  10. Procédé de compensation en température de la tension d'une diode Zener selon la revendication 9, incluant l'étape consistant à ajuster un desdits moyens de résistance afin de fixer ladite tension de sortie à un niveau présélectionné.
  11. Procédé de compensation en température de la tension d'une diode Zener selon la revendication 10, incluant l'étape consistant à ajuster ce moyen de résistance afin de produire un seuil de tension de sortie prédéterminé et d'effectuer simultanément une compensation en température optimale de cette tension de sortie.
  12. Procédé de compensation en température de la tension d'une diode Zener selon la revendication 10 ou 11, dans lequel le moyen de résistance dans ledit deuxième segment est ajusté afin de produire ledit niveau de tension de sortie prédéterminé.
  13. Procédé de compensation en température de la tension d'une diode Zener selon l'une quelconque des revendications 9 à 12, dans lequel ladite classe de diodes a des caractéristiques de tension sensibles à la température qui passent toutes par une tension spécifique à une température spécifique; le calibrage de l'amplitude desdits moyens de tension sensibles à la température dans ledit premier segment (32) à une valeur qui, quand elle est extrapolée en arrière vers ladite température spécifique, sera égale à ladite tension spécifique.
  14. Procédé selon l'une quelconque des revendications 9 à 13, dans lequel ledit courant de contre-réaction dudit premier segment (32) est commandé pour être proportionnel à la différence entre ladite tension de diode Zener et ladite première tension sensible à la température.
  15. Procédé selon l'une quelconque des revendications 9 à 14, dans lequel ledit courant de contre-réaction négatif est dérivé au moins notablement dudit circuit de sortie de l'amplificateur.
  16. Procédé selon l'une quelconque des revendications 9 à 15 fixant les valeurs desdits premier et deuxième moyens de résistance afin de produire une tension de référence nominale prédéterminée.
EP92918698A 1991-08-21 1992-08-20 Procede de compensation de la temperature de diodes zener presentant des coefficients de temperature soit positifs soit negatifs Expired - Lifetime EP0600003B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US74808791A 1991-08-21 1991-08-21
US748087 1991-08-21
PCT/US1992/007039 WO1993004423A1 (fr) 1991-08-21 1992-08-20 Procede de compensation de la temperature de diodes zener presentant des coefficients de temperature soit positifs soit negatifs

Publications (3)

Publication Number Publication Date
EP0600003A1 EP0600003A1 (fr) 1994-06-08
EP0600003A4 EP0600003A4 (fr) 1994-11-02
EP0600003B1 true EP0600003B1 (fr) 2000-03-29

Family

ID=25007954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92918698A Expired - Lifetime EP0600003B1 (fr) 1991-08-21 1992-08-20 Procede de compensation de la temperature de diodes zener presentant des coefficients de temperature soit positifs soit negatifs

Country Status (4)

Country Link
EP (1) EP0600003B1 (fr)
JP (1) JPH06510149A (fr)
DE (1) DE69230856T2 (fr)
WO (1) WO1993004423A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511697B2 (ja) * 2000-07-27 2010-07-28 Necエンジニアリング株式会社 温度補償回路
JP4578427B2 (ja) * 2006-03-28 2010-11-10 株式会社豊田中央研究所 応力温度測定装置
US9104222B2 (en) * 2012-08-24 2015-08-11 Freescale Semiconductor, Inc. Low dropout voltage regulator with a floating voltage reference
EP3553625A1 (fr) 2018-04-13 2019-10-16 NXP USA, Inc. Circuit de référence de tension de diode zener
CN109343606B (zh) * 2018-11-15 2023-11-10 扬州海科电子科技有限公司 一种分离补偿温控装置
EP3680745B1 (fr) * 2019-01-09 2022-12-21 NXP USA, Inc. Référence zener à compensation de température précontrainte
EP3812873A1 (fr) 2019-10-24 2021-04-28 NXP USA, Inc. Génération de tension de référence comprenant une compensation pour la variation de température

