EP0594020B1 - Installation for heating domestic water and for killing the legionella in this water - Google Patents

Installation for heating domestic water and for killing the legionella in this water Download PDF

Info

Publication number
EP0594020B1
EP0594020B1 EP93116412A EP93116412A EP0594020B1 EP 0594020 B1 EP0594020 B1 EP 0594020B1 EP 93116412 A EP93116412 A EP 93116412A EP 93116412 A EP93116412 A EP 93116412A EP 0594020 B1 EP0594020 B1 EP 0594020B1
Authority
EP
European Patent Office
Prior art keywords
water
duct
heat exchanger
circuit
service water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93116412A
Other languages
German (de)
French (fr)
Other versions
EP0594020A1 (en
Inventor
Werner Dipl.-Ing. Dünnleder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6470694&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0594020(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP0594020A1 publication Critical patent/EP0594020A1/en
Application granted granted Critical
Publication of EP0594020B1 publication Critical patent/EP0594020B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0078Recirculation systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0073Arrangements for preventing the occurrence or proliferation of microorganisms in the water

Definitions

  • the invention relates to a system for heating domestic water and for killing legionella in this domestic water with a cold water supply to a first heat exchanger for preheating the cold water supplied and for cooling the domestic water supplied via a domestic water outflow line from a disinfection water circuit heated to disinfection temperature, the Consists of a water heater, a loading pump, a domestic water storage tank and a buffer, the buffer in the conveying direction of the domestic water via the domestic water outlet line to the first heat exchanger and from there to the domestic water distribution line to the taps and a circulation line with a circulation pump in connection stands.
  • a system of this type is known from Figures 4, 4a and 8 to 10 of DE-PS 38 40 516.
  • the system described therein fulfills its function for killing Legionella and is also characterized by an energy management operation, extensive studies have meanwhile found that Legionella cannot be avoided in the circulation water circuit.
  • This circulation water cycle consists essentially of the process water distribution line to the taps, a circulation pump and a process water collection line. According to the results of these investigations, the reason for the formation of legionella despite loading this circulation water circuit with already disinfected water essentially lies in the fact that when the system is filled with cold water for the first time, legionella bacteria are introduced into the circulation water circuit from which they are used conventional means of thermal disinfection cannot be eliminated.
  • the invention has for its object to provide a system of the type mentioned, with which the legionella cells which have entered the circulation water circuit can either be considerably reduced or even killed while still operating in the energy industry.
  • the legionella present in the circulation water circuit as a result of the initial filling or as a result of a breakdown in operation can be introduced into the disinfection water circuit when there is no water and killed there. This significantly reduces the concentration of legionella in the circulation water circuit. If the entire system is used for a long period of time, the entire circulation water can be channeled through the disinfection water circuit several times, and ultimately Legionella bacteria can be completely destroyed.
  • the aforementioned first alternative solution has the advantage of requiring only one heat exchanger.
  • the object on which the invention is based is achieved in connection with the generic term mentioned at the outset in that the first heat exchanger in a manner known per se via a flow connection line and a second heat exchanger with the process water distribution line to the taps via a process water Manifold, via a backflow preventer, a water flow limiter and via the second heat exchanger, a return connection line and via an access line to the charge pump via the water heater and the buffer to form an overall circuit.
  • This alternative solution has several different control options due to the second heat exchanger.
  • Both alternative solutions have in common that the legionella-contaminated circulation water from the service water manifold is led via a backflow preventer and a water quantity limiter in the direction of the disinfection water circuit.
  • the water flow limiter ensures that only such a large amount of circulation water is led from the service water manifold to the disinfection water circuit that a safe and constant disinfection temperature is always ensured by the charge pump and the water heater and a part of the charge pump the disinfection water circuit maintained and only the excess in the domestic water storage and / or the buffer a certain amount of enthalpy to be regulated from the disinfected water Disinfection water circuit transferred to the legionella-contaminated water from the circulation water circuit and can thus be included in the disinfection process again in terms of energy management.
  • the backflow preventer ensures a clear flow direction in the entire circuit.
  • the delivery rate of the charge pump which goes beyond the delivery rate of the circulation pump, draws in the storage volume in the process water tank via a connection line to it and always heats it up again in the disinfection water circuit to the disinfection temperature.
  • the delivery rate of the circulation pump (liters per minute) should not exceed 50% of the delivery rate of the charge pump. If the delivery capacity of the circulation pump were greater than 50% to a maximum of 100% of the charge pump, only a small part of the charge pump or the disinfection water circuit could be continuously fed into the process water storage tank, whereas the remaining amount would go directly into the Distribution circuit flows.
  • the above-described suction of the process water due to the excess delivery capacity of the charge pump compared to the circulation pump means that the legionella bacteria are removed from the circulation water circuit as well the cold water network is considerably reduced by disinfection and completely killed when the tap is not used for a long time.
  • the process water storage tank is also designed in a manner known per se as a reaction container, in the upper part of which there is a reaction volume as a buffer and in the lower part of which Storage volume is located.
  • the buffer in the process water storage tank can be increased by one or more upstream buffers and / or the storage volume can be increased by one or more hot water storage tanks downstream in the flow direction of the charging pump.
  • a cold water quantity control valve is arranged in the cold water supply line to the first heat exchanger, the second way of which is via a Intermediate line connected to the first heat exchanger and out of it via a connecting line like the third route with the access line to the domestic water storage tank.
