EP0597181B1 - Verfahren und Vorrichtung zum Entmagnetisieren von magnetischen Werkstoffen - Google Patents

Verfahren und Vorrichtung zum Entmagnetisieren von magnetischen Werkstoffen Download PDF

Info

Publication number
EP0597181B1
EP0597181B1 EP93110179A EP93110179A EP0597181B1 EP 0597181 B1 EP0597181 B1 EP 0597181B1 EP 93110179 A EP93110179 A EP 93110179A EP 93110179 A EP93110179 A EP 93110179A EP 0597181 B1 EP0597181 B1 EP 0597181B1
Authority
EP
European Patent Office
Prior art keywords
capacitor
resonant circuit
alternating field
recharging
demagnetizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93110179A
Other languages
English (en)
French (fr)
Other versions
EP0597181A1 (de
Inventor
Martin Ing. Beck
Sönke Dipl.-Ing. Kahl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Felten and Guilleaume Energietechnik AG
Original Assignee
Felten and Guilleaume Energietechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Felten and Guilleaume Energietechnik AG filed Critical Felten and Guilleaume Energietechnik AG
Publication of EP0597181A1 publication Critical patent/EP0597181A1/de
Application granted granted Critical
Publication of EP0597181B1 publication Critical patent/EP0597181B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/006Methods and devices for demagnetising of magnetic bodies, e.g. workpieces, sheet material

