EP0594870B1 - Moteur de commande - Google Patents

Moteur de commande Download PDF

Info

Publication number
EP0594870B1
EP0594870B1 EP92116037A EP92116037A EP0594870B1 EP 0594870 B1 EP0594870 B1 EP 0594870B1 EP 92116037 A EP92116037 A EP 92116037A EP 92116037 A EP92116037 A EP 92116037A EP 0594870 B1 EP0594870 B1 EP 0594870B1
Authority
EP
European Patent Office
Prior art keywords
armature
motor according
pilot motor
side walls
closure part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92116037A
Other languages
German (de)
English (en)
Other versions
EP0594870A1 (fr
Inventor
Hansklaus Teutsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moog GmbH
Original Assignee
Moog GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moog GmbH filed Critical Moog GmbH
Priority to DE59207632T priority Critical patent/DE59207632D1/de
Priority to EP92116037A priority patent/EP0594870B1/fr
Priority to US08/123,537 priority patent/US5473298A/en
Publication of EP0594870A1 publication Critical patent/EP0594870A1/fr
Application granted granted Critical
Publication of EP0594870B1 publication Critical patent/EP0594870B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • H01F7/145Rotary electromagnets with variable gap

Definitions

  • the present invention relates to a control motor, in particular for servo valves, according to the preamble of patent claim 1.
  • Such a generic control motor is known for example from DE-A-3501836 and is preferably used to actuate a hydraulic pilot stage of a servo valve.
  • the control motor comprises an armature movable between two pole means.
  • the pole means carry electrical control coils to influence the magnetic field generated by a permanent magnet in the armature space. It is considered a disadvantage of this control motor that two control coils are required to move the armature.
  • a control circuit for the excitation of the coils must be provided, which leads to an increased space requirement, on the other hand, this control motor consists of many parts, has a complicated structure and is unreliable in operation, since the failure of a component can already lead to a malfunction of the overall system .
  • DE-B-1 282 402 discloses a solenoid valve with a piston which can be displaced axially between two operating positions by magnetic force.
  • the valve has two outer legs which carry permanent magnets and an electromagnetic control coil arranged between the legs.
  • the present invention has for its object to provide a control motor that is simple in construction and reliable in operation.
  • the pole means are arranged so that the first pole means, between which the pivotable armature is spring centered is held, wear the permanent magnets.
  • the second pole means is provided with at least one control coil, so that the construction of the control motor is very simple.
  • the arrangement of pole means and control coils according to the invention enables the movement of the armature to be controlled precisely and at a higher frequency than was possible with the control motors in the prior art, because the armature has a smaller mass than in conventional control motors.
  • valves with higher dynamics can also be controlled.
  • the side walls can be fastened on the base body so as to be displaceable. By moving the side walls, the working air gaps between the first pole means and the armature can be adjusted in a simple manner.
  • the foot parts have at least one vertical through-hole through which a fastening screw is inserted and screwed into the base body.
  • the through hole has a larger diameter than the diameter of the fastening screw, so that the L-shaped side walls can be moved within the play between the through hole and the fastening screw.
  • the upper ends of the two side walls are preferably connected to one another via a T-shaped closure part, so that the vertical central bar of the closure part provided with at least one coil faces the upper surface of the anchor.
  • a so-called construction air gap is formed between the T-shaped closure part and the armature. The construction air gap allows the armature to move freely within the working air gap.
  • a closed magnetic circuit is formed over the closure part for the two side walls, which leads to an intensification of the magnetic field generated by the permanent magnets in the working air gaps.
  • the magnetic field generated electromagnetically by the second pole means is additionally coupled into this magnetic circuit via the vertical center bar.
  • the two outer ends of the closure part have vertical through bores or slots, through which a fastening screw is inserted and screwed into the side wall.
  • the through holes in turn have a larger diameter than the diameter of the fastening screw.