  • the cold water quantity control valve can advantageously be controlled by a temperature sensor which is arranged in the process water distribution line to the tapping points.
  • the cold water quantity control valve in the cold water supply line ensures that water of a selectable, constant temperature flows into the circulation water circuit via the process water distribution line without having to increase the water temperature behind the hot water heater in the disinfection water circuit.
  • the lowest permissible temperature in the disinfection water circuit immediately after the water heater is determined by the selected reaction volume of the buffer and by the expected germ concentration of the water to be heated. According to current knowledge, a disinfection temperature of + 65 ° C requires a reaction time of at least 15 minutes and a disinfection temperature of 70 ° C a reaction time of at least 4 minutes in order to be able to kill all Legionella bacteria in the disinfection water circuit.
  • a safety control valve is arranged in the cold water supply line in the flow direction upstream of the cold water flow control valve, which is located near the temperature sensor in the reaction vessel
  • Process water outlet line can be throttled or closed if there is a minimum temperature of the storage volume in the reaction vessel that is to be set.
  • a circulation water distribution valve is arranged in the direction of flow in front of the water quantity limiter and the backflow preventer in the process water collecting line, the third way of which is either via a first bypass line with the process water -Distribution line to the tapping points or via a second bypass line and a first circulation water quantity control valve with a heating coil which is arranged in the border area between the reaction volume and the storage volume in the reaction container.
  • the circulation water distribution valve for relieving the disinfection water circuit is advantageous either depending on the Disinfection temperature in the disinfection water circuit is regulated by a temperature sensor arranged between the charge pump and the storage volume or, depending on the time, by means of a timer such that the total circulation water quantity or only a part of this water is released from the circulation water circuit to the first heat exchanger and the remaining total circulation water or part quantity can be conveyed either via the first bypass line into the process water distribution line to the taps or via the second bypass line into the heating coil for renewed heating.
  • the first circulation water quantity control valve in the second bypass line can advantageously be regulated as a function of a temperature sensor in the process water outflow line from the reaction vessel.
  • the "hot water priority circuit" prescribed for hot water supply systems in residential construction requires that, in an advantageous development of the invention, the charge pump, the circulation pump and a heating medium pump in each case as a function of temperature sensors in the hot water outflow line, in the hot water storage tank, in the connecting line and in a heating medium line of the water heater can be switched or regulated.
  • the first alternative is in the Service water manifold in the flow direction upstream of the second heat exchanger, a second circulation water quantity control valve is arranged, the first way of which is connected to the water quantity limiter, the second way of which is connected to the second heat exchanger and the third way of which is the return connection line.
  • This second circulation water quantity control valve is advantageously controlled by a temperature sensor in the process water distribution line to the tapping points.
  • the first heat exchanger can be acted upon by the process water outflow line and the cold water supply line either in cocurrent or in countercurrent.
  • the choice of flow direction depends, among other things, on the required standard, the requirements for the constancy of the outlet temperature and the type of 1st or 2nd alternative solution.
  • a number of process water distribution lines and process water collection lines, each with separate tapping points and circulation pumps, can be connected in parallel. In this case, additional water heaters can be used to run the circulation water circuits at different flow and return temperatures.
  • the first and second heat exchangers are on their own or together with the or the water heaters and charge pumps as well as one or more reaction vessels of the disinfection water circuit can be combined to form a compact device.
  • Such a compact device is not only very space-saving, but can also be used retrospectively in existing systems for sanitizing hot water without special specialist knowledge of the assembly personnel.
  • first and / or the second heat exchanger consisting of a total of three compact partial heat exchangers, the first of which is connected to the domestic hot water outlet line at its entrance and to the domestic hot water distribution line at its outlet, the second at its Input with the cold water supply line and at its output with the access line to the hot water storage and the third partial heat exchanger with its input to the hot water collecting line and with its output to the access line to the hot water storage are connected without internal connecting lines.
  • the process water distribution line with the circulation pump and the process water manifold form a distribution circuit from which one or more branch lines branch off to secondary distribution devices.
  • At least one first branch line branches off from the distributor circuit and, provided with electrical trace heating, leads to individual tapping points. Due to the individually adjustable trace heating, secured temperatures preventing the increase of Legionella as well as individual tapping temperatures at the tapping points are possible without adversely affecting the circulation water circuit and the disinfection water circuit.
  • At least one second branch line from the distribution circuit leads to a secondary distribution device with a high circulation capacity, the circulation heat losses via the third heat exchanger and also from a secondary distribution line to tapping points, a circulation pump, a UV radiation device and a third heat exchanger can be compensated from the distributor circuit via a hot water distributor valve.
  • one or more branch lines lead from the distributor circuit to one or more self-contained, provided with tapping points and each consisting of a circulation pump, a circulation line and a fourth heat exchanger secondary circulation circuit with high circulation capacity, which via the fourth Heat exchanger with a secondary, consisting of a water heater and a reaction tank existing disinfection water circuit is connected, in which the circulation pump is also the charge pump.