Definitions

  • the invention relates to a method and an apparatus for Demagnetize or calibrate magnetic materials in a decaying alternating magnetic field according to the generic term of the main claim.
  • Demagnetization processes are based insist that magnets have an alternating magnetic field with decreasing Amplitude are exposed. The demagnetization will repeated several times, in between the magnetization of the Magnet or its working point is measured.
  • DE 3005927 C2 proposes a method in which the magnetic flux density in the air gap of the demagnetized Magnet is measured and the enveloping amplitude of the AC field is lowered when the desired value is reached is.
  • the method is based on the fact that the amplitude of the magnetic Alternating field of a resonant circuit by changing the Supply voltage with automatically set resonance frequency is forcibly reduced.
  • the invention has for its object a method and specify a device with which magnetic materials can be demagnetized more reliably.
  • the invention assumes that the duration of the falling magnetic alternating field for demagnetization particularly long must be, or that the ratio of successive amplitudes must be larger than with an alternating field generating resonant circuits can be reached.
  • the relationship the amplitudes of successive equipolar Half periods (or the decay constant) should therefore be close to 1 be.
  • the ratio can advantageously also be as constant value between 0.9 and 1.0 can be set.
  • a the upper limit lies on the one hand in the technically achievable, to but others must adjust the magnets to an economical one Duration can be limited.
  • the underlying principle can be described in that synchronous to the magnetic alternating field in the resonant circuit Energy is fed.
  • the energy is preferably fed in in cycle times with shorter units than one half period of the alternating field.
  • Air coils By the measures according to the invention it is with air coils less important, what shape and what quality (L / R) this to have. Air coils can be used, which are under conventional Conditions very bad as inductance in Parallel resonant circuits would work. When using the invention don't particularly need the volume and internal resistance, or the resulting quality to be observed.
  • L inductance
  • C capacity
  • R effective resistance of the resonant circuit
  • t time
  • a o initial amplitude
  • a resonant circuit that is used for magnetization or demagnetization contains, besides the magnet, its magnetization should be changed, usually more conductive and magnetic Materials. Losses due to magnetic reversal occur in them and eddy currents, this creates the resonant circuit damped and the oscillation frequency fl can no longer describe solely by the formula given above, which only treated the ohmic damping.
  • the following is intended as the amplitude ratio the ratio of two successive ones positive amplitudes of the alternating field A2 (t + T) / A1 (t) be understood. The period is T.
  • the amplitude ratio (or the decay constant ⁇ ) in resonant circuits with magnetic materials is even less favorable than in resonant circuits only with ohmic losses.
  • the duration of the evenly decaying alternating field extend to the energy lost through damping to deliver later.
  • the invention is described in more detail in the single figure. she shows a circuit arrangement with energy feed for extension of the alternating field.
  • the parallel resonant circuit consists of two inductors L1 and L2 and the capacitor C1.
  • the primary energy for the resonant circuit (for the time 0 of the alternating field) is from a high voltage power supply LS1 provided once by charging the capacitor C1.
  • the control unit SM consists essentially of a microprocessor MP, associated program or data memories (e.g. EPROM), an analog-digital converter ADW and one Interface unit IOP.
  • the control unit SM can overall can also be realized by a personal computer.
  • the charging current flows into capacitor C1 when from the control unit SM activates the power supply LS1, or the switch S2 is closed.
  • the voltage measurement on capacitor C1 is carried out via an analog-digital converter ADW, via which the voltage U1 of the control unit SM is supplied.
  • the measured Voltage is proportional to the amplitude of the alternating magnetic field.
  • the capacitor C1 becomes from the energy of the charging capacitor C2 reloaded.
  • the voltage U2 at the charging capacitor C2 is tapped and the control unit SM via the analog-digital converter ADW fed.
  • the frequency of the square wave voltage f2 can also range from 10 to 100 times the frequency fl vary.
  • the rectangular generator G1 triggers a monoflop M1.
  • the sine / square wave converter SR1 generates one in-phase square wave voltage to the voltage across capacitor C1.
  • the Rectangular generator G1 a high-frequency square wave voltage.
  • the negative half wave of the capacitor voltage is the Output of the rectangular generator G1 "low"; there will be no control signal submitted.
  • the output of the monoflop M1 controls via the switch S3 in position "b" is the duty cycle of switch S5.
  • the cycle time Tt is at the selected frequency f2 about 300 microseconds.
  • the duty cycle of the switch S5 is frequency preset manually using potentiometer TR1; thus the effective recharge current for the capacitor C1 determinable.
  • square wave generator G1 and monoflop M1 With the three units sine / square wave converter SR1, square wave generator G1 and monoflop M1 becomes the frequency and duty cycle of the switch S5 determined by hardware.
  • the control unit SM charges the capacitor C2 Closes switch S4. There is a second one High voltage power supply LS2 available.
  • the capacity of the Charging capacitor C2 is about twice the size of the Capacitor C1 selected.
  • the charging voltage U2 of the capacitor C2 must be larger than that by a certain factor (K1) Start voltage of capacitor C1.
  • K1 2 suggested.
  • the inductance L2 is for the operation of the resonant circuit Cl, L1, L2 only of minor importance because of their ohmic Resistance even contributes somewhat to damping. she will however used to large when closing switch S5 Compensating currents between charging capacitor C2 and capacitor C1 to avoid, which would otherwise destroy the switch S5. There the frequency f2 of the recharge (determined by the duty cycle of the switch S5) is significantly greater than the oscillation frequency f1 of the resonant circuit C1, L1, L2, the inductance L2 be smaller in this ratio to their inductive Limit resistance.