  • the T-shaped closure part in this embodiment is also very easy to adjust in that it can be moved laterally.
  • spacer plates between the two outer ends of the closure part and the upper ends of the side walls for adjusting the construction air gap between the T-shaped closure part and the armature in the vertical direction.
  • the permanent magnets have pole shoes made of a magnetizable material on the end faces facing the armature.
  • the pole pieces advantageously direct and reinforce the magnetic field in the working air gap.
  • the permanent magnets are horizontally magnetized and consist of a material with high magnetic remanence, preferably neodymium iron or samarium cobalt.
  • the former alloy with a high iron content is inexpensive to manufacture and has a particularly high magnetic remanence.
  • a permanent magnet with small dimensions can be used in the control motor with the resulting low costs and space savings.
  • the foot parts of the L-shaped side walls and possibly also the permanent magnets and the pole shoes have horizontal through-fit bores through which screw-shaped stops which can be moved in one direction transversely to the side walls are guided.
  • the stops prevent direct contact between the armature and the permanent magnets or pole pieces, which could result in the armature "sticking" with maximum deflection.
  • the stops can be adjusted from outside to adjust the required stroke of the armature even after the control motor has been started up.
  • the stops are preferably made of a non-magnetic material. This ensures that there are no field distortions in the working air gap.
  • the horizontal through bore of the foot part of the side walls is provided with an internal thread, so that a stop provided with a corresponding external thread can be screwed into the foot part from the outside.
  • a particularly simple and safe setting of the maximum permissible deflection of the armature is possible.
  • the vertical central bar of the T-shaped closure part has a through hole in the axial direction through which a spring rod is passed, one end of which is connected to the armature. This makes it possible to influence the zero point adjustment and the dynamics of the armature.
  • the other end of the spring bar is fixed to the T-shaped closure part via an adjustable clamping device.
  • the other end of the spring bar is connected to a displaceable actuating device.
  • the anchor is fixed to the base body with two vertical bending beams which are guided parallel to one another. With this parallel bracket, the pivoting movement of the armature is only in the preferred plane possible.
  • a control tube is pressed into the armature, at the lower end of which a jet nozzle is formed.
  • the head tube follows the movements of the armature and controls the direction of the oil jet emerging from the nozzle.
  • a flexible pipe pressure line is connected to the control pipe at a point near the pivot point of the armature. If a force, which is generated, for example, by the inertia of the hydraulic fluid, is transmitted to the armature in the pipe pressure line, the resulting torque at the point near the pivot point of the armature is very low. As a result, the influence of such disturbances, which would otherwise lead to incorrect movement of the armature, is reduced.
  • the head tube is sealed by means of an O-ring, which is located approximately at the pivot point of the armature.
  • the O-ring prevents hydraulic fluid from escaping and yet, thanks to its location near the pivot point of the armature, allows it sufficient freedom of movement.
  • Figure 1 shows the control motor according to the invention with an actuator 1 flanged thereon, which has two hydraulic working channels A, B on its underside.
  • the control motor is surrounded by a housing 2 for protection against dirt and moisture.
  • the control motor itself is constructed on a base body 3 with a round profile with a U-shaped cross section.
  • the base body 3 has a centered through hole in the longitudinal direction, into which a sleeve 4 is fitted.
  • a control tube 30 is inserted through the sleeve, the lower end of which projects into the actuator.
  • the sleeve 4 also serves as a receptacle for an O-ring 31.
  • the control tube 30 has a central part widened in cross section.
  • An armature 5 is connected to the control tube 30 and is essentially cuboid in shape with end faces which are bevelled symmetrically to the center. How from As can be seen in FIG. 2, the armature is additionally held by two vertical bending beams 6 aligned parallel to one another. It is also conceivable to provide a thin-walled bending tube as a resilient anchor foot instead of the parallel bending beam, as is known in the case of control motors from the prior art.
  • a screw connection 9 is completely shown in FIG. 1 in a partially broken representation.