  • the disinfection water circuit 1 is basically formed by a water heater 3, a charging pump 4, a domestic water storage 5 and a buffer 6, which in the present case is arranged in a manner known per se in the upper part of the domestic water storage 5, which is in this Case is also designed as a reaction container and in the lower part of which the storage volume 7 is located.
  • This process water storage 5, which is also referred to below as a reaction container 5 with a buffer 6 and Storage volume 7 is designated, in the case shown, another memory 8 is arranged in series.
  • the buffer 6 is connected to the first heat exchanger 10 via the process water outlet line 9 and is connected to the first heat exchanger 10 via the process water distribution line 11 to the tapping points 12 and a circulation line 13 Circulation pump 14, via a service water collecting line 15, a backflow preventer 16 and a water quantity limiter 17 with the cold water supply line 18 in connection.
  • a cold water quantity control valve 20 is arranged in the cold water supply line 18.
  • the cold water quantity control valve 20 is designed as a three-way valve, the first way 20a with the inflow of the cold water supply line 18, the second way 20b via an intermediate line 21 with the first heat exchanger 10 and out of this 10 via a connecting line 22 like the third way 20c with the Access line 23 to the domestic water storage 5 is connected.
  • the circulation water circuit 2 is connected to the disinfection water circuit 1 to form an overall circuit 1, 2.
  • the cold water quantity control valve 20 can be controlled by a temperature sensor 24 which is arranged in the process water distribution line 11 to the tapping points 12.
  • the safety control valve 19 in the cold water supply line 18 is controlled by a temperature sensor 25, which is arranged in the reaction vessel 5 near the process water outflow line 9 and throttles or closes the safety control valve 19 if the required minimum temperature of the disinfection water circuit 1 Storage volume 7 is below in the reaction container 5.
  • the water heater 3 in the disinfection water circuit 1 is acted upon by a heating medium line 26 with a heating medium control valve 27 which is controlled by a sensor 28 in the connecting line 29 between the water heater 3 and the domestic water storage 5.
  • the delivery capacity of the charging pump 4 which goes beyond the delivery rate of the circulation pump 14, draws in and heats the storage volume 7 located in the service water store 5 via a connecting line 30 and the service water from the circulation water circuit 2 via the access line 23 it always in the disinfection water circuit 1 on the required disinfection temperature.
  • the concentration of germs in the circulation water circuit 2 is considerably reduced in the event of a tapping rest and, under certain circumstances, is also completely destroyed in the event of longer tapping intervals.
  • the first heat exchanger 10 consists of a total of three compact partial heat exchangers 10a, 10b and 10c, of which the first 10a is connected to the process water outlet line 9 at its entrance and to the process water distribution line 11 at its outlet, the second 10b its input with the cold water supply line 18 and at its output with the access line 23 to the hot water tank 5 and the third partial heat exchanger 10c with its input and output are connected to the access line 23 to the hot water tank 5.
  • the arrows indicate the flow directions.
  • the heating medium control valve 27 in the heating medium line 26 is controlled not only by the sensor 28 in the connecting line 29, but also by a further sensor 31 which is arranged in the process water distribution line 11.
  • the cold water quantity control valve 20 of FIG. 1 is based on the exemplary embodiment of FIG. 2 the flow direction in the three partial heat exchangers 10a, 10b, 10c, the additional sensor 31 and the associated flexible control option can be dispensed with.
  • a water quantity control valve 32 is also arranged between the charge pump 4 and the water heater 3, which in coordination with the water quantity limiter 17 in the process water collecting line 15 ensures that the charge pump 4 in the disinfection water circuit 1 depending on the size of the buffer 6 and the storage volume 7 circulates such a delivery quantity that all germs of Legionella in the process water are killed, which the buffer 6 leaves via the process water outlet line 9 in the direction of the circulation water circuit 2.
  • a circulation water distribution valve 33 is arranged in the direction of flow in the flow direction upstream of the backflow preventer 16 and the water quantity limiter 17, the first path 33a and the second path 33b of which are connected to the process water collecting line 15, whereas its third path 33c is connected via a first bypass line 34 to the domestic water distribution line 11 to the tapping points 12.
  • This circulation water distribution valve 33 is either depending on the disinfection temperature in the disinfection water circuit 1 between the charge pump 4 and the storage volume 7 in the connecting line 30 arranged temperature sensor 35 or depending on the time controlled by a timer 36.
  • This regulation is carried out in such a way that the total amount of circulation water or only a portion of this water from the circulation water circuit 2 to the first heat exchanger 10 is only released when the disinfection water circuit 1, including the service water reservoir 5, is completely heated and thus the charging capacity largely for the Circulation amount is available.
  • the rest of the total circulation water or partial quantity must flow via the first bypass line 34 into the process water distribution line 11 to the tapping points 12.
  • the other embodiment according to FIG. 4 differs from that according to FIG. 3 in that the circulation water distribution valve 33 is hydromechanically connected to a heating coil 39 by its third path 33c via a second bypass line 37 and a first circulation water quantity control valve 38, which is arranged in the boundary region 40 between the buffer volume 6 and the storage volume 7 in the reaction container 5.
  • the circulation water distribution valve 33 is controlled either via the temperature sensor 35 or the timer 36 such that the total amount of circulation water from the circulation water circuit 2 to the first Heat exchanger 10 is either released or can be conveyed into the heating coil 39 via the second bypass line 37.
  • the charging capacity disinfection capacity
  • the charge pump 4 can be switched either by a sensor 41 in the connecting line 30 and / or by a sensor 42 in the process water outlet line 9 and / or by a sensor 69 in order to meet the requirements of the process water priority circuit prescribed in residential construction.
  • the first circulation water quantity control valve 38 consists of a three-way mixing valve, the first way 38a with the second bypass line 37, the second way 38b with the entry of the heating coil 39 into the hot water tank 5 and the third way 38c with the hot water Outgoing line 9 is connected.
  • the system according to FIG. 5 differs from the system according to FIG. 4 essentially in the following changes:
