EP0596095A1 - Verfahren und einrichtung zum erhitzen und schmelzen von stückigem eisenschwamm - Google Patents

Verfahren und einrichtung zum erhitzen und schmelzen von stückigem eisenschwamm

Info

Publication number
EP0596095A1
EP0596095A1 EP93912764A EP93912764A EP0596095A1 EP 0596095 A1 EP0596095 A1 EP 0596095A1 EP 93912764 A EP93912764 A EP 93912764A EP 93912764 A EP93912764 A EP 93912764A EP 0596095 A1 EP0596095 A1 EP 0596095A1
Authority
EP
European Patent Office
Prior art keywords
preheating
gas
temperature
iron
preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93912764A
Other languages
English (en)
French (fr)
Other versions
EP0596095B1 (de
Inventor
William Wells
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone GmbH
Original Assignee
Kortec AG
Mannesmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kortec AG, Mannesmann AG filed Critical Kortec AG
Publication of EP0596095A1 publication Critical patent/EP0596095A1/de
Application granted granted Critical
Publication of EP0596095B1 publication Critical patent/EP0596095B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Definitions

  • the invention relates to a method according to the preamble of claim 1. Furthermore, it relates to a device according to the preamble of claim 10.
  • the invention is based on the object, in a method of the type mentioned in the preamble of claim 1, of preheating the highly reactive sponge iron to temperatures of about 850 ° C. without substantial oxidation losses and at the same time avoiding an excess of high-energy exhaust gases. Furthermore, a device for carrying out this method is to be specified.
  • the method according to the invention is characterized by the features of claim 1.
  • Advantageous embodiments of the method can be found in claims 2 to 9.
  • the device according to the invention is characterized by the features of claim 10. Advantageous embodiments of this device are described in the remaining claims.
  • the different reactivity of the sponge iron at temperatures of different heights is utilized by preheating the sponge iron in several stages and assigning a certain temperature and a certain gas atmosphere to each of the preheating stages. While at high temperatures of 800 to 900 ° C the sponge iron can only be heated with reducing gases, it is possible to preheat the lower temperature, such as 250 or 500 ° C, to heat the sponge iron in a neutral atmosphere. Appropriate individual control of the temperature and gas atmosphere in the individual preheating stages enables a significant increase in economy to be achieved. With the device according to the invention, the subdivision into various preheating stages and the control of temperature and gas atmosphere in these preheating stages can be implemented in a structurally particularly simple manner.
  • the figure shows schematically a method for melting sponge iron 10 with four preheating chambers 11 to 14 arranged one above the other, which are lined with refractory material, a cupola furnace 15, which is designed to be transportable and is arranged under the fourth preheating chamber 14, a coke store 16 with a Feed line 17 to the cupola furnace 15, a recuperator 18, a gas cleaning system 19 and a coal store 20.
  • the first preheating chamber 11 is rectangular and has a gas outlet 21, which is connected via a line 22 to the gas cleaning system 19, and a charging opening 23, through which sponge iron 10 and limestone 24 can be introduced into the first preheating chamber 11.
  • the bottom of the first preheating chamber 11 is displaceably mounted and designed to open and close the preheating chamber 11 as a slide 25 in order to bring predetermined amounts of sponge iron 10 and limestone 24 directly into the preheating chamber 12 underneath.
  • the preheating chamber 12 is stepped in the upper region and is also rectangular.
  • a gas space 26, i.e. a solid-free area is formed in the preheating chamber 12.
  • the third and fourth preheating chambers 13, 14 are designed like the second preheating chamber 12, namely also stepped and with a slide 28 and 29 as an intermediate floor between the chambers 12/13 and 13/14.
  • the slides 25, 28 and 29 are maximally displaceable over the width of the respective step below, so that the iron sponge 10 and the limestone 24 in the respectively below through the opening resulting from the movement of the slider 25, 28 or 29 lying preheating chamber 12, 13 or 14 fall or can be discharged.
  • the material flow from the first into the fourth preheating chamber 11, 14 can thus be controlled via the slides 25, 28 and 29.
  • the fourth preheating chamber 14 has no slide. Rather, it tapers in the lower region and is connected to the cupola furnace 15 via a metering flap 33.
  • the preheating chamber 12, 13 and 14 is provided with a burner 30, 31 and 32, respectively, which opens into the associated gas space 26, 27 and 50 of the relevant preheating chamber.
  • the fourth preheating chamber 14 in the lower half on another burner 34.
  • the preheating chambers 11 to 14 are arranged directly one above the other 5 and offset.
  • the third preheating chamber 13 is arranged on the lower stage of the fourth preheating chamber 14, the second preheating chamber 12 on the lower stage of the third preheating chamber 13 and the first preheating chamber 11 on the lower stage of the second preheating chamber 12.
