EP0222452B1 - Verfahren zur Reduktion von höheren Metalloxiden zu niedrigen Metalloxiden - Google Patents

Verfahren zur Reduktion von höheren Metalloxiden zu niedrigen Metalloxiden Download PDF

Info

Publication number
EP0222452B1
EP0222452B1 EP86201942A EP86201942A EP0222452B1 EP 0222452 B1 EP0222452 B1 EP 0222452B1 EP 86201942 A EP86201942 A EP 86201942A EP 86201942 A EP86201942 A EP 86201942A EP 0222452 B1 EP0222452 B1 EP 0222452B1
Authority
EP
European Patent Office
Prior art keywords
fluidized bed
supplied
metal oxides
solids
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86201942A
Other languages
English (en)
French (fr)
Other versions
EP0222452A1 (de
Inventor
Martin Hirsch
Hermann Lommert
Harry Dr. Serbent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0222452A1 publication Critical patent/EP0222452A1/de
Application granted granted Critical
Publication of EP0222452B1 publication Critical patent/EP0222452B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/09Reaction techniques
    • Y10S423/16Fluidization

Definitions

  • the invention relates to a method for reducing higher metal oxides to lower metal oxides by means of carbon-containing reducing agents.
  • ores that contain metals - such as Fe, Ni, Mn - in the form of higher oxides have to be subjected to a reducing treatment so that these metals are in the form of lower oxides.
  • ferroalloys While e.g. in the case of an ore with 30% Fe and 2% Ni, an Fe / Ni ratio of 15/1 is present, commercially available ferroalloys have such ratios of at most 4/1, i.e. their nickel content is at least 20%.
  • Such ores are processed in such a way that they are reduced as far as possible to the FeO stage by means of a pre-reduction and then only as much metallic iron is produced in a melting process by further reduction as is permissible for the desired ferroalloy.
  • the remaining iron oxide is slagged.
  • the pre-reduction is carried out on an industrial scale in rotary kilns using coal as a reducing agent.
  • the problem of the pre-reduction in the rotary kiln lies in the constant adherence to an exact pre-reduction of the iron oxides, the discharge material being allowed to contain only as much excess, solid carbon as is permissible for the further reduction in the melting process.
  • Another case of using the method according to the invention relates to the reduction of ores which contain higher manganese oxides and whose manganese content is to be reduced to low manganese oxides.
  • the object of the invention is to carry out the reduction of higher metal oxides to lower metal oxides as largely and constantly as possible to the desired oxidation state and to set either as little or a constant, small excess of carbon in the reduced discharge material.
  • the grain size of the solids is in the range of less than 3 mm.
  • the calcination can take place in a stationary fluidized bed, a circulating fluidized bed or another process in which the solids are suspended in a gas stream.
  • the raw materials can be dried in the calcination before use. Drying can take place with the waste heat from the calcination. As a result, the water is evaporated without the consumption of carbon, the water vapor does not have to be heated to the considerably higher temperature in the calcination, and the waste heat is used in a favorable manner. After drying, further heating can be carried out before charging into the calcination, a certain amount of precalculation being able to occur.
  • a stationary fluidized bed is to be understood as a fluidized bed in which a dense phase is separated from the dust space above by a clear density jump, and a defined boundary layer exists between these two distribution states.
  • the amount of the oxygen-containing gases passed as a fluidizing gas into the stationary fluidized bed is such that the carbon-containing reducing agent is either virtually completely gasified or gasified to a desired excess of carbon in the discharge material.
  • the oxygen-containing gases generally consist of air.
  • a preferred embodiment consists in that the calcination according to (a) takes place in a circulating fluidized bed, the suspension discharged from the fluidized bed reactor is passed into a separator, at least a partial stream of the separated solids is returned to the fluidized bed reactor, and the exhaust gas for drying and preheating the solids containing higher metal oxides are passed into suspension heat exchangers.
  • the circulating fluidized bed system consists of a fluidized bed reactor, a separator and a return line for solids from the separator to the fluidized bed reactor.
  • the fluidized bed in the fluidized bed reactor has - in contrast to the stationary fluidized bed, in which a dense phase is separated from the gas space above by a clear density jump - distribution states without a defined boundary layer.
  • the solids discharged from the fluidized bed reactor with the gases are returned to the fluidized bed reactor to form a circulating fluidized bed such that the hourly solids circulation is at least five times the solids weight in the reactor shaft matters.