  • the circulation water circuit 2 is provided with a plurality of circulation water circuits 2a, 2b and 2c connected in parallel with one another with different circulation pumps 14a, 14b and 14c and separate water quantity limiters 43a, 43b and 43c.
  • the disinfection water circuit 1 contains two separate water heaters 3a and 3b, with separate heating medium control valves 27a, 27b in separate heating medium lines 26a, 26b and with separate charging pumps 4a and 4b, which are connected in parallel to one another.
  • a buffer 6a is now connected upstream via the connecting line 29 and a plurality of storage volumes 7a and 7b are arranged downstream of the storage volume 7 via the connecting line 30 and two further connecting lines 44, 46.
  • the buffer volume 6, 6a can only leave the disinfection water circuit 1 via the connecting line 45 if the water flowing into the process water outlet line 9 has been exposed to the required disinfection temperature and the required disinfection time.
  • the storage volumes 7a and 7b which are connected to the storage volume 7 in the reaction container 5 via the connecting line 46.
  • the disinfection water circuit 1 has been enlarged via the lines 30, 44 and 46 compared to the exemplary embodiment in FIG. 4.
  • the first circulation water quantity control valve 38 is dependent on a temperature sensor 47 in the Process water outlet line 9 regulated from the reaction tank 5.
  • the charge pump 4 or the charge pumps 4a, 4b as in the case shown in FIG. 4, each as a function of temperature sensors 41, 42 in the connecting line 30 and / or the process water outlet line 9 and / or the further temperature sensors 69 , 82 in the domestic water storage 5 and in a heating medium line 26 of the water heater 3 are switchable.
  • the further exemplary embodiment in FIG. 6 differs from the system in accordance with FIG. 5 essentially in that two reaction vessels 5a and 5b with separate first circulation water quantity control valves 38a and 38b are arranged in the disinfection water circuit 1.
  • Each of the reaction containers 5a and 5b contains in its upper part a reaction volume 6a, 6b as a buffer and in its lower part a storage volume 7a, 7b, which is enlarged by the downstream service water storage 7c.
  • the process water distribution line 11 together with the circulation pump 14 and the process water collection line 15 each form a distribution circuit 48, from which one or more branch lines 49, 50, 51, 52 form branch secondary manifolds 53 to 56.
  • the first stub 49 leads to individual tapping points 12 which are provided with electrical trace heaters 57.
  • a second branch line 50 leads from the distribution circuit 48 to a secondary distribution device 54 with a high circulation capacity, the circulation water heat losses of which consist of a secondary distribution line 58 to tapping points 12, a circulation pump 59, a UV radiation device 60 and a heat exchanger 61 Heat exchangers 61 and a hot water distributor valve 62 from the distributor circuit 48 can be compensated.
  • the circulation water control valve 72 is designed as a three-way valve which can be controlled via a timer 93 and the temperature sensor 73, the first route 72a with the circulation line 65, the second route 72b with the fourth heat exchanger 66 and the latter third route 72c is connected via a connecting line 90 to a connecting line 91 leading from the fourth heat exchanger 66 to the branch line 52, behind the connecting point 92 of which the temperature sensor 73 is arranged in the flow direction (see arrows).
  • valve 72 can advantageously only flow as much circulation water through the connecting line 94 into the disinfection circuit 66, 67, 71, 70 in the daytime depending on the temperature sensor 73 via the path 72b as at the connecting point 92 from the lines 90 , 91 is required to ensure the target temperature at temperature sensor 73.
  • the entire amount of circulation water can be passed via the connecting line 94 into the disinfection circuit 66, 67, 71, 70 and this total quantity is safely disinfected during this time until normal operation is initiated again either by switching off by the timer 93 or via a maximum flow temperature to be set on the temperature sensor 73 to the tapping points 12.
  • Such a setting of the maximum temperature that is higher than the target temperature enables on the one hand a periodic reduction of any germs adhering to the inner pipe surfaces of the secondary distributor circuit 52-12 and an economical design of the fourth heat exchanger 66, since, in particular with large amounts of circulation water, the difference between the inlet temperature in the Distribution circuit 52, 12, 64, 72, 92, 90 and the return temperature on the first route 72a in the circulation water control valve 72 can be very low.
  • the amount of water entering the fourth heat exchanger 66 from the connecting line 94 with a temperature of, for example, 45 ° C., the amount of hot water entering the fourth heat exchanger 66 from the line 95, for example 70 ° C. can only be increased to approx Cool down to 55 ° C and thereby cause a slowly increasing temperature in the distribution circuit 52, 12, 64, 72, 90, 92 to an adjustable maximum temperature.
  • the embodiment according to FIG. 9 according to the second alternative solution differs from the first alternative solution according to FIG. 1 essentially in that now the first heat exchanger 10 in a manner known per se via a flow connecting line 74 and a second heat exchanger 75 with the Process water distribution line 11 to the tapping points 12, via a circulation line 13 with circulation pump 14 and via a process water collecting line 15, via a backflow preventer 16, a water quantity limiter 17 and also via the second heat exchanger 75, a return connection line 76 and via an access line 23 the domestic water storage 5 and the buffer 6 is connected to an overall circuit 1, 2. Furthermore, in contrast to FIG. 1, the cold water supply line 18 to the first heat exchanger 10 to the process water outflow line 9 is now connected in direct current.
  • the cold water preheated in the first heat exchanger 10 leaves the latter via a connecting line 77 to the access line 23.
  • the main difference between the embodiment of FIG. 9 resides in the addition of a second heat exchanger 75 and the elimination of the Cold water quantity control valve 20 of FIG. 1, which is particularly suitable for smaller systems with low requirements for the constancy and level of the outlet temperature.
  • a cold water quantity control valve 20 is arranged in the cold water supply line 18 and a second circulation water quantity control valve 78 is arranged in the process water collecting line 15 downstream of the water quantity limiter 17.
  • the control of the cold water quantity control valve 20 takes place via the temperature sensor 24 in the process water distribution line 11 and the control of the circulation water quantity control valve 78 by a temperature sensor 79, which is likewise arranged in the process water distribution line 11.
  • This system is not only characterized by an extremely varied control option via the two control valves 20 and 78, but also includes the possibility that if one of the two control valves 20, 78 fails, the other can at least partially take over the function of the other.