  • the preheating chambers 11 to 13 have gas inlets 35, 36 and 37, which are each arranged directly above the relevant slide 25, 28 and 29 in the adjacent side wall of the adjacent, stepped preheating chamber 12, 13 and 14, respectively .
  • the cupola furnace 15 is of a known type with a coke bed 48 which can be supplemented with coke 38 from the coke store 16 via the feed line 17.
  • the cupola 15 has a tap opening 39, burner 40 and an exhaust opening 41. This is connected via a line 42 to the recuperator 18 and to the burners 30 to 32 and 34 in such a way that the exhaust gas from the cupola 15 is passed in a controllable ratio, in part to the recuperator 18 and in part to the burners 30 to 32, 34 - 5 can. About 40 to 80% of the exhaust gas is passed into the recuperator 18 for heating the combustion air to about 815 ° C. and the rest to the burners.
  • coal store 20 and an oxygen source 30 are connected via lines 44 to the burners 30 to 32, 34, 40, respectively.
  • Air 45 can be fed to burners 30 to 32, 34 via a line 46.
  • the air preheated in the recuperator 35 18 is fed via a line 47 to the burner 40 and can be blown into the cupola furnace together with coal from the coal store 20 in order to reduce the consumption of coke.
  • Lime and / or preheated air or coal can be introduced in the required amount via the burners 30 to 32, 34, 40.
  • other 5 fossil fuels such as natural gas, oil or synthetic fuels, can also be introduced into the preheating chambers 12 to 14 or the cupola furnace 15.
  • the exhaust gas from the cupola 15 can be supplied to the preheating chambers 12 to 14 by means of the burners 30 to 32, 34 and the line 10 42.
  • the device shown and explained is intended for the heating and melting of sponge iron 15 10, which is very reactive with oxygen, by means of fossil fuels, in order to obtain liquid iron with a carbon content of over 3% and a temperature over 1400 ° C.
  • sponge iron 10 For example, 1075 kg of sponge iron 10 is required per 1000 kg of 20 iron obtained.
  • the sponge iron 10 has a typical composition of 85 to 90% metallic iron, 0.5% carbon and 10% iron oxide.
  • the sponge iron 10, together with limestone 24, is introduced into the first preheating chamber 11 via the charging opening 23.
  • 115 kg limestone is preferably added per 25 tonnes of iron produced.
  • the mixture of sponge iron 10 and limestone 24 can be opened by opening the respective slide 25
  • the preheated iron sponge 10 and the lime in a predetermined, weighed amount then pass from the fourth preheating chamber 14 into the cupola furnace 15.
  • the temperature and the atmosphere that is to say the gas composition in the individual preheating chambers 11 to 14, are determined by temperature measuring and gas analysis devices (not shown here).
  • the neutral / reducing conditions in the individual preheating chambers 11 to 12 can then be set and maintained or changed by means of the burners 30 to 32, 34.
  • This control is computer-based in a known manner.
  • exhaust gas from the cupola furnace 15 is blown into the preheating chamber 12, 13 or 14, either directly or via the recuperator, by the burners 30 to 32, 34.
  • the burners 30 to 32, 34 can burn coal with air 45 and / or oxygen in order to additionally heat the preheating chamber 12, 13, 14.
  • the sponge iron 10 and the limestone 24 become about 250 ° C. in the first preheating chamber 11, about 500 ° C. in the second preheating chamber 12, and about in the third preheating chamber 13 800 ° C and heated to about 850 ° C in the fourth preheating chamber 14.
  • the heating takes place under reducing conditions, in that exhaust gas is passed from the cupola furnace 15 into the preheating chambers 12 and 13.
  • the carbon monoxide content in the gas mixture C0 2 + CO should be above 25%.
  • the limestone 24 is converted into lime and then serves in the cupola furnace 15 as a flux for the molten sponge iron 10.
  • the heated sponge iron 10 and the lime are then introduced into the cupola furnace 15 by means of the metering flap 33.
  • the Ku ⁇ polofen 15 is provided with the coke bed 48, the coke 38 having a size up to about 20 cm.
  • the cupola furnace 15 hot air preheated to 850 ° C. is blown into the coke bed 48 via the burner 40 by the recuperator. Because of the energy released in this way, sponge iron and lime melt and flow together through the coke bed 48. As the melt passes down through the coke bed 48, the temperature of the melt rises further and carbon dissolves in the iron. The melt, which has a composition of over 3% carbon and over 95% pure iron, then collects at the foot of the cupola furnace 15. The melt can then be brought out of the cupola furnace 15 for further processing via the tap hole 39.
  • the amount of coke required for the process is about 175 kg per ton of iron recovered.
  • the amount of coke 38 required for the process can be reduced if additional coal is used for heating either in the cupola furnace 15 or in the preheating chambers 12 to 14.
  • the amount of coke can be further reduced to 80 to 100 kg per ton by supporting the combustion processes with oxygen and additional fuels, such as coal, natural gas, oil or synthetic fuels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