  • the foot parts of the L-shaped side walls have vertical through bores, through which a screw 9 is inserted and screwed into the side wall of the base body 3.
  • Permanent magnets 10, 11 facing one another are fastened to the end faces of the base parts of the L-shaped side walls, for example by means of adhesive.
  • the mutually facing sides of the permanent magnets each carry a pole piece 12, 13, between which the armature 5 is located.
  • Working air gaps 16, 17 are formed between the pole pieces 12, 13 and the respective side surfaces of the armature 5. It can be seen from FIG. 3 that the pole shoes have a tapered cross-section on the sides facing the armature, so that the opposing longitudinal edges of the armature and the pole shoes match in terms of their position.
  • the foot parts of the L-shaped side walls, the permanent magnets and the pole pieces have a horizontal through-hole, into each of which a screw-shaped stop for the armature is made.
  • the stops 14, 15 are made of a non-magnetic material and so far through the horizontal through holes that their ends facing the armature over the Pole shoes stick out.
  • An external thread is cut into the stops 14, 15, which fits an internal thread which is formed in an outer region of the foot parts.
  • the upper ends of the L-shaped side walls (7, 8) are connected to one another via a T-shaped closure part 18.
  • the T-shaped closure part has vertical slots or through holes, through which a fastening screw 19 is passed in each case.
  • the through holes in the T-shaped closure part in turn have a slightly larger diameter than the outer diameter of the screws 19.
  • Around the vertical central bar of the T-shaped closure part one or more control coils 20 are wound, the electrical connection lines (not shown) of which are led to the outside.
  • the central bar of the T-shaped closure member has a sufficient length so that a construction air gap 21 is formed between its lower end and the surface of the anchor. Spacer plates 22 are inserted between the upper ends of the side walls and the T-shaped closure part in order to vary the construction air gap 21 accordingly.
  • the actuator 1 has a hydraulic oil pressure supply connection P and a return connection R.
  • the supply connection P is connected via a flexible pressure line 24 to the control tube 30 pressed into the armature 5.
  • the connection between the flexible pressure line 24 and the head tube is provided in the central region of the head tube 30, which is enlarged in cross section.
  • the head tube 30 has at its lower end a nozzle 25 through which the hydraulic oil exits.
  • the emerging oil jet is directed to a receiver 32 according to the nozzle-jet principle, which from a standing position is known in the art.
  • the control tube 30 is connected in a pressure-tight manner to the base body 3 via the sleeve 4 by means of the O-ring 31 provided in the vicinity of the pivot point of the armature.
  • control motor is in the idle state and the control coil 20 is de-energized.
  • the armature 5 is in the zero position approximately in the middle between the two pole pieces 12, 13.
  • the field lines proceed from the north pole of the permanent magnet 11 shown in the left half of the figure, via the L-shaped side wall 8, the T-shaped closure part 18, the L-shaped side wall 7 to the south pole of the in the Permanent magnet 10 shown on the right half.
  • a permanent magnetic circuit 35 closes via the base body 3.
  • the permanent magnetic circuit 35 can also be omitted if the base body is made of non-magnetizable material.
  • a magnetic field is formed, which has the course marked 37, 38 in FIG. 6. This creates a magnetic north pole at the lower end of the vertical central bar of the T-shaped closure part 18 and an opposite south pole (or vice versa) at its upper end. This gives the vertical center bar the function of a coil core for the control coil 20.
  • the direction of this electromagnetic field is determined by the direction of the electric current.
  • a second magnetic circuit 38 generated by the control coil which is shown in the right half of FIG. 6, the field lines run from the magnetic north pole of the coil core via the armature 5, the air gap 16. the pole piece 12, the permanent magnet 10, the L-shaped side wall 7 and the closure part 18 for the magnetic south pole of the coil core.
  • the magnetic field generated by the control coil increases the magnetic induction generated by the permanent magnets in the air gap 17.
  • the magnetic field in the right half of the picture leads to a weakening of the permanent magnet-excited magnetic induction in the air gap 16.
  • different attractive forces arise in the air gaps 16 and 17, the resultant of which causes the armature from its zero position in the direction of the arrow, i. H. pivoted to the left.