  • the diode D2 between the high-voltage power supply LS2 and the resonant circuit C1, L1, L2 is used so that the resonant circuit during the negative half-wave remains separated from the capacitor C2.
  • the Demagnetization stops when the amplitude of the alternating field has dropped below 1 percent of the initial value.
  • the circuit arrangement described dispenses with during the negative half-wave of the alternating magnetic field to recharge capacitor C1.
  • capacitor C2 When switch S4 is open, capacitor C2 is not recharged. Reduced by the charge transfer to capacitor C1 the amount of charge in the charging capacitor C2 over time about exponential. The gradual decrease in the tension of the Charging capacitor C2 is quite desirable because the duration of the Alternating field should be finite. Raising the envelope and extension of the alternating field is due to the amount of charge in capacitor C2, the charging voltage U2 of capacitor C2 (Factor K1) and the duty cycle of the switch S5. The duration of the process is defined by the duty cycle. In this simple embodiment, the control unit SM only controls the charging voltage U2 of the capacitor C2.
  • the additional effort by using two power supplies is not Disadvantage because the power supplies are each for the performance very different charging voltages U1 and U2 can be.
  • the one power supply must be on the larger one Charging power can be designed.
  • the power supplies can also be switched in this way be that the power supply LS1 charges the capacitor C2 and / or the power supply LS2 recharges the capacitor C1.
  • the figure is the waiver of a power supply, or the simultaneous Use of both power supplies for recharging each capacitor with a dashed connection between the power supply LS1 and switch S4 indicated.
  • switches S2 and S4 controlled accordingly by the control unit SM, so that at simultaneous monitoring of voltages U1 or U2 synchronously for the oscillation of the resonant circuit in phase from the power supply LS1 charge to capacitor C2 and / or from power supply LS2 charge flows to capacitor C1.
  • a demagnetizing resonant circuit becomes the extensive capabilities of the microprocessor used. It is with different magnetic materials namely advantageous, as many parameters of the magnetic Manipulate alternating field.
  • the alternating field can be regarding change the following sizes: Skip the first half-wave from influencing the alternating field or beginning of the influencing with an even later half-wave; Raising the decay constant to a fixed value and keeping it constant the value or generation of a time-varying decay constant.
  • the switch S3 is therefore used for this type of manipulation brought into position "a" and thus from monoflop M1 uncoupled.
  • the pulse duty factor is no longer via the three modules SR1, G1, M1 fixed.
  • the synchronization via the control unit SM takes place via the tap GG behind the sine / square converter SR1.
  • the duty cycle of the switch S5 is therefore programmed controllable and all parameters for changing the alternating field the resonant circuit (in particular duty cycle, charging voltages the capacitors C1 and C2) are free within limits variable.
  • the program control can be done in a tabular manner amplitude values are specified in the permanent memory of the microprocessor MP are, each of the prevailing initial conditions (e.g. the charging voltage).
  • the influencing of the decaying alternating field by energy feed can also be done by comparing the amplitude proportional Measuring voltage U1 with a high-performance microprocessor the control unit SM calculated in real time, likewise setpoints dependent on the initial conditions Envelope E (t) of the alternating field can be made.
  • control unit SM in operating in pulse width modulation mode.
  • a Microprocessor with integrated pulse width modulation used, so that the microprocessor does the job of the rectangle generator G1 and the monoflop M1 takes over. This will result in This mode of operation has the advantages of manipulating the duty cycle fully used over time.
  • the oscillation cycle ends when the amplitude A (measured value U1) less than 1 percent of the initial amplitude (initial measured value) is. The value of the magnetization of the magnet will finally measured.
  • Target value of the magnetization which is within a certain target bandwidth lies (for example ⁇ 10 percent), not yet reached, so that further demagnetization cycles follow have to.
  • These cycles are based on the principle of successive approximation. The principle is like this implemented that the charging voltage of capacitor C1 in the next Cycle by half the difference of the previous two Values with a certain sign are changed.
  • a new Demagnetization cycle follows the first cycle with a new one Charging voltage U1.
  • the circuit arrangement can also be used for magnets to magnetize.
  • To operate the circuit arrangement as Magnetizing device are those with the reference symbol AM summarized parts (switch S6, control line for switch S6, diode D1 against ground) added to the resonant circuit.
  • the Switches S1 and S4 are set to the "off" position. Of the Switch S6 is turned on by the control unit SM. Of the Capacitor C1 is closed when switch S2 is closed Power supply LS1 charged until a certain high charging voltage in the capacitor C1. To generate the switch S1 is closed. The resulting vibration is without negative half-wave, because the Diode D1 shorts the voltage of the negative half wave.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Treatment Devices (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Entmagnetisieren oder Kalibrieren von magnetischen Werkstoffen in einem abklingenden magnetischen Wechselfeld nach dem Oberbegriff des Hauptanspruchs. Entmagnetisierungsverfahren beruhen darauf, daß Magnete einem magnetischen Wechselfeld mit abnehmender Amplitude ausgesetzt werden. Die Entmagnetisierung wird mehrfach wiederholt, wobei zwischendurch die Magnetisierung des Magneten oder sein Arbeitspunkt gemessen wird.
Für Werkstücke, die entmagnetisiert werden sollen, werden in der Regel Schwingkreisschaltungen eingesetzt, deren Wechselfeld reproduzierbar abnimmt. Ein Beispiel einer solchen Schaltung findet sich in der DE 25 12 753 A1.
In der DE 3005927 C2 wird ein Verfahren vorgeschlagen, bei dem die magnetische Flußdichte im Luftspalt des zu entmagnetisierenden Magneten gemessen wird und die einhüllende Amplitude des Wechselfeldes abgesenkt wird, wenn der gewünschte Wert erreicht ist. Dem Verfahren liegt zugrunde, daß die Amplitude des magnetischen Wechselfeldes eines Schwingkreises durch Änderung der Speisespannung bei selbstätig eingestellter Resonanzfrequenz zwangsweise verkleinert wird.