  • FIG. 11 essentially results from a combination of the embodiment of FIG. 10 in conjunction with the circulation water quantity distribution valve 33 from FIG. 3.
  • the cold water supply line 18 to the process water outlet line 9 is in direct current and in second heat exchanger 75 connected the flow connection line 74 to the process water collecting line 15 in countercurrent.
  • the cold water quantity control valve 20 is arranged with its first path 20a and its second path 20b in the cold water supply line 18, on the other hand connected with its third path 20c via a connecting line 79 as a bypass to the connecting line 77.
  • the circulation water quantity control valve 78 is arranged with its first path 78a and its second path 78b in the process water collecting line 15, on the other hand with its third path 78c it is connected to the return connection line 76 as a bypass via a connecting line 80.
  • the circulation water quantity control valve 78 is controlled by a sensor 81 in the process water distribution line 11, which, however, is attached behind the connection of line 34 into line 11.
  • the circulation water distribution valve 33 is regulated, as in the embodiment of FIG. 3, either via the sensor 35 or the timer 36.
  • FIG. 12 corresponds essentially to the embodiment of FIG. 11, but with the circulation water distribution valve 33 omitted. Furthermore, a heating medium pump 83 is now arranged in the heating medium circuit 86 of the water heater 3, which pump pump jointly or separately from the charging pump 4 and the circulation pump 14 can be regulated via the temperature sensor 84 in the connecting line 30 and / or the temperature sensor 85 in the domestic water storage 5 and / or the temperature sensor 82 in the flow of the heating medium circuit 86.
  • the heating medium pump 83 and the circulation pump 14 are coupled to one another, the requirements of the service water priority circuit are met via the temperature sensors 82, 84 and 85.
  • the further embodiment according to FIG. 13 essentially consists of a combination of the embodiment of FIGS. 11 and 6. Accordingly, parts that correspond to it are also designated with the same reference numbers, without their function being discussed again.
  • the circulation water distribution valve 33 is connected via a second bypass line 37 to the two reaction containers 5a, 5b connected in parallel to one another.
  • the circulation water circuit 2 there are a total of three separate circulation water circuits 2a, 2b and 2c arranged parallel to each other.
  • the first heat exchanger 10 is connected to the second heat exchanger 75 and via the cold water quantity control valve 20 and the second circulation water quantity control valve 78 according to FIG. 11.
  • This embodiment is also particularly suitable for large systems with high operational safety requirements and with circulating water in e.g. three separate circulation water circuits 2a, 2b, 2c with different circulation quantities or pressure levels.
  • FIG. 14 essentially results from a combination of the systems according to FIGS. 2, 3 and 12, the first and second heat exchangers 10, 75 now being combined to form a compact heat exchanger 10 similar to FIG a total of three partial heat exchangers 10a, 10b, 10c.
  • the circulation water distribution valve 33 is arranged in the process water collecting line 15 as in FIG. 3 and is connected to the process water distribution line 11 via the first bypass line 34.
  • the input and output of the first partial heat exchanger 10a is connected to the process water outlet line 9.
  • the cold water supply line 18 leads from the safety control valve 19 via the cold water quantity control valve 20 to the inlet into the partial heat exchanger 10b, the outlet of which is connected to the access line 23 via the connecting line 89 similar to the connecting line 77 according to FIG. 13.
  • the circulation water quantity control valve 78 is arranged with its two paths 78a and 78b in the process water collecting line 15 and is connected with its third path 78c via the line 87 to the entry of the partial heat exchanger 10a, from which this line via the connecting line 88 to the access line 23 is connected to the domestic water storage 5. With respect to the partial heat exchanger 10a, the partial heat exchanger 10b is connected in cocurrent and the partial heat exchanger 10c in countercurrent. Both the cold water quantity control valve 20 and the second circulation water quantity control valve 78 are regulated via the two temperature sensors 24 and 81, which are arranged in the process water distribution line 11. The circulation water distribution valve 33 is regulated, as in FIG. 11, either via the temperature sensor 35 in the connecting line 30 or via a timer 36.
  • the hot water tank 8 is arranged downstream of the hot water tank 5.
  • FIGS. 2 and 14 each have a compact heat exchanger 10 composed of a total of three partial heat exchangers 10a, 10b, 10c have, which can be considered both only as the first 10 or only as the second 75 or as a combination of the first and second heat exchangers 10, 75, the embodiments of FIGS. 2 and 14 represent in a way a connecting embodiment between the two alternative solutions of subsidiary claims 1 and 2.
  • the circuit of the compact heat exchanger 10 is arranged in FIG. 15 with respect to the cold water quantity control valve 20 and the second circulation water quantity control valve 78 according to FIG. 14, the circulation water distribution valve 33 from FIG. 14 being omitted. Furthermore, as in FIG. 12, a heating medium pump 83 is now arranged in the heating medium circuit 86, which, like the charging pump 4 and the circulation water pump 14, can be switched via the sensors 82, 84, 85.
  • FIG. 16 essentially consists of a combination of the embodiments of FIG. 15 with the embodiment of FIG. 5, parts which correspond to these figures being identified here with the same reference numerals.
  • the embodiment according to FIG. 16 contains the same compact heat exchanger 10 with the cold water quantity control valve 20 and the second one 15, wherein the circulation water distribution valve 33 with the second bypass line 37 to the reaction container 5 is also arranged in the process water collecting line 15. 5, a buffer 6a is arranged upstream of this reactine container 5 and two storage volumes 7a, 7b are arranged downstream.
  • This embodiment is characterized by a large buffer and storage capacity, by a plurality of circulation water circuits 2a, 2b, 2c connected in parallel with one another and by the compact heat exchanger 10 with its various control options.
  • This embodiment is also suitable for large systems with both large circulation water and circulating water quantities.
  • the connection and disconnection options of the circulation water circuits 2a, 2b, 2c, as well as the storage volumes 7a and 7b and the upstream buffer 6a in the disinfection water circuit 1, as well as the parallel-connected charging pumps 4a and 4b with the water heaters 3a and 3b connected in parallel an extremely energy-efficient and flexible operation.