VERFAHREN UND EINRICHTUNG ZUM ERHITZEN UND SCHMELZEN VON STÜCKIGEM EISENSCHWAMM
Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruches l. Ferner bezieht sie sich auf eine Ein¬ richtung gemäß dem Oberbegriff des Patentanspruches 10.
Bei einem bekannten Verfahren der genannten Art werden metal¬ lische Eisenträger in einem über einem Schmelzofen angeordne¬ ten Chargiergutvorwärmer erhitzt und dann dem Schmelzofen zu¬ geführt. Eine wirtschaftliche Betriebsweise ist in diesem Fall nur möglich, wenn als Eisenträger Materialien verwendet werden, die keine zu große Reaktivität gegenüber Sauerstoff aufweisen, weil nur dann durch eine Nachverbrennung der Abga¬ se aus dem Schmelzofen der Energieinhalt dieser Abgase für die Vorwärmung wirtschaftlich genutzt werden kann. Soll stük- kiges direktreduziertes Material, d.h. stückiger Eisen¬ schwamm, vorerhitzt werden, dann verlangt dessen hohe Reakti¬ vität, insbesondere bei Temperaturen oberhalb 500°C, eine re¬ duzierende Atmosphäre um größere Oxidationsverluste beim Er¬ hitzen des Eisenschwamms zu verhindern. Zu diesem Zweck hat man den Eisenschwamm mit Koks vermischt in einem Vorwärmer aufgeheizt. Ein solches Verfahren bedingt jedoch einen erheb¬ lichen Überschuß an energiereichen Abgasen und setzt Gasver¬ braucher in der Nähe der Anlage voraus.
Der Erfindung liegt die Aufgabe zugrunde, bei einem Verfahren der im Oberbegriff des Anspruches 1 genannten Art ein Vorer¬ hitzen des höchreaktiven Eisenschwamms auf Temperaturen von etwa 850°C ohne wesentliche Oxidationsverluste zu ermöglichen und gleichzeitig einen Überschuß an energiereichen Abgasen zu vermeiden. Ferner soll eine Einrichtung zur Durchführung die¬ ses Verfahrens angegeben werden. Das erfindungsgemäße Verfahren ist durch die Merkmale des An¬ spruches 1 gekennzeichnet. Vorteilhafte Ausgestaltungen des Verfahrens sind den Ansprüchen 2 bis 9 zu entnehmen. Die er— findungsgemäße Einrichtung ist durch die Merkmale des Anspru- ches 10 gekennzeichnet. Vorteilhafte Ausgestaltungen dieser Einrichtung sind in den restlichen Ansprüchen beschrieben.
Bei dem erfindungsgemäßen Verfahren wird die unterschiedliche Reaktivität des Eisenschwamms bei unterschiedlich hohen Tem- peraturen dadurch nutzbar gemacht, daß das Vorwärmen des Ei¬ senschwamms in mehreren Stufen durchgeführt wird und jeder der Vorwärmstufen eine bestimmte Temperatur und eine bestimm¬ te Gasatmosphäre zugeordnet wird. Während bei hohen Tempera¬ turen von 800 bis 900°C der Eisenschwamm nur mit reduzieren- den Gasen aufgeheizt werden kann, ist es in Vorwärmstufen niedrigerer Temperatur, wie 250 bzw. 500°C, möglich, den Ei- senschwamm in neutraler Atmosphäre aufzuheizen. Durch geeig¬ nete individuelle Steuerung von Temperatur und Gasatmosphäre in den einzelnen Vorwärmstufen läßt sich eine wesentliche Er- höhung der Wirtschaftlichkeit erzielen. Mit der erfindungsge¬ mäßen Einrichtung läßt sich die Unterteilung in verschiedene Vorwärmstufen und die Steuerung von Temperatur und Gasatmo- spähre in diesen Vorwärmstufen auf konstruktiv besonders ein¬ fache Weise realisieren.
Die Erfindung wird anhand einer Figur näher erläutert, die eine schematische Darstellung der einzelnen Verfahrensschrit¬ te eines Ausführungsbeispiels der Erfindung zeigt.
In der Figur ist schematisch ein Verfahren zum Schmelzen von Eisenschwamm 10 dargestellt mit vier übereinander angeordne¬ ten Vorheizkammern 11 bis 14, die mit feuerfestem Material ausgekleidet sind, einem unter der vierten Vorheizkammer 14 angeordneten transportierbar ausgebildeten Kupolofen 15, ei- nem Koksspeicher 16 mit einer Zuführleitung 17 zum Kupolofen 15, einem Rekuperator 18, einer Gasreinigungsanlage 19 und einem Kohlespeicher 20. Die erste Vorheizkammer 11 ist rechteckig ausgebildet und weist einen Gasauslaß 21 auf, der über eine Leitung 22 mit der Gasreinigungsanlage 19 verbunden ist, und eine Chargier- Öffnung 23, durch die Eisenschwamm 10 und Kalkstein 24 in die erste Vorheizkammer 11 eingebracht werden können. Der Boden der ersten Vorheizkammer 11 ist verschieblich gelagert und zum öffnen und Schließen der Vorheizkammer 11 als Schieber 25 ausgebildet, um vorbestimmte Mengen Eisenschwamm 10 und Kalk- stein 24 unmittelbar in die darunterliegende Vorheizkammer 12 zu bringen.