  • the armature 5 is deflected from its zero position depending on the coil current through the control coil 20.
  • the armature 5 When the armature 5 is deflected, the elasticity of the two bending beams 6 creates a restoring force which counteracts the magnetic attraction force. The armature 5 is therefore only deflected until the magnetic attraction is in equilibrium with the restoring force of the bending beams. If the magnetic attraction force is greater than the restoring force at maximum deflection of the armature, the armature strikes the mechanical stop 14 or 15. The stop ensures that the armature does not "stick" to the pole piece, but rather returns to its zero position immediately after the coil current has been withdrawn.
  • an optimal air gap between the armature 5 and the pole pieces 12, 13 must be set.
  • the size of the armature space or the width of the air gaps 16, 17 can be determined by If the fastening screws 9, 19 are loosened, shift the L-shaped side walls accordingly.
  • the size of the armature space, ie the maximum permissible deflection of the armature, can additionally be set via the stops 14, 15. The adjustment can be done by turning the stops in the threaded holes in the foot parts.
  • the induction in the working air gaps 16, 17 can be influenced when the coil is not energized. In this way the zero point of the armature can be set.
  • the hydraulic oil supply connection P shown in FIG. 2 When the control motor is operating, the hydraulic oil supply connection P shown in FIG. 2 is connected to the operating pressure line.
  • the pressurized oil is introduced via the flexible pipe pressure line 24 into the control tube 30 of the armature 5 and exits through the nozzle 25 at the end of the control tube.
  • the oil jet generated in this way follows the movement of the armature 5 in its direction.
  • An oil jet which changes in its direction is used to control the receiver 32 of the servo valve.
  • the movement of the armature of the control motor according to the invention can also effect the baffle plate in a nozzle-baffle plate. Control the system.
  • FIG. 4 A second embodiment of the control motor according to the invention is described below with reference to FIG. 4.
  • the features of the control motor, which are identical to those of the first exemplary embodiment, are identified in FIG. 4 by the same reference symbols and are not described again.
  • the second embodiment of the control motor according to the invention differs from the first embodiment in that a additional adjustment possibility for the anchor is provided.
  • the vertical center bar of the T-shaped closure part 18 has a centered through hole in the direction of the longitudinal axis through which a spring rod 26 is inserted.
  • the spring rod 26 is at its lower end with the anchor 5, for. B. connected by pressing.
  • the upper end of the spring bar is clamped by means of a clamping device 27, which is connected to the closure part 18 via an adjusting screw 28.
  • the spring rod has sufficient play in the centered through hole in the vertical central beam for a movement which is transmitted to the spring rod by the deflection of the armature.
  • the restoring force which acts on the deflected armature has two component parts.
  • the first component is generated by the elastic bending beam 6, as was already the case in the first embodiment.
  • a second component is generated by the elastic spring rod 26 when the armature is deflected out of the zero point position. Since the two components of the restoring force add up, the dynamics of the armature increase, i. H.
  • the overall rigidity of the spring mass system of the beam-armature increases, which means that the natural frequency also increases.
  • the zero position of the armature can be changed or set.
  • the adjusting screw 28 is loosened on the T-shaped closure part and the spring bar is brought into its desired position. Then the locking screw is locked.
  • This subsequent adjustment option for the armature is advantageous in this preferred embodiment.
  • FIG. 5 A third embodiment of the control motor according to the invention is shown in FIG. 5.
  • the third embodiment differs from the second embodiment in that no clamping device for the spring bar 26, but instead an actuating device 29 is provided for the mechanical actuation of the spring bar 26. Movements of the actuating device are thus transmitted directly to the armature 5 via the spring rod 25.
  • the often required emergency manual control that intervenes in the event of a failure of the electromagnetic control is implemented.
  • mechanical feedback can also be implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electromagnets (AREA)