Abstract

The invention relates to an installation for heating domestic water and for killing the legionella in this domestic water, having a cold-water supply line (18) to a first heat exchanger (10), having a disinfecting-water circuit (1), which consists of a water heater (3), a charging pump (4), a domestic-water storage tank (5) and a buffer (6), and having a circulating-water circuit (2) with tapping points (12), a circulating line (13) and a circulating pump (14). The object of the invention is to provide an installation which, while being energy-efficient in operation, can also be used either considerably to reduce or else kill off the legionella present in the circulating-water circuit. This object is alternatively achieved by the fact that the domestic-water distributing line (1) is connected via a domestic-water collecting line (15), via a backflow preventer (16), a water-quantity limiter (17), the cold-water supply line (18) and also via an access line (23) with the charging pump (4), via the water heater (3) and the buffer (6) to form a complete circuit (1, 2). <IMAGE>

Description

Die Erfindung betrifft eine Anlage zum Erwärmen von Brauchwasser und zum Abtöten von Legionellen in diesem Brauchwasser mit einer Kaltwasserzuleitung zu einem ersten Wärmeübertrager zum Vorwärmen des zugeführten Kaltwassers und zum Abkühlen des über eine Brauchwasser-Abgangsleitung herangeführten Brauchwassers aus einem auf Desinfektionstemperatur erhitzten Desinfektionswasser-Kreislaufes, der aus einem Wassererwärmer, einer Ladepumpe, einem Brauchwasser-Speicher und einem Puffer besteht, wobei in Förderrichtung des Brauchwassers der Puffer über die Brauchwasser-Abgangsleitung mit dem ersten Wärmeübertrager und von diesem mit der Brauchwasser-Verteilungsleitung zu den Zapfstellen und einer Zirkulationsleitung mit Zirkulationspumpe in Verbindung steht.The invention relates to a system for heating domestic water and for killing legionella in this domestic water with a cold water supply to a first heat exchanger for preheating the cold water supplied and for cooling the domestic water supplied via a domestic water outflow line from a disinfection water circuit heated to disinfection temperature, the Consists of a water heater, a loading pump, a domestic water storage tank and a buffer, the buffer in the conveying direction of the domestic water via the domestic water outlet line to the first heat exchanger and from there to the domestic water distribution line to the taps and a circulation line with a circulation pump in connection stands.

Eine Anlage dieser Art ist aus den Figuren 4, 4a sowie 8 bis 10 der DE-PS 38 40 516 bekannt. Obgleich die darin beschriebene Anlage ihre Funktion zum Abtöten von Legionellen erfüllt und sich auch durch einen energiewirtschaftlichen Betrieb auszeichnet, ist zwischenzeitlich durch umfangreiche Untersuchungen festgestellt worden, daß sich im Zirkulationswasser-Kreislauf Legionellen nicht vermeiden lassen. Dieser Zirkulationswasser-Kreislauf besteht im wesentlichen aus der Brauchwasser-Verteilungsleitung zu den Zapfstellen, einer Zirkulationspumpe und einer Brauchwasser-Sammelleitung. Die Ursache für die Bildung der Legionellen trotz Beschickung dieses Zirkulationswasser-Kreislaufes mit bereits desinfiziertem Wasser beruht nach dem Ergebnis dieser Untersuchungen im wesentlichen darin, daß bereits bei der Erstbefüllung der Anlage mit Kaltwasser Legionellen in den Zirkulationswasser-Kreislauf eingeschleust werden, aus welchem sie mit den üblichen Mitteln thermischer Desinfektion nicht zu beseitigen sind. Dies liegt daran, daß sich die in der DE-PS 38 40 516 in Spalte 1 im dritten Absatz beschriebene thermische Desinfektion durch eine stufenweise Einstellung der Temperatur in der Brauchwasser-Verteilungsleitung auf 70 °C in der Praxis bei großen Anlagen der genannten Art in Krankenhäusern, Altenheimen, Hotels und Kasernen nach deren Erstbefüllung oder bei einem Betriebsausfall mit den herkömmlichen Mitteln und Verfahren nicht ausreichend sicher erreichen läßt.A system of this type is known from Figures 4, 4a and 8 to 10 of DE-PS 38 40 516. Although the system described therein fulfills its function for killing Legionella and is also characterized by an energy management operation, extensive studies have meanwhile found that Legionella cannot be avoided in the circulation water circuit. This circulation water cycle consists essentially of the process water distribution line to the taps, a circulation pump and a process water collection line. According to the results of these investigations, the reason for the formation of legionella despite loading this circulation water circuit with already disinfected water essentially lies in the fact that when the system is filled with cold water for the first time, legionella bacteria are introduced into the circulation water circuit from which they are used conventional means of thermal disinfection cannot be eliminated. This is because the thermal disinfection described in DE-PS 38 40 516 in column 1 in the third paragraph by gradually adjusting the temperature in the process water distribution line to 70 ° C in practice in large systems of the type mentioned in hospitals , Old people's homes, hotels and barracks cannot be reached with sufficient certainty after they have been filled for the first time or in the event of a breakdown using conventional means and procedures.

Von diesem Stand der Technik ausgehend, liegt der Erfindung die Aufgabe zugrunde, eine Anlage der eingangs genannten Gattung zu schaffen, mit welcher bei weiterhin energiewirtschaftlichem Betrieb auch die in den Zirkulationswasser-Kreislauf gelangten Legionellen entweder erheblich reduziert oder auch abgetötet werden können.Starting from this state of the art, the invention has for its object to provide a system of the type mentioned, with which the legionella cells which have entered the circulation water circuit can either be considerably reduced or even killed while still operating in the energy industry.