Weiterhin ist die Vorheizkammer 12 im oberen Bereich abge¬ stuft und ebenfalls rechteckig ausgebildet.
Durch die abgestufte Ausbildung wird ein Gasraum 26, d.h. ein feststofffreier Bereich in der Vorheizkammer 12 gebildet.
Die dritte und vierte Vorheizkammer 13, 14 sind entsprechend der zweiten Vorheizkammer 12 ausgebildet, nämlich ebenfalls abgestuft und mit einem Schieber 28 bzw. 29 als Zwischenboden zwischen den Kammern 12/13 bzw. 13/14. Die Schieber 25, 28 bzw. 29 sind maximal über die Breite der jeweils darunter liegenden Stufe verschiebbar, so daß durch die durch das Ver- schieben des Schiebers 25, 28 bzw. 29 entstehende Öffnung der Eisenschwamm 10 und der Kalkstein 24 in die jeweils darunter liegende Vorheizkammer 12, 13 bzw. 14 fallen bzw. ausgetragen werden können. Somit ist über die Schieber 25, 28 und 29 der Materialfluß von der ersten in die vierte Vorheizkammer 11, 14 steuerbar.
Die vierte Vorheizkammer 14 weist keinen Schieber auf. Sie verjüngt sich vielmehr im unteren Bereich und ist über eine Dosierklappe 33 mit dem Kupolofen 15 verbunden. Die Vorheiz- kammer 12, 13 bzw. 14 ist jeweils mit einem Brenner 30, 31 bzw. 32 versehen, der in den zugehörigen Gasraum 26, 27 bzw. 50 der betreffenden Vorheizkammer mündet. Zudem weist die vierte Vorheizkammer 14 in der unteren Hälfte einen weiteren Brenner 34 auf.
Die Vorheizkammern 11 bis 14 sind unmittelbar übereinander 5 und versetzt angeordnet. Dabei ist die dritte Vorheizkammer 13 auf der unteren Stufe der vierten Vorheizkaitimer 14, die zweite Vorheizkammer 12 auf der unteren Stufe der dritten Vorheizkammer 13 und die erste Vorheizkammer 11 auf der unte¬ ren Stufe der zweiten Vorheizkammer 12 angebracht. Die Vor- 0 heizkammern 11 bis 13 weisen Gaseinlässe 35, 36 bzw. 37 auf, die jeweils direkt oberhalb des betreffenden Schiebers 25, 28 bzw. 29 in der angrenzenden Seitenwand der benachbarten, ab¬ gestuften Vorheizkammer 12, 13 bzw. 14 angeordnet sind.
5 Bei dem Kupolofen 15 handelt es sich um einen bekannter Bau¬ art mit einem Koksbett 48, das über die Zuführleitung 17 mit Koks 38 aus dem Koksspeicher 16 ergänzt werden kann.
Weiterhin weist der Kupolofen 15 eine Abstichöffnung 39, 0 Brenner 40 und eine Abgasöffnung 41 auf. Diese ist über eine Leitung 42 mit dem Rekuperator 18 und mit den Brennern 30 bis 32 und 34 derart verbunden, daß das Abgas aus dem Kupolofen 15 in einem steuerbaren Verhältnis, teilweise zum Rekuperator 18 und teilweise zu den Brennern 30 bis 32, 34 geleitet wer- 5 den kann. Etwa 40 bis 80 % des Abgases werden in den Rekupe¬ rator 18 zum Aufheizen der Verbrennungsluft auf etwa 815°C und der Rest zu den Brennern geleitet.
Desweiteren ist der Kohlespeicher 20 und eine Sauerstoffquel- 30 le 43 über Leitungen 44 jeweils mit den Brennern 30 bis 32, 34, 40 verbunden. Luft 45 ist über eine Leitung 46 den Bren¬ nern 30 bis 32, 34 zuführbar.
Über eine Leitung 47 wird dem Brenner 40 die im Rekuperator 35 18 vorgewärmte Luft zugeführt, die zur Verringerung des Koks¬ verbrauchs zusammen mit Kohle aus dem Kohlespeicher 20 in den Kupolofen eingeblasen werden kann. Über die Brenner 30 bis 32, 34, 40 ist Kalk und/oder vorge¬ wärmte Luft oder Kohle in der erforderlichen Menge einbring¬ bar. Statt bzw. ergänzend zur Kohle können aber auch andere 5 fossilie Brennstoffe, wie Erdgas, Öl oder synthetische Brenn¬ stoffe in die Vorheizkammern 12 bis 14 bzw. den Kupolofen 15 eingebracht werden.
Zudem kann mittels der Brenner 30 bis 32, 34 und der Leitung 10 42 das Abgas aus dem Kupolofen 15 den Vorheizkammern 12 bis 14 zugeführt werden.
Die dargestellte und erläuterte Vorrichtung ist zum Erhitzen und Schmelzen von mit Sauerstoff sehr reaktivem Eisenschwamm 15 10 mittels fossilier Brennstoffe bestimmt, um flüssiges Eisen mit einem Kohlenstoffgehalt von über 3 % und einer Temperatur über 1400°C zu gewinnen.
Dabei wird beispielsweise 1075 kg Eisenschwamm 10 pro 1000 kg 20 gewonnenes Eisen benötigt. Der Eisenschwamm 10 hat eine typi¬ sche Zusammensetzung von 85 bis 90 % metallisches Eisen, 0,5 % Kohlenstoff und 10 % Eisenoxid. Der Eisenschwamm 10 wird zusammen mit Kalkstein 24 über die Chargieröffnung 23 in die erste Vorheizkammer 11 gegeben. Hierbei wird vorzugsweise pro 25 Tonne erzeugtes Eisen 115 kg Kalkstein hinzugegeben.