  • a quantity of solids corresponding to the entry is withdrawn from the system of the circulating fluidized bed and passed into the stationary fluidized bed.
  • the circulating fluidized bed results in a high throughput during calcination, a high burnout of the fuel and, due to the multi-stage combustion, a low content of CO and NO x in the exhaust gas.
  • a preferred embodiment consists in that the exhaust gas from the stationary fluidized bed according to (d) is passed through a separator before being introduced into the calcination, and the separated solid is returned to the stationary fluidized bed.
  • the dust separator expediently consists of a cyclone. This largely avoids the circulation of solids between the reduction stage and the oxidation stage.
  • a preferred embodiment is that the reduction according to (b) is carried out with the addition of solid, carbon-containing reducing agents.
  • the addition of solid fuels results in a better distribution in the fluidized bed and the desired amount of excess carbon in the discharge material can be adjusted very precisely and evenly.
  • One embodiment consists of the use of iron-nickel ores and the addition of carbon-containing reducing agent in the stationary fluidized bed in accordance with (c) such that it is used to reduce the higher iron oxides, for example to the FeO stage, to reduce the nickel oxides, is sufficient to set the reduction temperature and there is a maximum of 2% by weight of excess carbon in the discharge material, and the discharge material is further processed in the melt flow to produce an amount of metallic iron corresponding to the desired iron-nickel alloy and slagging of the remaining iron content.
  • One embodiment consists in that materials containing manganese oxides are used, and the addition of carbon-containing reducing agent in the stationary fluidized bed is dimensioned in accordance with (c) such that it is sufficient to reduce the higher manganese oxides, for example to the MnO stage, to set the reduction temperature, and There is as little excess carbon as possible in the discharge material.
  • the ore 1 is charged via a screw 2 into a venturi-like suspension dryer 3. There it is suspended in the gas stream and passed via line 4 into a separator 5. The gas is cleaned in the electrostatic filter 6 and discharged as exhaust gas 7. The separated solids are fed into line 8 by screw 7a. A partial stream is fed into the calcination via line 9.
  • the calcination is designed as a circulating fluidized bed and consists of the fluidized bed reactor 10, the recycle cyclone 11 and the recycle line 12. A part of the solid is passed via line 13 into the preheater 14, suspended there in the gas stream and passed via line 15 into the separator 16. The separated solid is passed into the reactor 10 via line 17. The gas flows from the separator 16 into the suspension dryer 3.
  • Fluidizing air 18 is introduced into the lower region of the reactor 10. At a higher point, secondary air 19 and coal 20 are introduced.
  • a gas / solid suspension which fills the entire reactor 10 is formed within the fluidized bed reactor 10 and is passed at the top via line 21 into the recycling cyclone 11, where a separation of solid and gas takes place.
  • the gas flows into the preheater 14 and the solid enters the return line 12, in which a U-shaped closure 13 is arranged, in the bottom of which a small amount of fluidizing air (not shown) is passed.
  • Part of the calcined solid passes from the closure 13 via a controllable valve 22 and line 23 into the stationary fluidized bed 24, in which the reduction takes place. Fluidizing air is blown into the lower part via line 25 and coal is introduced via line 26.
  • the dust-containing exhaust gas is passed via line 27 into the separator 28.
  • the separated solids return to the stationary fluidized bed 24 via line 29, while the exhaust gas is introduced via line 30 into the fluidized bed reactor 10 at a higher point.
  • the reduced material is discharged via line 31.
  • Calcined solids can also be fed into the stationary fluidized bed 24 via line 32.
  • the fluidized bed reactor 10 has a diameter of 3.7 m and a height of 16 m.
  • the temperature in the reactor is 900 ° C.
  • the fluidized bed reactor 24 has a diameter of 3 m and a height of 2.5 m.
  • the temperature in the reactor is 900 ° C.
  • the advantages of the invention are that, on the one hand, the calcination can be carried out in a very economical manner with the generation of a largely burnt-out, low-pollutant exhaust gas and, on the other hand, a reduced product is obtained which has a precise and uniform degree of reduction and a precisely defined and uniform content of excess Contains carbon, which content can also be practically zero.
  • the iron oxides can be largely reduced to FeO and the formation of metallic iron can nevertheless be avoided.