Es ist auch vorgeschlagen worden, den Energieinhalt des Schwingkreises noch zu Beginn des abklingenden Wechselfeldes für einekurze Zeitspanne zu steuern. Hierzu wird eine Gleichspannungsquelle auf den Kondensator des Schwingkreises geschaltet (EP 0021274 Al). Der Zweck dieser Schaltung liegt darin, den Maximalwert der erste Amplitude besonders anzuheben, so daß eine vollständige Entmagnetisierung erreicht werden kann.
Die Nachteile bekannter Entmagnetisierverfahren liegen darin, daß der Wert der Entmagnetisierung, besonders bei formanisotropen Materialien (z.B. AlNiCo), nicht genau genug getroffen wird. Bei einem nicht unerheblichen Teil von Dauermagneten stellt sich kein stabiler Arbeitspunkt ein, obwohl der Sollwert nominell korrekt eingestellt ist. Die bekannten Verfahren sind mit Instabilitäten verbunden, die bisher nicht ausreichend beseitigt werden konnten.
Ein weiterer Nachteil besteht auch darin, daß die Luftspule zur Aufnahme des Magneten oder des den Magneten enthaltenden Geräts eine besondere Form und geringen ohmschen Widerstand haben muß. Die letzte Forderung ließe sich in Grenzen durch die Verwendung von Silberdraht oder sogar von supraleitenden Spulen verwirklichen, doch ist dies keine wirtschaftliche Alternative.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung anzugeben, mit denen magnetische Werkstoffe zuverlässiger entmagnetisiert werden können.
Die Aufgabe wird mit den kennzeichnenden Merkmalen des Hauptanspruchs gelöst. Eine Vorrichtung zur Durchführung des Verfahren wird in nebengeordneten Ansprüchen angegeben. Vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen. Weiterhin wird die Verwendung der Vorrichtung für das Magnetisieren vorgeschlagen.
Die Erfindung geht davon aus, daß die Dauer des abfallenden magnetischen Wechselfeldes zur Demagnetisierung besonders lang sein muß, bzw. daß das Verhältnis aufeinanderfolgender Amplituden größer sein muß, als es mit herkömmlichen ein Wechselfeld erzeugenden Schwingkreisen erreichbar ist. Je größer die Einhüllende des Wechselfeldes ist, bzw. je langsamer das Wechselfeld abklingt und je häufiger der Magnet den Wechsel zwischen positiver und negativer Halbwelle des abnehmenden Magnetfelds erfährt, desto besser werden die magnetischen Bereiche des zu justierenden Magneten eingestellt und stabilisiert. Das Verhältnis der Amplituden aufeinanderfolgender gleichpoliger Halbperioden (bzw. die Abklingkonstante) soll daher nahe 1 sein.
Amplitudenverhältnisse nahe 1 führen naturgemäß zu langen Justagezeiten. Das Verhältnis kann vorteilhafterweise auch als konstanter Wert zwischen 0,9 und 1,0 eingestellt werden. Eine obere Grenze liegt einerseits im technisch Erreichbaren, zum anderen aber muß die Justage von Magneten auf eine wirtschaftliche Dauer begrenzt werden.
Das zugrundeliegende Prinzip läßt sich darin beschreiben, daß synchron zur magnetischen Wechselfeldeinwirkung in den Schwingkreis Energie eingespeist wird. Vorzugsweise erfolgt die Energieeinspeisung in Taktzeiten mit kürzeren Einheiten als eine halbe Periode des Wechselfeldes.
Es wird weiterhin vorgeschlagen, die Energie derart einzuspeisen, daß die Abklingkonstante der Einhüllenden des Wechselfeldes möglichst groß ist, also zwischen 0,9 und 1,0 liegt.
Ohne besondere Maßnahmen oder Eingriffe in einen Schwingkreis ist die Dauer und das Amplitudenverhältnis des Wechselfeldes wegen der vorhandenen Dämpfung nach oben begrenzt.
Durch die erfindungsgemäßen Maßnahmen ist es bei Luftspulen weniger von Bedeutung, welche Form und welche Güte (L/R) diese haben. Es können Luftspulen eingesetzt werden, die unter konventionellen Bedingungen sehr schlecht als Induktivität in Parallelschwingkreisen arbeiten würden. Bei Einsatz der Erfindung brauchen nicht besonders das Bauvolumen und der Innenwiderstand, bzw. die daraus resultierende Güte beachtet zu werden.
In einem Schwingkreis stellt sich mit der Frequenz f = [1/(LC) - R2/(4L2)]1/2 in der Luftspule ein magnetisches Wechselfeld mit einer exponentiell abklingenden Amplitude A ein. Die Einhüllende E(t) des Wechselfeldes wird beschrieben durch: E(t) = Ao exp (-αt).
Die Größen bedeuten: L = Induktivität; C = Kapazität; R = Wirkwiderstand des Schwingkreises; t = Zeit; Ao = Anfangsamplitude; α = R/(2L) = Abklingkonstante.
Ein Schwingkreis, der für die Auf- oder Abmagnetisierung benutzt wird, enthält neben dem Magneten, dessen Magnetisierung verändert werden soll, in der Regel weitere leitfähige und magnetische Materialien. In ihnen entstehen Verluste durch Ummagnetisierung und Wirbelströmen, dadurch wird der Schwingkreis bedämpft und die Schwingungsfrequenz fl läßt sich nicht mehr allein durch die oben angegebene Formel beschreiben, die nur die ohmsche Dämpfung behandelt. Im folgenden soll als Amplitudenverhältnis das Verhältnis zweier zeitlich aufeinanderfolgender positiver Amplituden des Wechselfeldes A2(t+T)/A1(t) verstanden werden. Die Periodendauer ist T. Das Amplitudenverhältnis (bzw. die Abklingkonstante α) in Schwingkreisen mit magnetischen Materialien ist noch ungünstiger als in Schwingkreisen nur mit ohmschen Verlusten.
Es wird in einer Ausgestaltung der Erfindung vorgeschlagen, durch Nachladen mindestens eines Kondensators des Schwingkreises die Dauer des gleichmäßig abklingenden Wechselfeldes zu verlängern, um die durch Dämpfung verlorengegangene Energie nachzuliefern. Man kann für bestimmte Leistungsbereiche, einen weiteren Kondensator dem ersten Kondensator im Schwingkreis parallel schalten, so daß auch mehrere Kondensatoren zur Aufnahme der Nachspeiseenergie zur Verfügung stehen.
Es sind verschiedene Möglichkeiten des Nachladens des Kondensators im Schwingkreis zum Ausgleich der durch Dämpfung verlorengegangenen Energie denkbar, wodurch mehrere weitere Ausführungsformen entstehen. Zur Steuerung des Nachladens des Kondensators sind folgende Maßnahmen vorzunehmen:
  • 1. Messung und Steuerung der primären Ladespannung des Kondensators und Messung der Ladespannung des Nachladekondensators,
  • 2. Messung der Amplitude (und Frequenz) des Wechselfeldes oder solcher Größen, die ihnen proportional sind,
  • 3. Dosierung und Synchronisierung der Energieeinspeisung anhand der Messung nach 1., so daß das Wechselfeld einen zeitlich vorgebbaren Verlauf mit besonders großer Abklingkonstante annimmt.
  • Die Erfindung wird in der einzigen Figur näher beschrieben. Sie zeigt eine Schaltungsanordnung mit Energieeinspeisung zur Verlängerung des Wechselfeldes.