Durch die Anordnung des Kupolofens 15 und der Vorheizkammern 11 bis 14 übereinander kann das Gemisch aus Eisenschwamm 10 und Kalkstein 24 mit dem Öffnen der jeweiligen Schieber 25,
30 28 und 29 in die jeweils darunter liegende Vorheizkammer 12, 13, 14 fallen. Dabei wird die Menge, die in die nächste Vor¬ heizkammer 12, 13, 14 ausgebracht werden soll, über den Ver¬ schiebeweg des Schiebers 25, 28 bzw. 29 und die Dauer, in der der Schieber 25, 28 bzw. 29 in der geöffneten Position ver-
35 weilt, gesteuert. Durch Öffnen der Dosierklappe 33 gelangt dann der vorgewärmte Eisenschwamm 10 und der Kalk in vorbestimmter, abgewogener Menge aus der vierten Vorheizkammer 14 in den Kupolofen 15.
In der ersten Vorheizkammer 11 herrschen neutrale Bedingun¬ gen, d.h. weder oxidierende noch reduzierende Bedingungen. Der Eisenschwamm 10 und der Kalkstein 24 werden hier durch die aus der Vorheizkammer 12 ausströmenden und durch den Gas¬ einlaß 35 einströmenden heißen Gase auf 250°C erwärmt. Dabei durchströmt das Gas die Schüttung aus in die erste Vorheiz¬ kammer 11 eingebrachtem stückigem Eisenschwamm 10 und stücki¬ gem Kalkstein 24 und gibt Wärme an Eisenschwamm 10 und Kalk¬ stein 24 ab. Über den Gasauslaß 21 und die Leitung 22 wird das Gas zur Gasreinigungsanlage geleitet, wo es gereinigt wird.
Die Temperatur und die Atmosphäre, also die Gaszusammenset¬ zung in den einzelnen Vorheizkammern 11 bis 14, werden durch hier nicht dargestellte Temperaturmeß- und Gasanalysegeräte ermittelt. Mittels der Brenner 30 bis 32, 34 können dann die neutralen/reduzierenden Bedingungen in den einzelnen Vorheiz¬ kammern 11 bis 12 eingestellt und gehalten bzw. geändert wer¬ den. Diese Steuerung erfolgt dabei in bekannter Weise rech¬ nergestützt.
Durch die Brenner 30 bis 32, 34 wird entsprechend den Anfor¬ derungen in den einzelnen Vorheizkammern 11 bis 14 Abgas aus dem Kupolofen 15 direkt oder über den Rekuperator abgekühlt in die Vorheizkammer 12, 13 bzw. 14 eingeblasen. Zudem können die Brenner 30 bis 32, 34 Kohle mit Luft 45 und /oder Sauer¬ stoff verbrennen, um die Vorheizkammer 12, 13, 14 zusätzlich zu erwärmen.-
Der Eisenschwamm 10 und der Kalkstein 24 werden in der ersten Vorheizkammer 11 auf etwa 250°C, in der zweiten Vorheizkammer 12 auf etwa 500°C, in der dritten Vorheizkammer 13 auf etwa 800°C und in der vierten Vorheizkammer 14 auf etwa 850°C er¬ hitzt.
In der dritten und vierten Vorheizkammer 13 und 14 erfolgt die Erwärmung unter reduzierenden Bedingungen, indem entspre¬ chend Abgas aus dem Kupolofen 15 in die Vorneizkammern 12 und 13 geleitet wird. Dabei soll der Kohlenmonoxidanteil im Gas¬ gemisch C02+CO über 25 % liegen.
Bis zum vierten Vorheizofen 14 wird der Kalkstein 24 in Kalk umgewandelt und dient dann im Kupolofen 15 als Flußmittel für den geschmolzenen Eisenschwamm 10.
Der aufgeheizte Eisenschwamm 10 und der Kalk wird dann in den Kupolofen 15 mittels der Dosierklappe 33 eingebracht. Der Ku¬ polofen 15 ist mit dem Koksbett 48 versehen, wobei der Koks 38 eine Größe bis zu etwa 20 cm aufweist.
In den Kupolofen 15 wird durch den Rekuperator auf 850°C vor- gewärmte heiße Luft über den Brenner 40 in das Koksbett 48 geblasen. Aufgrund der dadurch freiwerdenden Energie schmel¬ zen Eisenschwamm und Kalk und fließen gemeinsam durch das Koksbett 48. Mit Durchtritt der Schmelze nach unten durch das Koksbett 48 steigt die Temperatur der Schmelze weiter an, und Kohlenstoff löst sich im Eisen. Am Fuße des Kupolofens 15 sammelt sich dann die Schmelze, die eine Zusammensetzung von über 3 % Kohlenstoff und über 95 % reines Eisen aufweist. Über das Abstichloch 39 ist die Schmelze dann zur weiteren Verarbeitung aus dem Kupolofen 15 ausbringbar.
Die Koksmenge, die für das Verfahren benötigt wird, beträgt etwa 175 kg pro gewonnener Tonne Eisen. Die für das Verfahren benötigte Menge Koks 38 kann vermindert werden, wenn entweder im Kupolofen 15 oder auch in den Vorheizkammern 12 bis 14 zu- sätzlich Kohle zum Aufheizen verwendet wird. Die Koksmenge kann weiterhin auf 80 bis 100 kg pro Tonne ver¬ mindert werden, indem die Verbrennungsprozesse mit Sauerstoff und zusätzlichen Brennstoffen, wie Kohle, Erdgas, Öl oder synthetischen Brennstoffen unterstützt werden.