  • the carbon content in the discharge can be kept very low or only as high and absolutely uniform as is necessary for the reduction of the small amounts of metallic iron in the melting process. This enables precise metering of the amount of carbon in the electric furnace.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Reduktion von höheren Metalloxiden zu niedrigen Metalloxiden mittels kohlenstoffhaltiger Reduktionsmittel.
  • In manchen Fällen müssen Erze, die Metalle - wie Fe, Ni, Mn - in Form höherer Oxide enthalten, einer reduzierenden Behandlung unterworfen werden, damit diese Metalle in Form niedriger Oxide vorliegen.
  • Dies ist insbesondere der Fall bei Verfahren zur Herstellung von Eisen-Nickel-Legierungen aus Eisen-Nickel-Erzen.
  • Zur Versorgung der Industrie mit Nickel, insbesondere in Form seiner Legierung mit Eisen, müssen in zunehmendem Maße ärmere, z.B. lateritische, Erze eingesetzt werden. Diese weisen jedoch meist ein Fe/Ni-Verhäftnis auf, das bei vollständiger Reduktion beider Metalle und schmelzflüssiger Abtrennung der Erzgangart als Schlacke zu einer nicht marktfähigen, weil zu Ni-armen Ferrolegierung führen würde.
  • Während z.B. bei einem Erz mit 30% Fe und 2% Ni ein Fe/Ni-Verhältnis von 15/1 vorliegt, weisen handelsübliche Ferrolegierungen solche Verhältnisse von höchstens 4/1 auf, d.h. ihr Nickelgehalt beträgt mindestens 20%.
  • Aus diesem Grunde werden solche Erze deshalb in der Weise verarbeitet, daß sie durch eine Vorreduktion möglichst bis zum FeO-Stadium vorreduziert werden und dann in einem Schmelzprozeß nur so viel metallisches Eisen durch weitere Reduktion erzeugt wird, wie für die gewünschte Ferrolegierung zulässig ist. Das restliche Eisenoxid wird verschlackt. Die Vorreduktion erfolgt großtechnisch in Drehrohröfen unter Einsatz von Kohle als Reduktionsmittel. Das Problem der Vorreduktion im Drehrohrofen liegt in der konstanten Einhaltung einer genauen Vorreduktion der Eisenoxide, wobei das Austragsmaterial nur so viel überschüssigen, festen Kohlenstoff enthalten darf, wie für die weitere Reduktion im Schmelzprozeß zulässig ist. Da im Drehrohrofen bei der Vorreduktion relativ starke Schwankungen im Reduktionsgrad auftreten, die Bildung von metallischem Eisen aber vermieden werden soll, wird die Vorreduktion nicht bis zum Fe0-Stadium durchgeführt. Aus Sicherheitsgründen erfolgt die Vorreduktion nur bis zu einem beträchtlich höheren Oxidationsgrad. Dadurch wird aber eine größere Reduktionsarbeit im Schmelzfluß, die meistens in Elektroöfen erfolgt, notwendig, wodurch das Gesamtverfahren teurer wird. Außerdem ist die Einstellung der weiteren Reduktion im Schmelzfluß schwierig, da der Oxidationsgrad und Kohlenstoffgehalt des Austrages des Drehrohrofens, selbst bei kleinen Öfen, oft schwankt.
  • Ein solches Verfahren ist beschrieben im TMS-AIME Paper Selection, Paper No. A 74-40, Seiten 1-23.
  • Ein weiterer Fall der Anwendung des erfindungsgemäßen Verfahrens betrifft die Reduktion von Erzen, die höhere Manganoxide enthalten und deren Mangangehalt zu niedrigen Manganoxiden reduziert werden soll.
  • Aus US-A 4 044 094 ist es bekannt, MnO2 in einem Manganerz in einem zweistufigen Fließbettverfahren zu MnO zu reduzieren, wobei der mittels Synthesegas als Fluidisierungs- und Reduktionsgas in einem Fließbettreaktor bei ca. 730°C erfolgenden Reduktion ein Kalzinieren in einem Fließbettreaktor bei etwa derselben Temperatur vorausgeht.
  • Der Erfindung liegt die Aufgabe zugrunde, die Reduktion von höheren Metalloxiden zu niedrigen Metalloxiden möglichst weitgehend und konstant zur gewünschten Oxidationsstufe durchzuführen und entweder möglichst wenig oder einen konstanten, geringen Überschuß an Kohlenstoff im reduzierten Austragsmaterial einzustellen.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäß dadurch, daß
    • a) in einem ersten Reaktor höhere Metalloxide enthaltende Feststoffe in feinkörniger Form mit heißen Gasen von 800 bis 1100°C kalziniert werden, wobei die Feststoffe in den heißen Gasen suspendiert werden,
    • b) die kalzinierten Feststoffe dann in einem weiteren Reaktor mit einer stationären Wirbelschicht unter Zugabe von kohlenstoffhaltigen Reduktionsmitteln und sauerstoffhaltigen Gasen bei einer Temperatur im Bereich von 800 bis 1100°C zu niedrigen Metalloxiden reduziert werden,
    • c) der Zusatz an kohlenstoffhaltigem Reduktionsmittel in (b) so bemessen wird, daß die Menge des zugegebenen Kohlenstoffs zur Reduktion der höheren Metalloxide zu niedrigen Metalloxiden, zur Erzeugung der Reduktionstemperatur und zur Einstellung des gewünschten Kohlenstoffgehaltes im Austragsmaterial ausreicht,
    • d) das Abgas aus der stationären Wirbelschicht gemäß (b) als Sekundärgas in die Kalzination gemäß (a) geleitet wird und
    • e) in die Kalzination gemäß (a) Brennstoff in einer solchen Menge eingeleitet wird, daß dessen Verbrennung und die durch das Abgas gemäß (d) eingebrachte Wärmemenge die für die Kalzination erforderliche Wärmemenge ergeben.
  • Die Korngröße der Feststoffe liegt im Bereich kleiner 3 mm.
  • In der Kalzination werden Kristallwasser ausgetrieben, Karbonate unter Entwicklung von C02 zerlegt und eventuell vorhandene Feuchtigkeit verdampft. Die Kalzination erfolgt unter oxidierenden Bedingungen. Die heißen Gase können durch Verbrennung von festen, flüssigen oder gasförmigen Brennstoffen erzeugt werden.