Diese Aufgabe wird in Verbindung mit dem eingangs genannten Gattungsbegriff nach einer ersten Alternative erfindungsgemäß dadurch gelöst, daß die Brauchwasser-Verteilungsleitung über eine Brauchwasser-Sammelleitung, über einen Rückflußverhinderer, einen Wassermengenbegrenzer, die Kaltwasserzuleitung sowie über eine Zugangsleitung mit der Ladepumpe über den Wassererwärmer und dem Puffer zu einem Gesamtkreislauf verbunden ist. Dabei wird selbstverständlich so verfahren, daß die Desinfektionstemperatur im Desinfektionswasser-Kreislauf ständig und permanent aufrechterhalten wird, wodurch dieser hohe Temperaturbereich sowie die damit einhergehenden Kalkausfällungen auf einen örtlich sehr begrenzten Bereich der gesamten Anlage beschränkt bleiben. Ferner bleibt trotz der Verbindung des Desinfektionswasser-Kreislaufes mit dem Zirkulationswasser-Kreislauf zu einem Gesamtkreislauf ein energiewirtschaftlicher Betrieb erhalten. Dadurch können die im Zirkulationswasser-Kreislauf durch die Erstbefüllung oder durch einen Betriebsausfall vorhandenen Legionellen bei Zapfruhe in den Desinfektionswasser-Kreislauf eingeschleust und dort abgetötet werden. Damit verringert sich die Konzentration der Legionellen im Zirkulationswasser-Kreislauf erheblich. Wird die gesamte Anlage über längere Zeit von Zapfruhe beherrscht, kann auf diese Weise das gesamte Zirkulationswasser mehrfach durch den Desinfektionswasser-Kreislauf geschleust und auf diese Weise letztlich auch eine vollständige Abtötung der Legionellen erzielt werden. Dabei weist die vorgenannte erste Lösungsalternative den Vorteil des Bedarfs nur eines Wärmeübertragers auf.This object is achieved in connection with the generic term mentioned at the outset according to a first alternative in that the Service water distribution line via a service water collecting line, via a backflow preventer, a water quantity limiter, the cold water supply line and an access line to the charge pump via the water heater and the buffer to form a complete circuit. Of course, the procedure is such that the disinfection temperature in the disinfection water circuit is constantly and permanently maintained, as a result of which this high temperature range and the associated lime precipitations remain restricted to a very local area of the entire system. Furthermore, despite the connection of the disinfection water circuit with the circulation water circuit to form an overall circuit, an energy management operation is maintained. As a result, the legionella present in the circulation water circuit as a result of the initial filling or as a result of a breakdown in operation can be introduced into the disinfection water circuit when there is no water and killed there. This significantly reduces the concentration of legionella in the circulation water circuit. If the entire system is used for a long period of time, the entire circulation water can be channeled through the disinfection water circuit several times, and ultimately Legionella bacteria can be completely destroyed. The aforementioned first alternative solution has the advantage of requiring only one heat exchanger.

Nach einer zweiten Alternative wird in Verbindung mit dem eingangs genannten Gattungsbegriff die der Erfindung zugrundeliegende Aufgabe dadurch gelöst, daß der erste Wärmeübertrager in an sich bekannter Weise über eine Vorlauf-Verbindungsleitung und einen zweiten Wärmeübertrager mit der Brauchwasser-Verteilungsleitung zu den Zapfstellen über eine Brauchwasser-Sammelleitung, über einen Rückflußverhinderer, einen Wassermengenbegrenzer sowie über den zweiten Wärmeübertrager, eine Rücklauf-Verbindungsleitung und über eine Zugangsleitung mit der Ladepumpe über den Wassererwärmer und dem Puffer zu einem Gesamtkreislauf verbunden ist. Diese Lösungsalternative weist aufgrund des zweiten Wärmeübertragers mehrere unterschiedliche Regelungsmöglichkeiten auf.According to a second alternative, the object on which the invention is based is achieved in connection with the generic term mentioned at the outset in that the first heat exchanger in a manner known per se via a flow connection line and a second heat exchanger with the process water distribution line to the taps via a process water Manifold, via a backflow preventer, a water flow limiter and via the second heat exchanger, a return connection line and via an access line to the charge pump via the water heater and the buffer to form an overall circuit. This alternative solution has several different control options due to the second heat exchanger.

Beiden Lösungsalternativen ist gemeinsam, daß das legionellenbelastete Zirkulationswasser aus der Brauchwasser-Sammelleitung über einen Rückflußverhinderer und einen Wassermengenbegrenzer in Richtung zum Desinfektionswasser-Kreislauf geführt ist. Durch den Wassermengenbegrenzer wird erreicht, daß aus der Brauchwasser-Sammelleitung nur eine so große Zirkulations-Wassermenge zum Desinfektionswasser-Kreislauf geführt wird, daß immer eine sichere und konstante Desinfektionstemperatur durch die Ladepumpe und den Wassererwärmer sichergestellt bleibt und eine Teilmenge der Ladepumpe den Desinfektionswasser-Kreislauf aufrechterhält und nur der Überschuß im Brauchwasser-Speicher und/oder dem Puffer eine bestimmte zu regelnde Enthalpiemenge vom desinfizierten Wasser des Desinfektionswasser-Kreislaufes auf das legionellenbelastete Wasser aus dem Zirkulationswasser-Kreislauf übertragen und somit erneut energiewirtschaftlich in den Desinfektionsprozeß einbezogen werden kann. Der Rückflußverhinderer sorgt im Gesamtkreislauf für eine eindeutige Strömungsrichtung.Both alternative solutions have in common that the legionella-contaminated circulation water from the service water manifold is led via a backflow preventer and a water quantity limiter in the direction of the disinfection water circuit. The water flow limiter ensures that only such a large amount of circulation water is led from the service water manifold to the disinfection water circuit that a safe and constant disinfection temperature is always ensured by the charge pump and the water heater and a part of the charge pump the disinfection water circuit maintained and only the excess in the domestic water storage and / or the buffer a certain amount of enthalpy to be regulated from the disinfected water Disinfection water circuit transferred to the legionella-contaminated water from the circulation water circuit and can thus be included in the disinfection process again in terms of energy management. The backflow preventer ensures a clear flow direction in the entire circuit.