    In der Luftspule L1 eines Schwingkreises befindet sich in einer Halterung ein Magnet, der demagnetisiert werden soll. Soweit es die geometrischen, bzw. die elektrischen Dimensionen der Anordnung zulassen, kann in der Halterung auch das gesamte den Magneten enthaltene Gerät befestigt sein. Der Parallelschwingkreis besteht aus zwei Induktivitäten L1 und L2 und dem Kondensator C1. Die Primärenergie für den Schwingkreis (für den Zeitpunkt 0 des Wechselfeldes) wird von einem Hochspannungnetzteil LS1 durch Laden des Kondensators C1 einmalig bereitgestellt.
    Zur Beeinflussung des gleichmäßigen Abklingens des Wechselfeldes mit bestimmter Abklingkonstante α sind vorgesehen: ein Meßabgriff U1 am Kondensator Cl zur Messung des Schwingungsverlaufs, eine Energieversorgung zum Nachladen des Kondensators C1 über ein zweites Hochspannungsnetzteil LS2 und eine elektronische Steuereinheit SM, mit der Form bzw. Dauer des magnetischen Wechselfeldes synchron zur Schwingung des Schwingkreises steuerbar ist. Die Steuereinheit SM besteht im wesentlichen aus einem Mikroprozessor MP, zugehörigen Programm- bzw. Datenspeichern (z.B. EPROM), einem Analog-Digital-Wandler ADW und einer Schnittstelleneinheit IOP. Die Steuereinheit SM kann insgesamt auch durch einen Personal Computer realisiert werden.
    Während der Ladephase des Kondensators C1 durch das Hochspannungsnetzteil LS1 befinden sich die elektronischen Schalter S1, S4, S5 und S6 im geöffneten Zustand. Der Schalter S3 steht in Stellung "b". Die Funktion des Schalters S6 und der Diode D1 wird weiter unten beschrieben.
    Der Ladestrom fließt in den Kondensator C1, wenn von der Steuereinheit SM das Netzteil LS1 aktiviert, bzw. der Schalter S2 geschlossen wird. Die Spannungsmessung am Kondensator C1 erfolgt über einen Analog-Digital-Wandler ADW, über den die Spannung U1 der Steuereinheit SM zugeführt wird. Die gemessene Spannung ist der Amplitude des magnetischen Wechselfeldes proportional. Bei Erreichen einer bestimmten vorgegebenen Ladespannung U1 wird das Netzteil LS1 abgeschaltet, bzw. der Schalter S2 geöffnet. Mit dem ebenfalls von der Steuereinheit SM veranlaßten Schließen des Schalters S1 beginnt der Schwingkreis L1,L2,C1 zu schwingen.
    Frequenzen f1 in Demagnetisierungsschwingkreisen für größere Magnete liegen im Bereich 50 bis 250 Hz; ein typischer Wert liegt etwa bei f1 = 100 Hz. Ohne zusätzliche Eingriffe in den Schwingkreis, bzw. ohne Energieeinspeisung ist nach etwa 10 bis 12 Perioden die Amplitude des Wechselfeldes unter 1 Prozent der Ausgangsamplitude abgesunken und dann nicht mehr wirksam.
    Zum Ausgleich aller ohmschen und magnetischen Dämpfungverluste im Schwingkreis und zur Erzeugung einer vorgegebenen Abklingkonstante wird der Kondensator C1 aus der Energie des Ladekondensators C2 nachgeladen. Die Spannung U2 am Ladekondensator C2 wird abgegriffen und der Steuereinheit SM über den Analog-Digital-Wandler ADW zugeführt. Ein Sinus/Rechteck-Wandler SR1 detektiert am Kondensator C1 nur positive Spannungen U1 und steuert einen schaltbaren Rechteckgenerator G1. Dieser erzeugt während der positiven Halbwelle der Spannung am Kondensator C1 eine gleichphasige Rechteckspannung mit einer Frequenz f2, die wesentlich größer ist als die Frequenz f1 der Wechselspannung am Kondensator C1. Im vorliegenden Fall wird die Frequenz f2 30-fach größer gewählt (f2 = 3 kHz). Die Frequenz der Rechteckspannung f2 kann aber auch im Bereich vom 10- bis 100-fachen der Frequenz fl variieren. Der Rechteckgenerator G1 triggert ein Monoflop M1. Der Sinus/Rechteck-Wandler SR1 erzeugt eine gleichphasige Rechteckspannung zur Spannung am Kondensator C1. In der positiven Halbwelle der Rechteckspannung erzeugt der Rechteckgenerator G1 eine hochfrequente Rechteckspannung. Während der negativen Halbwelle der Kondensatorspannung ist der Ausgang des Rechteckgenerators G1 "low"; es wird kein Steuersignal abgegeben.
    Der Ausgang des Monoflops M1 steuert über den Schalter S3 in der Stellung "b" das Tastverhältnis des Schalters S5. Mit jeder positiven Flanke der Rechteckspannung des Rechteckgenerator G1 wird das Schließen des Schalters S5 (über das Monoflop M1) angetriggert. Die Taktzeit Tt beträgt bei der gewählten Frequenz f2 etwa 300 Mikrosec. Das Tastverhältnis des Schalters S5 wird mittels Potentiometer TR1 frequenzunabhängig manuell voreingestellt; somit ist der effektive Nachladestrom für den Kondensator C1 bestimmbar.
    Mit den drei Baueinheiten Sinus/Rechteck-Wandler SR1, Rechteckgenerator G1 und Monoflop M1 wird die Frequenz und das Tastverhältnis des Schalters S5 hardwaremäßig festgelegt.
    Bevor der Demagnetisierungsvorgang gestartet wird, wird durch die Steuereinheit SM die Aufladung des Kondensators C2 durch Schließen des Schalters S4 veranlaßt. Hierzu steht ein zweites Hochspannungsnetzteil LS2 zur Verfügung. Die Kapazität des Ladekondensators C2 wird etwa doppelt so groß wie die des Kondensators C1 gewählt. Die Ladespannung U2 des Kondensators C2 muß um einen bestimmten Faktor (K1) größer sein als die Startspannung des Kondensators C1. Als typischer Wert wird ein Faktor K1 = 2 vorgeschlagen. Wird nun mit einem bestimmten Tastverhältnis der Schalter S5 bei der positiven Halbwelle der Wechselspannung ein- und ausgeschaltet, so fließt eine bestimmte Ladungsmenge vom Ladekondensator C2 über die Diode D2, den Schalter S5 und die Induktivität L2 zum Kondensator C1 und lädt ihn in kleinen Stufen synchron zum Schwingungsvorgang nach, wodurch die Einhüllende des magnetischen Wechselfeldes langsamer abklingt als ohne Nachladen. Der Nachladevorgang wird vorzugsweise für alle folgenden positiven Halbwellen wiederholt.
    Die Induktivität L2 ist für den Betrieb des Schwingkreises Cl, L1,L2 nur von untergeordneter Bedeutung, wegen ihres ohmschen Widerstandes trägt sie sogar etwas zur Dämpfung bei. Sie wird allerdings gebraucht, um beim Schließen des Schalters S5 große Ausgleichsströme zwischen Ladekondensator C2 und Kondensator C1 zu vermeiden, die sonst den Schalter S5 zerstören würden. Da die Frequenz f2 der Nachladung (bestimmt durch das Tastverhältnis des Schalters S5) wesentlich größer ist als die Schwingungsfrequenz f1 des Schwingkreises C1,L1,L2, muß die Induktivität L2 in diesem Verhältnis kleiner sein, um ihren induktiven Widerstand zu begrenzen.
    Durch optimale Dimensionierung der Bauteile und der passenden Wahl der Nachladefrequenz ist es möglich, die Nachladeenergie nahezu verlustfrei zu übertragen.
    Die Diode D2 zwischen Hochspannungsnetzteil LS2 und Schwingkreis C1,L1,L2 wird eingesetzt, damit der Schwingkreis während der negativen Halbwelle vom Kondensator C2 getrennt bleibt. Die Demagnetisierung wird beendet, wenn die Amplitude des Wechselfeldes unter 1 Prozent des Anfangswertes gesunken ist.