  • Die Kalzination kann in einer stationären Wirbelschicht, einer zirkulierenden Wirbelschicht oder einem anderen Verfahren erfolgen, bei dem die Feststoffe in einem Gasstrom suspendiert sind. Die Rohstoffe können vor dem Einsatz in die Kalzination getrocknet werden. Die Trocknung kann mit der Abwärme der Kalzination erfolgen. Dadurch erfolgt die Wasserverdampfung ohne Verbrauch an Kohlenstoff, der Wasserdampf muß nicht auf die beträchtlich höhere Temperatur in der Kalzination erhitzt werden, und die Abwärme wird in günstiger Weise ausgenutzt. Nach der Trocknung kann eine weitere Aufheizung vor der Chargierung in die Kalzination erfolgen, wobei bereits eine gewisse Vorkalzination eintreten kann.
  • Der aus der Kalzination abgezogene Feststoff wird in einer stationären (klassischen) Wirbelschicht vorreduziert. Unter einer stationären Wirbelschicht ist eine Wirbelschicht zu verstehen, bei der eine dichte Phase durch einen deutlichen Dichtesprung von dem darüber befindlichen Staubraum getrennt ist, und eine definierte Grenzschicht zwischen diesen beiden Verteilungszuständen vorliegt.
  • Die Menge der als Fluidisierungsgas in die stationäre Wirbelschicht geleiteten sauerstoffhaltigen Gase wird so bemessen, daß das kohlenstoffhaltige Reduktionsmittel entweder praktisch vollständig vergast wird oder bis auf einen gewünschten Überschuß an Kohlenstoff im Austragsmaterial vergast wird. Die sauerstoffhaltigen Gase bestehen im allgemeinen aus Luft.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß die Kalzination gemäß (a) in einer zirkulierenden Wirbelschicht erfolgt, die aus dem Wirbelschichtreaktor ausgetragene Suspension in einen Abscheider geleitet wird, mindestens ein Teilstrom der abgeschiedenen Feststoffe in den Wirbelschichtreaktor zurückgeleitet wird, und das Abgas zur Trocknung und Vorwärmung der höhere Metalloxide enthaltenden Feststoffe in Suspensions-Wärmeaustauscher geleitet wird. Das System der zirkulierenden Wirbelschicht besteht aus einem Wirbelschichtreaktor, einem Abscheider und einer Rückführleitung für Feststoffe vom Abscheider in den Wirbelschichtreaktor. Die Wirbelschicht im Wirbelschichtreaktor weist - im Gegensatz zur stationären Wirbelschicht, bei der eine dichte Phase durch einen deutlichen Dichtesprung von dem darüber befindlichen Gasraum getrennt ist - Verteilungszustände ohne definierte Grenzschicht auf. Ein Dichtesprung zwischen dichter Phase und darüber befindlichem Staubraum ist nicht existent; jedoch nimmt innerhalb des Reaktors die Feststoffkonzentration von unten nach oben ständig ab. Bei der Definition der Betriebsbedingungen über die Kennzahlen von Froude und Archimedes ergeben sich die Bereiche:
    Figure imgb0001
    bzw.
    Figure imgb0002
    wobei
    Figure imgb0003
    und
    Figure imgb0004
    sind.
  • Es bedeuten:
    • u die relative Gasgeschwindigkeit in m/sec.
    • Ar die Archimedes-Zahl
    • Fr die Froude-Zahl
    • pg die Dichte des Gases in kg/m3
    • pk die Dichte des Feststoffteilchens in kg/m3
    • dk den Durchmesser des kugelförmigen Teilchens in m
    • v die kinematische Zähigkeit in m2/sec
    • g die Gravitationskonstante in m/sec2
  • Die mit den Gasen aus dem Wirbelschichtreaktor ausgetragenen Feststoffe werden derart zur Ausbildung einer zirkulierenden Wirbelschicht in den Wirbelschichtreaktor zurückgeleitet, daß der stündliche Feststoffumlauf mindestens das Fünffache des im Reaktorschacht befindlichen Feststoffgewichtes ausmacht. Eine dem Eintrag entsprechende Menge an Feststoffen wird aus dem System der zirkulierenden Wirbelschicht abgezogen und in die stationäre Wirbelschicht geleitet. Die zirkulierende Wirbelschicht ergibt eine hohe Durchsatzleistung bei der Kalzination, einen hohen Ausbrand des Brennstoffes und durch die mehrstufige Verbrennung einen geringen Gehalt an CO und NOx im Abgas.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß das Abgas aus der stationären Wirbelschicht gemäß (d) vor der Einleitung in die Kalzination durch einen Abscheider geleitet wird, und der abgeschiedene Feststoff in die stationäre Wirbelschicht zurückgeleitet wird. Der Staubabscheider besteht zweckmäßigerweise aus einem Zyklon. Dadurch wird eine Kreislaufführung von Feststoffen zwischen der Reduktionsstufe und der Oxidationsstufe weitgehend vermieden.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß die Reduktion gemäß (b) unter Zusatz von festen, kohlenstoffhaltigen Reduktionsmitteln erfolgt. Der Zusatz von festen Brennstoffen ergibt eine bessere Verteilung in der Wirbelschicht und die gewünschte Menge an überschüssigem Kohlenstoff im Austragsmaterial kann sehr genau und gleichmäßig eingestellt werden.
  • Eine Ausgestaltung besteht darin, daß Eisen-Nickel-Erze eingesetzt werden, und der Zusatz an kohlenstoffhaltigem Reduktionsmittel in die stationäre Wirbelschicht gemäß (c) so bemessen wird, daß er zur Reduktion der höheren Eisenoxide etwa zum FeO-Stadium, zur Reduktion der Nickeloxide, zur Einstellung der Reduktionstemperatur ausreicht und im Austragsmaterial ein Gehalt an überschüssigem Kohlenstoff von maximal 2 Gew.-% vorliegt, und das Austragsmaterial im Schmelzfluß unter Erzeugung einer der gewünschten Eisen-Nickel-Legierung entsprechenden Menge von metallischem Eisen und Verschlackung des restlichen Eisengehaltes weiterbehandelt wird.