Claims (18)

  1. Moteur de commande, notamment pour servosoupapes, comportant un corps de base (3) de section transversale en forme de U en un matériau aimantable, au moins deux parois latérales (7, 8) fixées sur celui-ci entre lesquelles des premiers moyens polaires (10-13) sont disposés et un induit (5) orientable entre les premiers moyens polaires, l'induit étant maintenu centré par un ressort dans une position médiane neutre entre les moyens polaires,
    caractérisé en ce que,
    les parois latérales (7, 8) sont disposées de manière à pouvoir être déplacées transversalement sur le corps de base (3) et en ce que les premiers moyens polaires comportent des aimants permanents (10, 11),
    en ce que un second moyen polaire (18) pourvu au moins d'une bobine de commande (20) est disposé dans la zone se trouvant entre les parois latérales (7, 8)
    et en ce que en réponse à l'activation de la bobine de commande, l'induit est dévié de sa position médiane proportionnellement au signal de commande et revient automatiquement dans sa position médiane lorsque la bobine n'est pas activée.
  2. Moteur de commande selon la revendication 1, caractérisé en ce que les parois latérales (7, 8) présentent une section transversale en forme de L et comportent chacune une embase tournée l'une vers l'autre, et en ce que les premiers moyens polaires (10-13) sont disposés sur les faces avant tournées l'une vers l'autre des embases.
  3. Moteur de commande selon la revendication 2, caractérisé en ce que les embases comportent au moins un alésage traversant vertical à travers lequel une vis de fixation (9) est conduite et vissée dans le corps de base (3), l'alésage traversant présentant un diamètre supérieur à celui de la vis de fixation (9).
  4. Moteur de commande selon au moins une des revendications 1 à 3, caractérisé en ce que les extrémités supérieures des deux parois latérales (7, 8) sont interconnectées par une pièce de fermeture en forme de T (18) et en ce que au moins une bobine (20) est disposée autour de la barre médiane verticale de la pièce de fermeture en forme de T(18).
  5. Moteur de commande selon la revendication 4, caractérisé en ce que les deux extrémités extérieures de la pièce de fermeture (18) comportent des alésages traversant verticaux ou des fentes longitudinales, à travers chacune desquelles une vis de fixation (19) est conduite et vissée dans la paroi latérale (7, 8), les alésages traversant présentant un diamètre supérieur à celui des vis de fixation (19).
  6. Moteur de commande selon la revendication 4 ou 5, caractérisé en ce que des plaquettes entretoises (22) se trouvent entre les extrémités extérieures de la pièce de fermeture (18) et les extrémités supérieures des parois latérales (7, 8).
  7. Moteur de commande selon au moins une des revendications 1 à 6, caractérisé en ce que les aimants permanents (10, 11) comportent sur leur face avant tournée vers l'induit (5) des pièces polaires (12, 13) en un matériau aimantable.
  8. Moteur de commande selon au moins une des revendications 1 à 7, caractérisé en ce que les deux aimants permanents (10, 11) sont aimantés horizontalement et sont constitués d'un matériau à haute rémanence magnétique, de préférence du néodyme et du fer ou du samarium et du cobalt.
  9. Moteur de commande selon au moins une des revendications 2 à 8, caractérisé en ce que les embases des parois latérales en forme de L (7, 8) et le cas échéant les aimants permanents (10, 11) et les pièces polaires (12, 13) également présentent des alésages d'ajustage traversant horizontaux, à travers lesquels les butées (14, 15) hélicoïdales sont guidées dans un sens transversalement aux parois latérales.
  10. Moteur de commande selon la revendication 9, caractérisé en ce que les butées (14, 15) sont constituées d'un matériau non aimantable.
  11. Moteur de commande selon la revendication 9 ou 10, caractérisé en ce que l'alésage traversant horizontal de l'embase des parois latérales (7, 8) présente un filet femelle, si bien qu'une butée (14, 15) pourvue d'un filet mâle correspondant peut être vissée de l'extérieur dans l'embase.
  12. Moteur de commande selon au moins l'une des revendications 4 à 11, caractérisé en ce que la barre médiane verticale de la pièce de fermeture en forme de T (18) présente un alésage traversant dans le sens axial, à travers lequel est guidée une barrette à ressort (26), l'extrémité inférieure de la barrette à ressort étant raccordée à l'induit.
  13. Moteur de commande selon la revendication 12, caractérisé en ce que l'extrémité supérieure de la barrette à ressort (26) est fixée à la pièce de fermeture en forme de T (18) par un dispositif de serrage (27) réglable.
  14. Moteur de commande selon la revendication 12, caractérisé en ce que l'extrémité supérieure de la barrette à ressort (26) est reliée à un dispositif de commande (29) déplaçable.
  15. Moteur de commande selon au moins une des revendications 1 à 14, caractérisé en ce que l'induit (5) est maintenu centré par un ressort au moyen de deux barres pliantes (6) verticales guidées parallèlement l'une à l'autre, et est orientable dans une direction préférée.
  16. Moteur de commande selon au moins une des revendications 1 à 15, caractérisé en ce que un tube de commande (30) à l'extrémité inférieure duquel est formé un injecteur (25), est inséré dans l'induit.
  17. Moteur de commande selon au moins l'une des revendications 1 à 16, caractérisé en ce que une conduite forcée flexible (24) est reliée au tube de commande (30) en un point de l'induit (5) situé de préférence à proximité du centre de rotation.
  18. Moteur de commande selon la revendication 17, caractérisé en ce que le tube de commande (30) est étanché par un anneau torique (31) qui se trouve approximativement au centre de rotation de l'induit (5).
EP92116037A 1992-09-18 1992-09-18 Moteur de commande Expired - Lifetime EP0594870B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE59207632T DE59207632D1 (de) 1992-09-18 1992-09-18 Steuermotor
EP92116037A EP0594870B1 (fr) 1992-09-18 1992-09-18 Moteur de commande
US08/123,537 US5473298A (en) 1992-09-18 1993-09-17 Torque motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP92116037A EP0594870B1 (fr) 1992-09-18 1992-09-18 Moteur de commande