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6806969A (fr) * 1968-05-17 1969-05-27
GB1549689A (en) * 1975-07-28 1979-08-08 Nippon Kogaku Kk Voltage generating circuit
GB1484789A (en) * 1975-09-02 1977-09-08 Standard Telephones Cables Ltd Power supply circuits
DE2645182C2 (de) * 1976-10-07 1983-02-10 Deutsche Itt Industries Gmbh, 7800 Freiburg Temperaturkompensierte Z-Diodenanordnung, Betriebsschaltung hierfür und Verwendung der Anordnung mit dieser Betriebsschaltung
US4313083A (en) * 1978-09-27 1982-01-26 Analog Devices, Incorporated Temperature compensated IC voltage reference
US4315209A (en) * 1980-07-14 1982-02-09 Raytheon Company Temperature compensated voltage reference circuit
US4562400A (en) * 1983-08-30 1985-12-31 Analog Devices, Incorporated Temperature-compensated zener voltage reference
US4622512A (en) * 1985-02-11 1986-11-11 Analog Devices, Inc. Band-gap reference circuit for use with CMOS IC chips
US4668903A (en) * 1985-08-15 1987-05-26 Thaler Corporation Apparatus and method for a temperature compensated reference voltage supply
US4677369A (en) * 1985-09-19 1987-06-30 Precision Monolithics, Inc. CMOS temperature insensitive voltage reference
US4774452A (en) * 1987-05-29 1988-09-27 Ge Company Zener referenced voltage circuit

Also Published As

Publication number Publication date
JPH06510149A (ja) 1994-11-10
EP0600003A4 (fr) 1994-11-02
WO1993004423A1 (fr) 1993-03-04
EP0600003A1 (fr) 1994-06-08
DE69230856D1 (de) 2000-05-04
DE69230856T2 (de) 2000-11-09

Similar Documents

Publication Publication Date Title
US5774013A (en) Dual source for constant and PTAT current
US4352056A (en) Solid-state voltage reference providing a regulated voltage having a high magnitude
EP1557679B1 (fr) Détecteur de courant du côté de la tension
US7173407B2 (en) Proportional to absolute temperature voltage circuit
US4088941A (en) Voltage reference circuits
US4633165A (en) Temperature compensated voltage reference
EP0725923B1 (fr) Transducteur thermique a deux bornes integrant une logique assurant la linearite du rapport entre le courant de fonctionnement et la temperature
US5917311A (en) Trimmable voltage regulator feedback network
US4298835A (en) Voltage regulator with temperature dependent output
US4797577A (en) Bandgap reference circuit having higher-order temperature compensation
US3851241A (en) Temperature dependent voltage reference circuit
WO1998048334A9 (fr) Circuit de reference de precision a largeur de bande interdite
USRE30586E (en) Solid-state regulated voltage supply
US4636710A (en) Stacked bandgap voltage reference
US4399398A (en) Voltage reference circuit with feedback circuit
US4302718A (en) Reference potential generating circuits
US4665356A (en) Integrated circuit trimming
US5252908A (en) Apparatus and method for temperature-compensating Zener diodes having either positive or negative temperature coefficients
EP0656574B1 (fr) Tension de référence à coefficient de température linéaire et négatif
US5621307A (en) Fast recovery temperature compensated reference source
EP0600003B1 (fr) Procede de compensation de la temperature de diodes zener presentant des coefficients de temperature soit positifs soit negatifs
US4888471A (en) An improvement in a device for high accuracy thermal regulations of an enclosure
EP0039178B1 (fr) Circuit intégré pour engendrer une tension de référence
US5886511A (en) Temperature insensitive foldback network
US4114053A (en) Zero temperature coefficient reference circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

A4 Supplementary search report drawn up and despatched

Effective date: 19940915

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19960823

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69230856

Country of ref document: DE

Date of ref document: 20000504

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110818

Year of fee payment: 20

Ref country code: DE

Payment date: 20110817

Year of fee payment: 20

Ref country code: GB

Payment date: 20110817

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69230856

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69230856

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120821

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120819