  • Eine Ausgestaltung besteht darin, daß Manganoxide enthaltende Materialien eingesetzt werden, und der Zusatz an kohlenstoffhaltigem Reduktionsmittel in die stationäre Wirbelschicht gemäß (c) so bemessen wird, daß er zur Reduktion der höheren Manganoxide etwa zum MnO-Stadium, zur Einstellung der Reduktionstemperatur ausreicht, und im Austragsmaterial möglichst wenig überschüssiger Kohlenstoff vorliegt.
  • Die Erfindung wird anhand einer Figur und eines Beispiels näher erläutert.
  • Das Erz 1 wird über eine Schnecke 2 in einen venturiartigen Suspensionstrockner 3 chargiert. Dort wird es im Gasstrom suspendiert und über Leitung 4 in einen Abscheider 5 geleitet. Das Gas wird im Elektrofilter 6 gereinigt und als Abgas 7 abgeleitet. Die abgeschiedenen Feststoffe werden von der Schnecke 7a in Leitung 8 eingespeist. Ein Teilstrom wird über Leitung 9 in die Kalzination geleitet. Die Kalzination ist als zirkulierende Wirbelschicht ausgebildet und besteht aus dem Wirbelschichtreaktor 10, dem Rückführzyklon 11 und der Rückführleitung 12. Ein Teil des Feststoffes wird über Leitung 13 in den Vorwärmer 14 geleitet, dort im Gasstrom suspendiert und über Leitung 15 in den Abscheider 16 geleitet. Der abgeschiedene Feststoff wird über Leitung 17 in den Reaktor 10 geleitet. Das Gas strömt aus dem Abscheider 16 in den Suspensionstrockner 3. In den unteren Bereich des Reaktors 10 wird Fluidisierungsluft 18 eingeleitet. An einer höheren Stelle werden Sekundärluft 19 und Kohle 20 eingeleitet. Innerhalb des Wirbelschichtreaktors 10 bildet sich eine den gesamten Reaktor 10 ausfüllende Gas/Feststoff-Suspension aus, die am Kopf über Leitung 21 in den Rückführzyklon 11 geleitet wird, wo eine Trennung von Feststoff und Gas erfolgt. Das Gas strömt in den Vorwärmer 14 und der Feststoff gelangt in die Rückführleitung 12, in der ein U-förmiger Verschluß 13 angeordnet ist, in dessen Boden eine kleine Menge Fluidisierungsluft (nicht dargestellt) geleitet wird. Ein Teil des kalzinierten Feststoffes gelangt aus dem Verschluß 13 über ein regelbares Ventil 22 und Leitung 23 in die stationäre Wirbelschicht 24, in der die Reduktion erfolgt. Über Leitung 25 wird Fluidisierungsluft in den unteren Teil eingeblasen, und über Leitung 26 wird Kohle eingeführt. Das staubhaltige Abgas wird über Leitung 27 in den Abscheider 28 geleitet. Die abgeschiedenen Feststoffe gelangen über Leitung 29 wieder in die stationäre Wirbelschicht 24, während das Abgas über Leitung 30 in den Wirbelschichtreaktor 10 an einer höheren Stelle eingeleitet wird. Das reduzierte Material wird über Leitung 31 abgeleitet. Über Leitung 32 kann ebenfalls kalzinierter Feststoff in die stationäre Wirbelschicht 24 geleitet werden.
  • Ausführungsbeispiel:
  • Die Positionen beziehen sich auf die Figur.
  • Es wurde ein lateritisches Ni-Erz folgender Zusammensetzung eingesetzt (bezogen auf trockenes Erz):
    • 20% Fe203
    • 2%NiO
    • 6,8% CaCOa
    • 9,9% Hydratwasser
    • Feuchtigkeit 13,7%
  • Der Wirbelschichtreaktor 10 hat einen Durchmesser von 3,7 m und eine Höhe von 16 m. Die Temperatur im Reaktor beträgt 900°C.
  • Der Wirbelschichtreaktor 24 hat einen Durchmesser von 3 m und eine Höhe von 2,5 m. Die Temperatur im Reaktor beträgt 900°C.
  • Schnecke 2: 100 t/h Erz
    • Fluidisierungsluft 18: 20 000 Nm3/h
    • Sekundärluft 19: 22 600 Nm3/h
    • Kohle 20: 4,26 t/h
    • 81,8% C
    • 2,6% H
    • 5,6%0
    • 1,5% Asche
    • 6,7% Feuchte
    • Hu: 7 043 kcal/kg
    • Leitung 21: 58 600 Nm3/h
    • 900°C
    • Leitung 9: 60% des Feststoffes
    • Leitung 13: 40% des Feststoffes
    • Fluidisierungsluft 25: 6030 Nm3/h
    • Kohle 26: 3,43 t/h
    • Abgas 27: 9430 Nm3/h
    • 18,8% CO
    • 17,6% CO2
    • 6,3% H2
    • 7,4% H20
    • 50,5% N2
    • Austrag 31: 72,65 t/h
    • 21,4% Fe0
    • 1,9% Ni
    • 1,37% C
    • Abgas 7: 82 000 Nm3/h
    • 13,7% CO2
    • 37,8% H20
    • 46,7% N2
    • 1,8%02
    • 140°C
  • Die Vorteile der Erfindung bestehen darin, daß einerseits die Kalzination in sehr wirtschaftlicher Weise unter Erzeugung eines weitgehend ausgebrannten, schadstoffarmen Abgases durchgeführt werden kann und andererseits ein reduziertes Produkt erhalten wird, das einen genauen und gleichmäßigen Reduktionsgrad aufweist und einen genau definierten und gleichmäßigen Gehalt an überschüssigem Kohlenstoff enthält, wobei dieser Gehalt auch praktisch Null sein kann.
  • Bei der Reduktion von Eisen-Nickel-Erzen können die Eisenoxide weitgehend zu FeO reduziert werden und trotzdem die Bildung von metallischem Eisen vermieden werden. Der Kohlenstoffgehalt im Austrag kann sehr gering gehalten oder nur so hoch und absolut gleichmäßig gehalten werden, wie für die Reduktion der geringen Mengen an metallischem Eisen im Schmelzprozeß erforderlich ist. Dadurch ist eine genaue Dosierung der Kohlenstoffmenge im Elektroofen möglich.