Claims

Patentansprüche:
1. Verfahren zum Erhitzen und Schmelzen von stückigem Eisenschwamm, bei dem der Eisenschwamm in einen Vorwärmer chargiert, hier durch Hindurchleiten von heißen Gasen durch die Schüttung im Wärmeaustausch erhitzt wird, dann vom Vorwärmer auf ein, mittels Sauerstoff oder Heißluft, erhitztes Koksbett eines Schmelzofens gebracht und hier geschmolzen wird, und die Schmelze nach dem Durchdringen des Koksbett im un¬ teren Teil des Schmelzofens gesammelt wird, wobei das heiße Gas für den Vorwärmer wenigstens teilweise aus dem Abgas des Schmelzofens gewonnen wird, dadurch g e k e n n z e i c h n e t , daß das Erhitzen des Eisenschwamms im Vorwärmer in wenig¬ stens zwei getrennten Vorwärmstufen mit unterschiedlichen Temperaturen erfolgt, denen der Eisenschwamm nacheinander zu¬ geführt wird, und in denen die Temperatur und die Gasatmo- Sphäre jeweils individuell derart gesteuert werden, daß durch die Temperatur und Zusammensetzung der in die Vorwärmstufen eingeleiteten heißen Gase in der ersten Vorwärmstufe mit nie¬ drigster Temperatur eine chemisch neutrale Gasatmosphäre und in der letzten Vorwärmstufe mit höchster Temperatur eine re- duzierende Gasatmosphäre eingestellt wird.
2. Verfahren nach Anspruch 1, dadurch g e k e n n ¬ z e i c h n e t , daß in der reduzierenden Gasatmosphäre das Verhältnis
CO > 25 % co2+co
ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch g e ¬ k e n n z e i c h n e t , daß bei mehr als zwei Vorwärmstu¬ fen mit unterschiedlichen abgestuften Temperaturwerten das Verhältnis
CO co2+co
auf einen mit dem Temperaturwert steigenden Wert einge¬ stellt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3r dadurch g e k e n n z e i c h n e t , daß vier Vorwärmstufen vorge- sehen sind, in denen etwa die folgenden Temperaturwerte ein¬ gestellt werden:
Stufe 1: 250°C
Stufe 2: 500°C
Stufe 3: 800°C Stufe 4: 850°C.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch g e k e n n z e i c h n e t , daß die heißen Gase einer Vor¬ wärmstufe höherer Temperatur wenigstens teilweise in eine Vorwärmstufe niedrigerer Temperatur eingeleitet werden.
6. Verfahren nach Anspruch 5, dadurch g e e n n ¬ z e i c h n e t , daß die heißen Gase vor dem Einleiten in die Vorwärmstufe niedrigerer Temperatur zur Steuerung von Temperatur und Gasatmosphäre dieser Vorwärmstufe mit Zusatz- gasen vermischt werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch g e k e n n z e i c h n e t , daß in die einzelnen Vorwärm- stufen Abgas aus dem Schmelzgefäß eingeleitet wird, und die Steuerung von Temperatur und Gasatmosphäre in den einzelnen Vorwärmstufen durch Beimischen von in einem Rekuperator abge¬ kühltem Abgas des Schmelzgefäßes und Teilverbrennung dieses Abgases oder eines zusätzlichen Brennstoffes mit einem Sauer¬ stoffhaltigen Gas, insbesondere Luft, durchgeführt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch 5 g e k e n n z e i c h n e t , daß in dem Rekuperator Luft vorgewärmt wird, die der Verbrennungszone des Koksbetts des Schmelzofens als Heißluft zugeführt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch lo g e k e n n z e i c h n e t , daß stückiger Eisenschwamm ge¬ meinsam mit Kalkstein im Vorwärmer erhitzt und dann dem Schmelzofen zugeführt wird.