    Mit der beschriebenen Schaltungsanordnung wird darauf verzichtet, während der negativen Halbwelle des magnetischen Wechselfeldes den Kondensator C1 nachzuladen. Es ist jedoch auch möglich, die Schaltungsanordnung derart zu erweitern, daß auch während der negativen Halbwelle des magnetischen Wechselfeldes eine Nachladung des Kondensators C1 phasenrichtig stattfindet. Mit dem symmetrischen Betrieb wird eine Gleichstromkompente des Wechselfeldes vermieden, so daß keine Nullinienverschiebung bei vollständiger Entmagnetisierung auftritt.
    Bei offenem Schalter S4 wird der Kondensator C2 nicht nachgeladen. Durch die Ladungsübertragung auf den Kondensator C1 verringert sich die Ladungsmenge im Ladekondensator C2 zeitlich etwa exponentiell. Die allmähliche Abnahme der Spannung des Ladekondensators C2 ist durchaus erwünscht, da die Dauer des Wechselfeldes endlich sein soll. Die Anhebung der Einhüllenden und Verlängerung des Wechselfeldes wird durch die Ladungsmenge im Kondensator C2, der Ladespannung U2 des Kondensators C2 (Faktor K1) und dem Tastverhältnis des Schalters S5 bestimmt. Die Dauer des Vorgangs ist durch das Tastverhältnis definiert. In dieser einfachen Ausführungsform wird durch die Steuereinheit SM nur die Ladespannung U2 des Kondensators C2 gesteuert.
    Der Mehraufwand durch Einsatz zweier Netzteile ist nicht von Nachteil, weil die Netzteile leistungsmäßig jeweils für die sehr unterschiedlichen Ladespannungen U1 und U2 dimensioniert werden können. In weiteren Ausgestaltungen kann vorgesehen werden, nur ein Hochspannungsnetzteil anstelle von zwei Netzteilen zu verwenden. Hierbei muß das eine Netzteil auf die größere Ladeleistung ausgelegt werden.
    In einer anderen Möglichkeit können die Netzteile auch so geschaltet werden, daß das Netzteil LS1 den Kondensator C2 auflädt und/oder das Netzteil LS2 den Kondensator C1 nachlädt. In der Figur ist der Verzicht eines Netzteils, bzw. die gleichzeitige Verwendung beider Netzteile zur Nachladung für jeden Kondensator mit einer gestrichelten Verbindung zwischen Netzteil LS1 und Schalter S4 angedeutet. In einer dieser Betriebsweisen werden - wie schon zuvor beschrieben - die Schalter S2 und S4 entsprechend von der Steuereinheit SM angesteuert, so daß bei gleichzeitiger Überwachung der Spannungen U1, bzw. U2 synchron zur Schwingung des Schwingkreises phasenrichtig vom Netzteil LS1 Ladung zum Kondensator C2 und/oder vom Netzteil LS2 Ladung zum Kondensator C1 fließt.
    In einer weiteren Ausgestaltung eines Demagnetisierungsschwingkreises wird das umfangreiche Leistungsvermögen des Mikroprozessors eingesetzt. Bei verschiedenen Magnetwerkstoffen ist es nämlich vorteilhaft, möglichst viele Parameter des magnetischen Wechselfeldes zu manipulieren. Das Wechselfeld läßt sich bezüglich folgender Größen verändern: Aussparen der ersten Halbwelle aus der Beeinflussung des Wechselfeldes oder Beginn der Beeinflussung bei einer noch späteren Halbwelle; Anheben der Abklingkonstanten auf einen festen Wert und Konstanthalten auf dem Wert oder Erzeugen einer zeitlich veränderlichen Abklingkonstanten. Der Schalter S3 wird daher für diese Art der Manipulation in die Stellung "a" gebracht und damit vom Monoflop M1 abgekoppelt.
    Das Tastverhältnis ist nicht mehr über die drei Module SR1,G1, M1 fest vorgegeben. Die Synchronisation über die Steuereinheit SM erfolgt über den Abgriff GG hinter dem Sinus/Rechteck-Wandler SR1. Das Tastverhältnis des Schalters S5 wird also programmäßig steuerbar und alle Parameter zur Veränderung des Wechselfeldes des Schwingkreises (insbesondere Tastverhältnis, Ladespannungen der Kondensatoren C1 und C2) sind in Grenzen frei variierbar.
    Die programmäßige Steuerung kann so erfolgen, daß tabellarisch im Festspeicher des Mikroprozessors MP Amplitudenwerte vorgegeben sind, die jeweils von den herrschenden Anfangsbedingungen (z.B. der Ladespannung) abhängig sind. Mittels Vergleich der amplitudenproportionalen Meßspannung U1 mit den im Festwertspeicher abgelegten Sollwerten der Einhüllenden E(t) des Wechselfeldes wird das Tastverhältnis des Schalters S5 so gesteuert, daß die Einhüllende E(t) bestimmten vorgegebenen Amplitudenwerten, bzw. mit einer Abklingkonstante (z.B. α = 0,92) folgt.
    Die Beeinflussung des abklingenden Wechselfeldes durch Energieeinspeisung kann auch mittels Vergleich der amplitudenproportionalen Meßspannung U1 mit von einem Hochleistungs-Mikroprozessor der Steuereinheit SM in Echtzeit berechneten, ebenfalls von den Anfangsbedingungen abhängigen Sollwerten der Einhüllenden E(t) des Wechselfeldes vorgenommen werden.
    In einem alternativen Verfahren wird die Steuereinheit SM in der Betriebsart Pulsweitenmodulation betrieben. Hierzu wird ein Mikroprozessor mit integrierter Pulsweitenmodulation eingesetzt, so daß der Mikroprozessor die Aufgaben des Rechteckgenerators G1 und des Monoflops M1 übernimmt. Dadurch werden in dieser Betriebsweise die Vorteile der Manipulation des Tastverhältnisses über die Zeit voll ausgenutzt.
    In einer alternativen Ausgestaltung kann vorgesehen werden, daß während der Demagnetisierung der Schalter S4 geschlossen bleibt. Der Kondensator C2 wird hierbei kontinuierlich aus dem Hochspannungnetzteil LS2 nachgeladen und das magnetische Wechselfeld kann dadurch zeitlich noch länger beeinflußt werden.
    Der Schwingungszyklus wird beendet, wenn die Amplitude A (Meßwert U1) kleiner als 1 Prozent der Anfangsamplitude (Anfangsmeßwert) ist. Der Wert der Magnetisierung des Magneten wird abschließend gemessen.
    In der Regel ist nach dem ersten Entmagnetisierungszyklus der Sollwert der Magnetisierung, der in einer gewissen Sollbandbreite liegt (beispielsweise ± 10 Prozent), noch nicht erreicht, so daß sich weitere Entmagnetisierungszyklen anschließen müssen. Diese Zyklen werden nach dem Prinzip der sukzessiven Approximation durchgeführt. Das Prinzip wird so umgesetzt, daß die Ladespannung des Kondensators C1 im nächsten Zyklus um die Hälfte der Differenz der beiden vorhergehenden Werte mit einem bestimmten Vorzeichen verändert wird. Ein neuer Entmagnetisierungszyklus folgt dem ersten Zyklus mit neuer Ladespannung U1.
    Die Schaltungsanordnung kann auch dazu verwendet werden, Magnete aufzumagnetisieren. Zum Betrieb der Schaltungsanordnung als Aufmagnetisiereinrichtung werden die mit dem Bezugszeichen AM zusammengefaßten Teile (Schalter S6, Ansteuerleitung für Schalter S6, Diode D1 gegen Masse) dem Schwingkreis hinzugefügt. Die Schalter S1 und S4 werden in die Stellung "aus" gebracht. Der Schalter S6 wird durch die Steuereinheit SM eingeschaltet. Der Kondensator C1 wird bei geschlossenem Schalter S2 über das Netzteil LS1 aufgeladen, bis sich eine bestimmte hohe Ladespannung im Kondensator C1 eingestellt hat. Zur Erzeugung des magnetischen Impulses wird der Schalter S1 geschlossen. Die entstehende Schwingung ist ohne negative Halbwelle, weil die Diode D1 die Spannung der negativen Halbwelle kurzschließt.