Claims (6)

1. Verfahren zur Reduktion von höheren Metalloxiden zu niedrigen Metalloxiden mittels kohlenstoffhaltiger Reduktionsmittel, wobei
a) in einem ersten Reaktor (10) höhere Metalloxide enthaltende Feststoffe in feinkörniger Form mit heißen Gasen von 800 bis 1100°C kalziniert werden, wobei die Feststoffe in den heißen Gasen suspendiert werden,
b) die kalzinierten Feststoffe dann in einem weiteren Reaktor mit einer stationären Wirbelschicht (24) unter Zugabe von kohlenstoffhaltigen Reduktionsmitteln und sauerstoffhaltigen Gasen bei einer Temperatur im Bereich von 800 bis 1100°C zu niedrigen Metalloxiden reduziert werden,
c) der Zusatz an kohlenstoffhaltigem Reduktionsmittel in (b) so bemessen wird, daß die Menge des zugegebenen Kohlenstoffs zur Reduktion der höheren Metalloxide zu niedrigen Metalloxiden, zur Erzeugung der Reduktionstemperatur und zur Einstellung des gewünschten Kohlenstoffgehaltes im Austragsmaterial ausreicht,
d) das Abgas aus der stationären Wirbelschicht gemäß (b) als Sekundärgas in die Kalzination gemäß (a) geleitet wird und
e) in die Kalzination gemäß (a) Brennstoff in einer solchen Menge eingeleitet wird, daß dessen Verbrennung und die durch das Abgas gemäß (d) eingebrachte Wärmemenge die für die Kalzination erforderliche Wärmemenge ergeben.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Kalzination gemäß (a) in einer zirkulierenden Wirbelschicht erfolgt, die aus dem Wirbelschichtreaktor ausgetragene Suspension in einen Abscheider geleitet wird, mindestens ein Teilstrom der abgeschiedenen Feststoffe in den Wirbelschichtreaktor zurückgeleitet wird, und das Abgas zur Trocknung und Vorwärmung der höhere Metalloxide enthaltenden Feststoffe in Suspensions-Wärmeaustauscher geleitet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Abgas aus der stationären Wirbelschicht gemäß (d) vor der Einleitung in die Kalzination durch einen Abscheider geleitet wird, und der abgeschiedene Feststoff in die stationäre Wirbelschicht zurückgeleitet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Reduktion gemäß (b) unter Zusatz von festen, kohlenstoffhaltigen Reduktionsmitteln erfolgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß Eisen-Nickel-Erze eingesetzt werden, und der Zusatz an kohlenstoffhaltigem Reduktionsmittel in die stationäre Wirbelschicht gemäß (c) so bemessen wird, daß er zur Reduktion der höheren Eisenoxide etwa zum FeO-Stadium, zur Reduktion der Nickeloxide, zur Einstellung der Reduktionstemperatur ausreicht und im Austragsmaterial ein Gehalt an überschüssigem Kohlenstoff von maximal 2 Gew.-% vorliegt, und das Austragsmaterial im Schmelzfluß unter Erzeugung einer der gewünschten Eisen-Nickel-Legierung entsprechenden Menge von metallischem Eisen und Verschlackung des restlichen Eisengehaltes weiterbehandelt wird.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß Manganoxide enthaltende Materialien eingesetzt werden, und der Zusatz an kohlenstoffhaltigem Reduktionsmittel in die stationäre Wirbelschicht gemäß (c) so bemessen wird, daß er zur Reduktion der höheren Manganoxide etwa zum MnO-Stadium, zur Einstellung der Reduktionstemperatur ausreicht, und im Austragsmaterial möglichst wenig überschüssiger Kohlenstoff vorliegt.
EP86201942A 1985-11-15 1986-11-07 Verfahren zur Reduktion von höheren Metalloxiden zu niedrigen Metalloxiden Expired EP0222452B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853540541 DE3540541A1 (de) 1985-11-15 1985-11-15 Verfahren zur reduktion von hoeheren metalloxiden zu niedrigen metalloxiden
DE3540541 1985-11-15