10. Einrichtung zum Erhitzen und Schmelzen von stücki- 15 gern Eisenschwamm mit einem oberhalb eines Schmelzofens (15) angeordneten Vorwärmer, der oben eine Chargiereinrichtung (23) für den Eisenschwamm (10) und einen Gasauslaß (21) , un¬ ten eine Austragvorrichtung (33) zum Austragen des erhitzten Eisenschwamms aus dem Vorwärmer in den Schmelzofen (15) , fer-
20 ner in wenigstens einer der Seitenwände Düsen und/oder Bren¬ ner (30, 31, 32, 34) zum Einleiten von heißen Gasen in den Vorwärmer aufweist, dadurch g e k e n n z e i c h n e t , daß der Vorwärmer wenigstens zwei Vorheizkammern (11, 12, 13, 14) enthält, die jeweils übereinander angeordnet sind, wobei
25 die oberste Kammer (11) im oberen Bereich den Gasauslaß (21) und die Chargiereinrichtung (23) für den Eisenschwamm (10) und die unterste (14) im Bodenbereich die AustragsVorrichtung (33) enthält, ferner im Bereich des Zwischenbodens zwischen zwei benachbarten Kammern eine Austragvorrichtung (25, 28,
30 29) zum Austragen des Eisenschwamms von der jeweils oberen in die jeweils untere Kammer sowie ein Gaseinlaß (35, 36, 37) für die Einleitung von Gas in die jeweils obere Kammer vorge¬ sehen ist, wobei der Gaseinlaß (35, 36, 37) mit der jeweils unteren Kammer (12, 13, 14) und mit jeweils einem Gasraum
35 (26, 27, 50) in Verbindung steht, in den wenigstens eine Düse und/oder ein Brenner (30, 31, 32) münden.
11. Einrichtung nach Anspruch 10, dadurch g e k e n n¬ z e i c h n e t , daß die Vorheizkammern (11, 12, 13, 14) des Vorwärmers einen rechteckigen Querschnitt aufweisen und unter Bildung jeweils eines Gasraumes (26, 27, 50) gegenseitig seitlich versetzt angeordnet sind.
12. Einrichtung nach Anspruch 10 oder 11, dadurch g e- k e n n z e i c h n e t , daß die Zwischenböden als Schie¬ ber (25, 28, 29) ausgebildet sind.
13. Einrichtung nach einem der Ansprüche 10 bis 12, da¬ durch g e k e n n z e i c h n e t , daß die Gaseinlässe (35, 36, 37) im Bereich der Zwischenböden (25, 28, 29) je¬ weils durch einen Spalt zwischen dem betreffenden Zwischenbo- den und einer sich nach oben anschließender Kammerwand gebil¬ det sind.
14. Einrichtung nach einem der Ansprüche 10 bis 13, da¬ durch g e k e n n z e i c h n e t , daß die Austragsvor- richtung der untersten Kammer (14) als Dosierklappe (33) aus¬ gebildet ist.
15. Einrichtung nach einem der Ansprüche 10 bis 14, da¬ durch g e k e n n z e i c h n e t , daß jeder Vorheizkam- mer (11, 12 r 13, 14) wenigstens ein Temperaturfühler und wenigstens ein Gassensor zur individuellen Steuerung von Tem¬ peratur und Gasatmosphäre in der betreffenden Vorheizkammer zugeordnet sind.
EP93912764A 1992-05-21 1993-05-21 Verfahren und einrichtung zum erhitzen und schmelzen von stückigem eisenschwamm Expired - Lifetime EP0596095B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4216891A DE4216891A1 (de) 1992-05-21 1992-05-21 Verfahren und Einrichtung zum Erhitzen und Schmelzen von stückigem Eisenschwamm
DE4216891 1992-05-21
PCT/EP1993/001290 WO1993023575A1 (de) 1992-05-21 1993-05-21 Verfahren und einrichtung zum erhitzen und schmelzen von stückigem eisenschwamm