    Claims (18)

    1. Verfahren zum Entmagnetisieren von magnetischen Werkstoffen in einem abklingenden magnetischen Wechselfeld eines elektrischen Schwingkreises mit beeinflußbarer Amplitude, wobei der Energieinhalt des Schwingkreises (C1,L1,L2) durch Energieeinspeisung steuerbar ist, dadurch gekennzeichnet, daß die Energieeingespeisung in den Schwingkreis (C1,L1,L2) synchron zur periodisch, magnetischen Feldeinwirkung erfolgt.
    2. Verfahren zum Entmagnetisieren nach Anspruch 1, dadurch gekennzeichnet, daß die Energieeinspeisung in kürzeren Zeiteinheiten als eine halbe Periode (T/2) des Wechselfeldes erfolgt.
    3. Verfahren zum Entmagnetisieren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Energie derart eingespeist wird, daß die Abklingkonstante (α) der Einhüllenden E(t) = Ao exp(-αt) des Wechselfeldes nahe 1,0 liegt.
    4. Verfahren zum Entmagnetisieren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, daß mindestens ein Kondensator (C1) des Schwingkreises (C1,L1,L2) nachgeladen wird.
    5. Verfahren zum Entmagnetisieren von magnetischen Werkstoffen nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Nachladen nur während gleichpoliger Halbwellen des Wechselfeldes stattfindet.
    6. Verfahren zum Entmagnetisieren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Nachladen erst mit Beginn der zweiten oder einer späteren Halbwelle einsetzt.
    7. Verfahren zum Entmagnetisieren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß das primäre Laden und das Nachladen des Kondensators (C1) aus einem einzigen Netzteil (LS1) erfolgt.
    8. Verfahren zum Entmagnetisieren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß das Nachladen als Ladungsübertragung aus einem Kondensator (C2) erfolgt.
    9. Verfahren zum Entmagnetisieren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Energie zum primären Laden des Kondensators des Schwingkreises (C1) und das Speisen des Nachladekondensators (C2) aus je einem Netzteil (LS1,LS2) geliefert wird.
    10. Verfahren zum Entmagnetisieren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Eneraie zum primären Laden des Kondensators (C1) des Schwingkreises (C1,L1,L2), und das Speisen des Nachladekondensators (C2) wahlweise aus einem von zwei Netzteilen (LS1, LS2) geliefert wird.
    11. Verfahren zum Entmagnetisieren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Beeinflussung des abklingenden Wechselfeldes durch Energieeinspeisung mittels Vergleich einer amplitudenproportionalen Meßspannung (U1) mit in einem Festwertspeicher (MP) abgelegten und von den Anfangsbedingungen abhängigen Sollwerten der Einhüllenden E(t) des Wechselfeldes von einer Steuereinheit (SM) vorgenommen wird.
    12. Verfahren zum Entmagnetisieren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Beeinflussung des abklingenden Wechselfeldes durch Energieeinspeisung mittels Vergleich einer amplitudenproportionalen Meßspannung (U1) mit von einem Mikroprozessor (MP) in Echtzeit berechneten, von den Anfangsbedingungen abhängigen Sollwerten der Einhüllenden E(t) des Wechselfeldes von einer Steuereinheit (SM) vorgenommen wird.
    13. Verfahren zum Entmagnetisieren nach einem der vorhergehenden Ansprüche gekennzeichnet, daß die Beeinflussung des abklingenden Wechselfeldes durch Energieeinspeisung von einer Steuereinheit (SM) in der Betriebsweise Pulsweitenmodulation vorgenommen wird.
    14. Verfahren zum Entmagnetisieren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Beeinflussung des abklingenden Wechselfeldes durch Ansteuerung eines von der Spannung (U1) am Schwingkreiskondensator gesteuerten Schalters (S5) zwischen Nachladekondensator (C2) oder Nachladenetzteil (LS1, LS2) und Kondensator (C1) des Schwingkreises vorgenommen wird.
    15. Vorrichtung zum Entmagnetisieren nach dem Verfahren gemäß Ansprüche 1 bis 14 bestehend aus einer Halterung für den Magnetwerkstoff in einer Luftspule eines Schwingkreises (C1,L1,L2), mit in den Schwingkreis (C1,L1,L2) eingefügten elektrischen Bauelementen, mit denen der Verlauf des Wechselfeldes veränderbar ist und mit einer Einrichtung zur Energielieferung in den Schwingkreis (C1,L1,L2), dadurch gekennzeichnet, daß der Schwingkreis (C1,L1,L2) einen Meßabgriff (U1) hat, von dem die Kondensatorspannung (U1) einer Steuereinheit (MP,SM) zur Steuerung des Wechselfeldes zuführbar ist,daß von dem Meßabgriff (U1) Frequenz und Phase der Spannung (U1) der Steuereinheit (SM) über einen Sinus/Rechteck-Wandler (SR1) zugeführt wird, daß die Steuereinheit (MP,SM) in Taktzeiten (Tt), die klein sind gegenüber der Periode (T) des Wechselfeldes die Kondensatorspannung (U1) mit Werten für eine vorgegebene Abklingkonstante (α) nahe 1,0 vergleicht und daß die Steuereinheit (SM) einen Schalter (S5) zwischen Nachladekondensator (C2) oder Nachladenetzteil (LS1,LS2) und Kondensator (C1) des Schwingkreises ansteuert und damit dem Wechselfeld eine Veränderung aufprägt, die einem vorgebbaren Verlauf der Einhüllenden E(t) des abklingenden Wechselfeldes entspricht.
    16. Vorrichtung zum Entmagnetisieren nach dem Verfahren gemäß Ansprüche 1 bis 14 bestehend aus einer Halterung für den Maanetwerkstoff in einer Luftspule eines Schwingkreises (C1,L1,L2), mit in den Schwingkreis eingefügten elektrischen Bauelementen, mit denen der Verlauf des Wechselfeldes veränderbar ist und mit einer Einrichtung zur Energielieferung in den Schwingkreis, dadurch gekennzeichnet, daß die Schwingkreiskondensatorspannung (U1) einem Sinus/Rechteck-Wandler (SR1) zugeführt wird, daß das Ausgangssignal des Sinus/Rechteck-Wandlers (SR1) auf einen Rechteckgenerator (G1) und ein in Reihe geschaltetes und mit einem Potentiometer (TR1) einstellbares Monoflop (M1) wirkt und daß das Ausgangssignal des Monoflops (M1) das Tastverhältnis eines Schalters (S5) zwischen Nachladekondensator (C2) oder Nachladenetzteil (LS1,LS2) und Kondensator (C1) des Schwingkreises bestimmt.
    17. Vorrichtung zum Entmagnetisieren nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, daß die Ansteuerung des Schalters (S5) zwischen Nachladekondensator (C2) oder Nachladenetzteil (LS1,LS2) und Kondensator (C1) des Schwingkreises mit einem Schalter (S3) umschaltbar ist, so daß die Vorrichtung entweder in der Betriebsart Mikroprozessorsteuerung gemäß Anspruch 15 oder in der Betriebsart Festwertansteuerung gemäß Anspruch 16 betreibbar ist.
    18. Verwendung der Vorrichtung nach einem der Ansprüche 15 bis 17 zur Magnetisierung von magnetisierbaren Werkstoffen, dadurch gekennzeichnet, daß dem Schwingkreis (C1,L1,L2) eine schaltbare Masseverbindung (AM) zur Begrenzung des magnetischen Wechselfeldes auf eine Halbwelle parallel geschaltet wird.
    EP93110179A 1992-11-07 1993-06-25 Verfahren und Vorrichtung zum Entmagnetisieren von magnetischen Werkstoffen Expired - Lifetime EP0597181B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE4237704 1992-11-07
    DE4237704A DE4237704C1 (de) 1992-11-07 1992-11-07 Verfahren und Vorrichtung zum Entmagnetisieren von magnetischen Werkstoffen