Publications (2)

Publication Number Publication Date
EP0594870A1 EP0594870A1 (fr) 1994-05-04
EP0594870B1 true EP0594870B1 (fr) 1996-12-04

Family

ID=8210021

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92116037A Expired - Lifetime EP0594870B1 (fr) 1992-09-18 1992-09-18 Moteur de commande

Country Status (3)

Country Link
US (1) US5473298A (fr)
EP (1) EP0594870B1 (fr)
DE (1) DE59207632D1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068152C (zh) * 1995-08-18 2001-07-04 国际机器公司 永磁转子交流发电机
US6344702B1 (en) 2000-06-13 2002-02-05 Hr Textron, Inc. Simplified torque motor
CZ301879B6 (cs) * 2004-03-22 2010-07-21 Jihostroj A. S. Servoventil s momentovým motorem
US7726340B2 (en) * 2006-11-09 2010-06-01 Honeywell International Inc. Flexible, hermetic pivot seal for torque motor
US9030280B2 (en) * 2011-09-19 2015-05-12 Mitsubishi Electric Corporation Electromagnetically operated device and switching device including the same
EP3474430B1 (fr) 2017-10-19 2022-08-24 Hamilton Sundstrand Corporation Système et procédé de calibrage de l'entrefer dans un moteur à couple pour servovanne
CN108035923B (zh) * 2017-11-10 2020-10-23 中航工业南京伺服控制系统有限公司 一种非相似余度电液伺服阀
EP3536979B1 (fr) 2018-03-08 2021-04-28 Hamilton Sundstrand Corporation Servo-vanne à entrefers réglables
FR3079566B1 (fr) * 2018-03-30 2020-03-13 Fluid Actuation & Control Toulouse Servovalve de regulation de debit ou de pression d'un fluide
EP3660334B1 (fr) 2018-11-27 2023-09-20 Hamilton Sundstrand Corporation Ensemble de moteur de couple
WO2024054587A1 (fr) 2022-09-08 2024-03-14 Woodward, Inc. Limiteur de deplacement d'induit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1825482A (en) * 1930-08-06 1931-09-29 Union Switch & Signal Co Electromagnet
US3203447A (en) * 1963-10-09 1965-08-31 Skinner Prec Ind Inc Magnetically operated valve
US3323090A (en) * 1964-06-04 1967-05-30 Obrien D G Inc Fluid seal for a torque motor
US3435393A (en) * 1967-01-26 1969-03-25 Abex Corp Null adjustor for magnetically operated torque motors
US3533032A (en) * 1968-09-23 1970-10-06 Singer General Precision Temperature compensated electric motor and pressure control servo valve
US3571769A (en) * 1969-05-08 1971-03-23 Bell Aerospace Corp Electromagnetic force motor having adjustable magnetic saturation
DE3207619A1 (de) * 1982-03-03 1983-09-15 Robert Bosch Gmbh, 7000 Stuttgart Elektromagnetische betaetigungseinrichtung
US4560969A (en) * 1983-12-01 1985-12-24 Bardle Servovalve Company Electromagnetic positioner for a servovalve or the like
DE3501836C2 (de) * 1985-01-21 1995-06-22 Rexroth Mannesmann Gmbh Steuermotor für ein Servoventil
AT388467B (de) * 1987-08-27 1989-06-26 Schrack Elektronik Ag Relaisantrieb fuer ein polarisiertes relais
US4926896A (en) * 1988-12-23 1990-05-22 Dresser Industries, Inc. Sensitive electrical to mechanical transducer