Publications (2)

Publication Number Publication Date
EP0596095A1 true EP0596095A1 (de) 1994-05-11
EP0596095B1 EP0596095B1 (de) 1997-12-03

Family

ID=6459459

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93912764A Expired - Lifetime EP0596095B1 (de) 1992-05-21 1993-05-21 Verfahren und einrichtung zum erhitzen und schmelzen von stückigem eisenschwamm

Country Status (6)

Country Link
US (1) US5451246A (de)
EP (1) EP0596095B1 (de)
CN (1) CN1084568A (de)
AU (1) AU4316493A (de)
DE (2) DE4216891A1 (de)
WO (1) WO1993023575A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2121652B1 (es) * 1995-03-10 2000-01-16 Renom Rafael Tudo Horno alto continuo.
DE19625267A1 (de) * 1996-06-25 1998-01-08 Bayer Ag Verfahren zur Herstellung anorganisch beschichteter Pigmente und Füllstoffe
DE19634348A1 (de) 1996-08-23 1998-02-26 Arcmet Tech Gmbh Einschmelzaggregat mit einem Lichtbogenofen
JP4801732B2 (ja) * 2006-01-04 2011-10-26 サールスタール アーゲー 鉄塊化物を予熱する方法
CN101748233B (zh) * 2008-12-04 2011-08-17 贾会平 一种电弧炉熔融炼铁的方法和装置
CN102146490B (zh) * 2010-02-09 2012-11-28 贾会平 一种还原炼铁的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2132150B2 (de) * 1971-06-29 1980-07-24 Wasmuht, Jobst-Thomas, Dr.-Ing., 4600 Dortmund Verfahren zum direkten Herstellen von Stahl
US3702242A (en) * 1971-07-21 1972-11-07 Combustion Eng Downdraft cupola incorporating means to preheat the charge
SE395714B (sv) * 1974-02-20 1977-08-22 Skf Ind Trading & Dev Sett och anordning for framstellning av metall ur oxidiskt material
EP0063924B2 (de) * 1981-04-28 1990-03-14 Kawasaki Steel Corporation Verfahren und Vorrichtung zum Schmelzen und Frischen von feinverteiltem metalloxydhaltigem Erz
DE3421878A1 (de) * 1984-06-13 1985-12-19 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren und anlage zur kontinuierlichen erzeugung von roheisen
DE3503493A1 (de) * 1985-01-31 1986-08-14 Korf Engineering GmbH, 4000 Düsseldorf Verfahren zur herstellung von roheisen
DE3713369A1 (de) * 1987-04-21 1988-11-10 Kortec Ag Chargiergutvorwaermer zum vorwaermen von chargiergut eines metallurgischen schmelzaggregates
DE3735150A1 (de) * 1987-10-16 1989-05-03 Kortec Ag Verfahren zum zufuehren von waermeenergie in eine metallschmelze
DE3835332A1 (de) * 1988-10-17 1990-04-19 Ralph Weber Verfahren zur herstellung von stahl aus feinerz
DE3928415A1 (de) * 1989-08-28 1991-03-07 Kortec Ag Verfahren zur herstellung von stahl

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9323575A1 *

Also Published As

Publication number Publication date
WO1993023575A1 (de) 1993-11-25
DE4216891A1 (de) 1993-11-25
CN1084568A (zh) 1994-03-30
US5451246A (en) 1995-09-19
EP0596095B1 (de) 1997-12-03
AU4316493A (en) 1993-12-13
DE59307779D1 (de) 1998-01-15

Similar Documents

Publication Publication Date Title
DE3216019C3 (de) Verfahren zum Erzeugen von Roheisen und Nutzgas und Verwendung eines Schmelz/Vergasungs-Ofens zu dessen Durchführung
EP0126391B1 (de) Verfahren zur Eisenherstellung
DE4206828C2 (de) Schmelzreduktionsverfahren mit hoher Produktivität
DD243716A5 (de) Verfahren und einrichtung zur herstellung von fluessigem roheisen oder stahlvorprodukten
DE2507140A1 (de) Verfahren und einrichtung zur erzeugung von roheisen aus oxydischen eisenerzen
DE2428891C3 (de) Schachtofen zum Schmelzen von mineralischen Substanzen zur Herstellung von Mineralwolle
EP0222452B1 (de) Verfahren zur Reduktion von höheren Metalloxiden zu niedrigen Metalloxiden
EP1960556A2 (de) Verfahren zum aufarbeiten von metallurgischen stäuben oder schleifstäuben sowie vorrichtung zur durchführung dieses verfahrens
AT405293B (de) Verfahren und vorrichtung zum herstellen von geschmolzenem eisen unter verwendung von kohle
DE112022005771T5 (de) Vorrichtung und Verfahren zum Einspritzen und Regulieren für das kohlenstoffarme Hochofenschmelzen
DE886390C (de) Verfahren zum Schmelzen von sulfidhaltigen Rohstoffen
EP1285096B1 (de) Verfahren und vorrichtung zur herstellung von roheisen oder flüssigen stahlvorprodukten aus eisenerzhältigen einsatzstoffen
EP0596095A1 (de) Verfahren und einrichtung zum erhitzen und schmelzen von stückigem eisenschwamm
DE3421878A1 (de) Verfahren und anlage zur kontinuierlichen erzeugung von roheisen
DE3608150C1 (de) Verfahren und Vorrichtung zur reduzierenden Schmelzvergasung
DE935845C (de) Verfahren und Einrichtung zum Verhuetten von Erzen
AT504073B1 (de) Verfahren zum aufarbeiten von metallurgischen stäuben oder schleifstäuben sowie vorrichtung zur durchführung dieses verfahrens
DE2659213A1 (de) Verfahren zur eisenerzverhuettung
DE2729983B2 (de) Verfahren zur Stahlerzeugung
DE69700267T2 (de) Verfahren zum Beschicken eines Kupolofens mit Schrott und Koks
EP0521523B1 (de) Verfahren zum Betreiben eines Kupolofens
DE4139236C2 (de) Verfahren und Vorrichtung zum Schmelzen von Roheisen
WO2002097347A1 (de) Verfahren zur thermischen behandlung von rohmaterialien und eine vorrichtung zur durchführung des verfahrens
EP0030344A2 (de) Verfahren zur Verbesserung der Wärmeausnutzung bei der Stahlerzeugung aus festen Eisenmaterialien
DE1951567B2 (de) Schachtofen zum schmelzen und verfahren zum betreiben des selben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940209

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT LU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KORTEC AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MANNESMANN AKTIENGESELLSCHAFT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970417

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT LU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19971203

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19971203

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59307779

Country of ref document: DE

Date of ref document: 19980115

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980521

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19971203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980622

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050521