    Publications (2)

    Publication Number Publication Date
    EP0597181A1 EP0597181A1 (de) 1994-05-18
    EP0597181B1 true EP0597181B1 (de) 1998-04-01

    Family

    ID=6472386

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP93110179A Expired - Lifetime EP0597181B1 (de) 1992-11-07 1993-06-25 Verfahren und Vorrichtung zum Entmagnetisieren von magnetischen Werkstoffen

    Country Status (3)

    Country Link
    EP (1) EP0597181B1 (de)
    AT (1) ATE164701T1 (de)
    DE (2) DE4237704C1 (de)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005020933A1 (de) * 2005-05-04 2006-11-09 Stz Mechatronik Verfahren zum Entmagnetisieren von magnetischen Kreisen und zur Messung von Magnetisierungskurven
    DE102007009361A1 (de) * 2007-02-23 2008-08-28 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Technologie, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren und Vorrichtung zum Entmagnetisieren eines Objektes aus zumindest teilweise ferromagnetischem Material

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH717381B1 (de) * 2020-05-04 2022-10-31 Maurer Albert Elektronische Schaltvorrichtung zum Entmagnetisieren von ferromagnetischen Körpern.
    CH718185A1 (de) 2020-12-17 2022-06-30 Maurer Albert Elektronische Schaltvorrichtung und Verfahren zum Entmagnetisieren von ferromagnetischem Material.

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH582411A5 (de) * 1975-03-03 1976-11-30 Bbc Brown Boveri & Cie
    IT1119003B (it) * 1979-06-25 1986-03-03 Riv Officine Di Villar Perosa Dispositivo smagnetizzatore
    DE3005927A1 (de) * 1980-02-16 1981-09-03 Erich Dr.-Ing. 5300 Bonn Steingroever Entmagnetisier-verfahren
    US4471403A (en) * 1983-10-04 1984-09-11 The United States Of America As Represented By The United States Department Of Energy Biasing and fast degaussing circuit for magnetic materials

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005020933A1 (de) * 2005-05-04 2006-11-09 Stz Mechatronik Verfahren zum Entmagnetisieren von magnetischen Kreisen und zur Messung von Magnetisierungskurven
    DE102007009361A1 (de) * 2007-02-23 2008-08-28 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Technologie, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren und Vorrichtung zum Entmagnetisieren eines Objektes aus zumindest teilweise ferromagnetischem Material
    DE102007009361B4 (de) * 2007-02-23 2012-02-16 Bundesrepublik Deutschland, vertr. d. d. Bundesministerium für Wirtschaft und Technologie, dieses vertr. d. d. Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren und Vorrichtung zum Entmagnetisieren eines Objektes aus zumindest teilweise ferromagnetischem Material

    Also Published As

    Publication number Publication date
    DE4237704C1 (de) 1993-09-30
    EP0597181A1 (de) 1994-05-18
    DE59308340D1 (de) 1998-05-07
    ATE164701T1 (de) 1998-04-15

    Similar Documents

    Publication Publication Date Title
    DE102005055160B4 (de) Regelschaltung zur Strom- und Spannungregelung in einem Schaltnetzteil
    DE60114794T2 (de) Evg mit spitzendetektion
    DE19607704A1 (de) Vorrichtung zur magnetischen Anregung von neuro-muskularem Gewebe
    WO1999005892A1 (de) Verfahren zum erzeugen von impulsspannungsfolgen und zugehörige schaltungsanordnung
    DE2328026C2 (de) Nach dem Schaltprinzip arbeitendes Netzgerät
    EP0186865B1 (de) Vorrichtung zur Unterbrechung von bogenförmigen Entladungen in einem Gasentladungsgefäss
    DE102008007896B4 (de) Entmagnetisierverfahren
    EP0597181B1 (de) Verfahren und Vorrichtung zum Entmagnetisieren von magnetischen Werkstoffen
    DE2320702B2 (de) Schaltungsanordnung zur Erzeugung steuerbarer Impulse für die funkenerosive Bearbeitung
    DE10221072B4 (de) Kapazitives Entladungszündungssystem mit verlängerter Funkendauer
    DE1920418A1 (de) Lichtbogenschweissvorrichtung
    EP0134433B1 (de) Ansteuerungsschaltung für Pulsstromgeräte
    DE2163614C3 (de) Vorrichtung zur induktiven Beheizung von Metallobjekten
    DE3739047A1 (de) Anodenansteuervorrichtung bei einer drehanoden-roentgenroehre
    DE4436821A1 (de) Funkengenerator sowie Verfahren zur Mikropartikel-Probenentnahme
    DE1557098A1 (de) Verfahren und Vorrichtung zur Regelung der Arbeitsspannung eines mit Gleichspannung gespeisten elektrostatischen Staubabscheiders
    DE2325370C3 (de) Spannungsregler fuer eine fernsehempfaenger-ablenkschaltung mit einem kommutierungsschalter
    CH717381B1 (de) Elektronische Schaltvorrichtung zum Entmagnetisieren von ferromagnetischen Körpern.
    EP1105643A1 (de) Elektronische schaltung zur pulserzeugung
    DE3326866C2 (de) Elektrischer Generator für die funkenerosive Metallbearbeitung
    DE1588249A1 (de) Schaltungsanordnung zur Drehzahlregelung eines Gleichstrommotors
    EP0596152A1 (de) Wechselspannungs-Vorschaltgerät für elektrische Entladungslampen
    DE19821993A1 (de) Selbstanpassung von Gasentladungs-Speisungen
    CH718185A1 (de) Elektronische Schaltvorrichtung und Verfahren zum Entmagnetisieren von ferromagnetischem Material.
    DE4010100C2 (de)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    17P Request for examination filed

    Effective date: 19941110

    17Q First examination report despatched

    Effective date: 19970110

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE FR GB IT LI NL SE

    REF Corresponds to:

    Ref document number: 164701

    Country of ref document: AT

    Date of ref document: 19980415

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 59308340

    Country of ref document: DE

    Date of ref document: 19980507

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980430

    ITF It: translation for a ep patent filed

    Owner name: ING. C. GREGORJ S.P.A.

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PFA

    Free format text: FELTEN & GUILLEAUME ENERGIETECHNIK AG TRANSFER- FELTEN & GUILLEAUME AG

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20020517

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20020531

    Year of fee payment: 10

    Ref country code: NL

    Payment date: 20020531

    Year of fee payment: 10

    Ref country code: AT

    Payment date: 20020531

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20020603

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20020605

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20020611

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20020612

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030625

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030625

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030626

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030630

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030630

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030630

    BERE Be: lapsed

    Owner name: *FELTEN & GUILLEAUME A.G.

    Effective date: 20030630

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040101

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040101

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20030625

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040227

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20040101

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050625