Publications (2)

Publication Number Publication Date
EP0222452A1 EP0222452A1 (de) 1987-05-20
EP0222452B1 true EP0222452B1 (de) 1989-04-05

Family

ID=6286069

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86201942A Expired EP0222452B1 (de) 1985-11-15 1986-11-07 Verfahren zur Reduktion von höheren Metalloxiden zu niedrigen Metalloxiden

Country Status (10)

Country Link
US (1) US4789580A (de)
EP (1) EP0222452B1 (de)
AU (1) AU588647B2 (de)
BR (1) BR8605633A (de)
CA (1) CA1266368A (de)
DE (2) DE3540541A1 (de)
GR (2) GR880300159T1 (de)
IN (1) IN166635B (de)
NO (1) NO169499C (de)
NZ (1) NZ217937A (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI84841C (sv) * 1988-03-30 1992-01-27 Ahlstroem Oy Förfarande och anordning för reduktion av metalloxidhaltigt material
ZA946071B (en) * 1993-08-30 1995-03-16 Mintek The production of ferronickel from nickel containing laterite
RU2044088C1 (ru) * 1994-04-15 1995-09-20 Акционерное общество закрытого типа "ККИП" Способ извлечения марганца из марганецсодержащего сырья
CH689633A5 (de) * 1995-01-10 1999-07-30 Von Roll Umwelttechnik Ag Verfahren zur Kuehlung und Reinigung von Rauchgasen.
AU765991B2 (en) * 1999-01-12 2003-10-09 Glencore Canada Corporation Fluidized bed reduction of laterite fines with reducing gases generated (in situ)
DE10101157A1 (de) * 2001-01-12 2002-07-18 Mg Technologies Ag Verfahren zum Erzeugen eines Gemisches aus Eisenerz und Schwelkoks
DE10260738A1 (de) * 2002-12-23 2004-07-15 Outokumpu Oyj Verfahren und Anlage zur Förderung von feinkörnigen Feststoffen
DE10260734B4 (de) * 2002-12-23 2005-05-04 Outokumpu Oyj Verfahren und Anlage zur Herstellung von Schwelkoks
DE10260733B4 (de) * 2002-12-23 2010-08-12 Outokumpu Oyj Verfahren und Anlage zur Wärmebehandlung von eisenoxidhaltigen Feststoffen
DE10260737B4 (de) * 2002-12-23 2005-06-30 Outokumpu Oyj Verfahren und Anlage zur Wärmebehandlung von titanhaltigen Feststoffen
DE10260731B4 (de) * 2002-12-23 2005-04-14 Outokumpu Oyj Verfahren und Anlage zur Wärmebehandlung von eisenoxidhaltigen Feststoffen
DE10260741A1 (de) 2002-12-23 2004-07-08 Outokumpu Oyj Verfahren und Anlage zur Wärmebehandlung von feinkörnigen Feststoffen
DE10260739B3 (de) * 2002-12-23 2004-09-16 Outokumpu Oy Verfahren und Anlage zur Herstellung von Metalloxid aus Metallverbindungen
DE102004042430A1 (de) * 2004-08-31 2006-03-16 Outokumpu Oyj Wirbelschichtreaktor zum thermischen Behandeln von wirbelfähigen Substanzen in einem mikrowellenbeheizten Wirbelbett
EA017444B1 (ru) 2007-12-12 2012-12-28 Оутотек Ойй Способ и установка для производства полукокса и горючего газа
CN102851490B (zh) * 2012-08-30 2014-04-16 北京矿冶研究总院 流态化还原焙烧氧化镍矿制备优质焙砂的方法
CN104911332B (zh) * 2015-05-07 2017-04-05 王立臣 一种低品位氧化锰矿分段立式焙烧炉装置及其使用方法
JP7147409B2 (ja) * 2018-09-20 2022-10-05 住友金属鉱山株式会社 酸化鉱石の製錬方法
RU2721249C1 (ru) * 2019-11-29 2020-05-18 Валентин Николаевич Терехов Состав шихты для выплавки безуглеродистого железа

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR955384A (de) * 1950-01-14
GB191208400A (en) * 1911-04-07 1912-10-24 Isabellen Huette G M B H Improvements in the Treatment of Manganese Ores with a View to the Extraction of the Metal therein Contained.
US2310258A (en) * 1941-08-11 1943-02-09 Riveroll Elfego Process for recovering manganese from ore
FR996269A (fr) * 1949-09-26 1951-12-17 Dorr Co Dispositif pour le traitement des minerais de fer contenant du nickel
US2745730A (en) * 1952-01-29 1956-05-15 Pickands Mather & Co Process of reducing manganese ores
US2913331A (en) * 1958-04-15 1959-11-17 John G Dean Nickel ore reduction process using asphalt additive
US3375098A (en) * 1964-07-22 1968-03-26 Armco Steel Corp Gaseous reduction of iron ores
US3276858A (en) * 1964-12-07 1966-10-04 Pullman Inc Method for carrying out gas-solids reactions
FR1564579A (de) * 1968-01-25 1969-04-25
US3721548A (en) * 1968-12-23 1973-03-20 Republic Steel Corp Treatment of iron-containing particles
AU3565371A (en) * 1971-11-12 1973-06-28 Universe Tankship Inc Production of ferronickel by selective reduction of oxide ores
JPS5242552B2 (de) * 1974-08-01 1977-10-25
US4044094A (en) * 1974-08-26 1977-08-23 Kennecott Copper Corporation Two-stage fluid bed reduction of manganese nodules
SE387366C (sv) * 1974-12-12 1980-03-27 Stora Kopparbergs Bergslags Ab Sett for reduktion av finfordelat metalloxidhaltigt material
US4006010A (en) * 1975-05-30 1977-02-01 Amax Inc. Production of blister copper directly from dead roasted-copper-iron concentrates using a shallow bed reactor
US4087274A (en) * 1975-07-04 1978-05-02 Boliden Aktiebolag Method of producing a partially reduced product from finely-divided metal sulphides
US4010236A (en) * 1975-07-21 1977-03-01 Diamond Shamrock Corporation Manganese ore reduction
US4185996A (en) * 1978-02-13 1980-01-29 The Hanna Mining Company Arsenic and sulfur elimination from cobaltiferous ores
IN164687B (de) * 1984-08-16 1989-05-13 Voest Alpine Ag
DE3437686C2 (de) * 1984-10-15 1986-10-02 Hoechst Ag, 6230 Frankfurt Verfahren zur Reduktion von Metallionen in wäßrigen Lösungen