Also Published As

Publication number Publication date
US5473298A (en) 1995-12-05
DE59207632D1 (de) 1997-01-16
EP0594870A1 (fr) 1994-05-04

Similar Documents

Publication Publication Date Title
DE3401598A1 (de) Lineares stellglied mit hybrid-aufbau
DE102007030405B3 (de) Elektromagnetischer Aktor mit einer Handhilfsbetätigung für ein Ventil
EP0594870B1 (fr) Moteur de commande
DE102011014192B4 (de) Elektromagnetische Aktuatorvorrichtung
DE102013108164B4 (de) Ventil mit einem Linearantrieb für den Ventilkolben
EP0235318B1 (fr) Actionneur électromagnétique
DE19712293A1 (de) Elektromagnetisch arbeitende Stelleinrichtung
DE102005039263A1 (de) Steuervorrichtung und Verfahren zum Ansteuern eines Aktuators für eine Getriebeschaltstelle
EP0251075B1 (fr) Electrovanne pour fluides liquides et gazeux
DE19900788B4 (de) Antriebsvorrichtung
EP2452245A1 (fr) Soupape électromagnétique à flux magnétique réglable
DE3519348C2 (de) Eine lineare Vorschubbewegung erzeugende Einrichtung
DE2701434C2 (de) Elektromechanisch betätigtes Ventil
DE3338602C2 (fr)
EP1155421A1 (fr) Electro-aimant et soupape hydraulique dotee d'un tel electro-aimant
DE3110251A1 (de) "elektromagnet"
EP0030283B1 (fr) Dispositif de commande pour vanne de distribution
DE19901679B4 (de) Elektromagnet
DE3018972C2 (de) Magnetventil
CH661377A5 (de) Elektromagnetisches schaltgeraet, bestehend aus einem magnetantrieb und einem oberhalb dessen angeordneten kontaktapparat.
DE19818336C1 (de) Elektrisch-pneumatischer Umformer sowie diesen umfassender Regler
DE4400433C2 (de) Polarisierter Mehrstellungsmagnet
DE3133620C2 (de) Sperrmagnetauslöser
DE10006784A1 (de) Elektromagnet zur Betätigung des Stellglieds eines Ventils
EP3070721A2 (fr) Dispositif d'actionnement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE

17P Request for examination filed

Effective date: 19941102

17Q First examination report despatched

Effective date: 19950601

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REF Corresponds to:

Ref document number: 59207632

Country of ref document: DE

Date of ref document: 19970116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101029

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59207632

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59207632

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120919