Also Published As

Publication number Publication date
DE3540541A1 (de) 1987-05-21
NZ217937A (en) 1989-07-27
GR3000079T3 (en) 1990-10-31
NO864490L (no) 1987-05-18
NO169499C (no) 1992-07-01
DE3662700D1 (en) 1989-05-11
GR880300159T1 (en) 1989-03-08
NO864490D0 (no) 1986-11-11
AU6513486A (en) 1987-05-21
AU588647B2 (en) 1989-09-21
EP0222452A1 (de) 1987-05-20
US4789580A (en) 1988-12-06
NO169499B (no) 1992-03-23
CA1266368A (en) 1990-03-06
IN166635B (de) 1990-06-30
BR8605633A (pt) 1987-08-18

Similar Documents

Publication Publication Date Title
EP0222452B1 (de) Verfahren zur Reduktion von höheren Metalloxiden zu niedrigen Metalloxiden
EP0594557B1 (de) Verfahren zur Herstellung von flüssigem Roheisen oder flüssigen Stahlvorprodukten
EP0118931B1 (de) Verfahren zur Nachverbrennung und Reinigung von Prozessabgasen
EP0368835B1 (de) Verfahren zur Herstellung von flüssigem Roheisen sowie Anlage zur Durchführung des Verfahrens
DE4131962C2 (de) Verfahren und Vorrichtung zur Behandlung von heissen Gasen mit Feststoffen in einem Wirbelbett
DE10260733A1 (de) Verfahren und Anlage zur Wärmebehandlung von eisenoxidhaltigen Feststoffen
DE2624302A1 (de) Verfahren zur durchfuehrung exothermer prozesse
DE4206828A1 (de) Schmelzreduktionsverfahren mit hoher Produktivität
EP0501542B1 (de) Verfahren zum Rösten von refraktären Golderzen
DE19637180A1 (de) Direktreduktionssystem mit Sprudelbett vom Zirkulationswirbeltyp
EP0003853B1 (de) Verfahren zur kontinuierlichen Konvertierung von NE-Metallsulfidkonzentraten
DE2552904A1 (de) Verfahren zur reduktion von feinverteiltem metalloxidhaltigem material
AT405293B (de) Verfahren und vorrichtung zum herstellen von geschmolzenem eisen unter verwendung von kohle
DE4317578C2 (de) Verfahren zur Aufarbeitung von Zink und Blei enthaltenden Hüttenwerks-Reststoffen
DE3100767A1 (de) "verfahren und anlage zum reduzieren eines eisenoxidmaterials in einer wirbelschicht"
DE4410093C1 (de) Verfahren zur Direktreduktion von Eisenoxide enthaltenden Stoffen
DE4041689C2 (de) Verfahren und Anlage zum Herstellen von flüssigem Stahl aus Eisenoxiden
EP0434120B1 (de) Verfahren zur Aufarbeitung von Zink und Blei enthaltenden Hüttenwerks-Reststoffen
DE4437549C2 (de) Verfahren zur Herstellung von metallischem Eisen aus feinkörnigem Eisenerz
EP0897430B1 (de) Verfahren zur herstellung von flüssigem roheisen oder flüssigen stahlvorprodukten
DD201807A5 (de) Verfahren und vorrichtung zur direktreduktion von eisenoxid
EP0042638B1 (de) Verfahren zur Heissentschwefelung von Brenn- oder Reduktionsgasen
EP0117318B1 (de) Verfahren zum kontinuierlichen Einschmelzen von Eisenschwamm
DE1171364B (de) Verfahren zum magnetisierenden Roesten nichtmagnetischer Eisenerzteilchen
DE3133575A1 (de) Verfahren zur gaserzeugung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GR SE

17P Request for examination filed

Effective date: 19870817

17Q First examination report despatched

Effective date: 19880818

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GR SE

REF Corresponds to:

Ref document number: 3662700

Country of ref document: DE

Date of ref document: 19890511

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3000079

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910912

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911206

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911212

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19921130

BERE Be: lapsed

Owner name: METALLGESELLSCHAFT A.G.

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803

EUG Se: european patent has lapsed

Ref document number: 86201942.9

Effective date: 19930610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19971024

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971113

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131009