Bei Zapfruhe saugt die über die Förderleistung der Zirkulationspumpe hinausgehende Förderleistung der Ladepumpe das im Brauchwasser-Speicher befindliche Speichervolumen über eine Verbindungsleitung zu diesem an und erhitzt es stets wieder im Desinfektionswasser-Kreislauf auf Desinfektionstemperatur. Dabei sollte die Förderleistung der Zirkulationspumpe (Liter pro Minute) maximal 50% der Förderleistung der Ladepumpe betragen. Wenn nämlich die Förderleistung der Zirkulationspumpe größer als 50% bis maximal 100% der Ladepumpe betragen würde, könnte auch nur eine geringe Teilmenge von der Ladepumpe bzw. dem Desinfektionswasser-Kreislauf kontinuierlich in den Brauchwasser-Speicher geleitet werden, wohingegen die übrige Menge direkt in den Verteilungskreislauf einströmt. Da nach einschlägigen Veröffentlichungen das Keimwachstum der Legionellen größere Zeiträume benötigt und eine Verdoppelung erst in zwei bis drei Stunden erfolgen kann, werden durch die vorbeschriebene Ansaugung des Brauchwassers durch die gegenüber der Zirkulationspumpe überschüssige Förderleistung der Ladepumpe die Legionellen sowohl aus dem Zirkulationswasser-Kreislauf als auch aus dem Kaltwassernetz durch Desinfektion erheblich reduziert und bei längerer Zapfruhe völlig abgetötet.In the case of dispensing, the delivery rate of the charge pump, which goes beyond the delivery rate of the circulation pump, draws in the storage volume in the process water tank via a connection line to it and always heats it up again in the disinfection water circuit to the disinfection temperature. The delivery rate of the circulation pump (liters per minute) should not exceed 50% of the delivery rate of the charge pump. If the delivery capacity of the circulation pump were greater than 50% to a maximum of 100% of the charge pump, only a small part of the charge pump or the disinfection water circuit could be continuously fed into the process water storage tank, whereas the remaining amount would go directly into the Distribution circuit flows. Since, according to relevant publications, the legionella germ growth takes longer and a doubling can only take place in two to three hours, the above-described suction of the process water due to the excess delivery capacity of the charge pump compared to the circulation pump means that the legionella bacteria are removed from the circulation water circuit as well the cold water network is considerably reduced by disinfection and completely killed when the tap is not used for a long time.

Zur Minimierung des Behälteraufwandes und damit auch der durch Abstrahlung bedingten Wärmeverluste ist es energiewirtschaftlich besonders vorteilhaft, daß der Brauchwasser-Speicher in an sich bekannter Weise zugleich als Reaktionsbehälter ausgebildet ist, in dessen oberen Teil sich ein Reaktionsvolumen als Puffer und in dessen unterem Teil sich das Speichervolumen befindet. Dabei kann der im Brauchwasser-Speicher befindliche Puffer durch einen oder mehrere vorgeordnete Puffer und/oder das Speichervolumen durch einen oder mehrere in Strömungsrichtung der Ladepumpe nachgeordnete Warmwasserspeicher vergrößert werden.To minimize the container effort and thus also the heat losses caused by radiation, it is particularly advantageous in terms of energy economy that the process water storage tank is also designed in a manner known per se as a reaction container, in the upper part of which there is a reaction volume as a buffer and in the lower part of which Storage volume is located. The buffer in the process water storage tank can be increased by one or more upstream buffers and / or the storage volume can be increased by one or more hot water storage tanks downstream in the flow direction of the charging pump.

Zur Erzielung eines betriebssicheren Desinfektionswasser-Kreislaufes sowie zu einer energiewirtschaftlich günstigen Einbeziehung des Zirkulationswasser-Kreislaufes sind im Desinfektionswasser-Kreislauf mehrere Ladepumpen entweder einem gemeinsamen Wassererwärmer in Parallelschaltung oder jeweils einem eigenen Wassererwärmer zugeordnet. Ferner sind im Desinfektionswasser-Kreislauf mehrere parallel zueinander geschaltete Ladepumpen vorteilhaft einem oder mehreren hintereinander geschalteten Reaktionsbehälter(n) zugeordnet oder beaufschlagen jeweils einen eigenen, zum jeweils anderen parallel geschalteten Reaktionsbehälter.In order to achieve a reliable disinfection water circuit and to include the circulation water circuit in an energy-efficient manner, several charge pumps in the disinfection water circuit are either assigned to a common water heater in parallel or each with its own water heater. Furthermore, in the disinfection water circuit, a plurality of charging pumps connected in parallel to one another are advantageously assigned to one or more reaction containers (s) connected in series or act on their own reaction containers connected in parallel with the other.

Nach einer besonders vorteilhaften Weiterbildung der Erfindung ist in der Kaltwasserzuleitung zum ersten Wärmeübertrager ein Kaltwassermengen-Regelventil angeordnet, dessen zweiter Weg über eine Zwischenleitung mit dem ersten Wärmeübertrager und aus diesem heraus über eine Verbindungsleitung wie der dritte Weg mit der Zugangsleitung zum Brauchwasser-Speicher verbunden. Dabei ist vorteilhaft das Kaltwassermengen-Regelventil von einem Temperaturfühler regelbar, der in der Brauchwasser-Verteilungsleitung zu den Zapfstellen angeordnet ist. Durch das Kaltwassermengen-Regelventil in der Kaltwasserzuleitung wird bei Zapfungen sichergestellt, daß über die Brauchwasser-Verteilungsleitung in den Zirkulationswasser-Kreislauf Wasser von wählbarer, konstanter Temperatur einströmt, ohne die Wassertemperatur hinter dem Heißwassererwärmer im Desinfektionswasser-Kreislauf erhöhen zu müssen. Dabei wird die zulässige unterste Temperatur im Desinfektionswasser-Kreislauf unmittelbar hinter dem Wassererwärmer durch das gewählte Reaktionsvolumen des Puffers und durch die zu erwartende Keimkonzentration des zu erwärmenden Wassers bestimmt. Nach den bisherigen Erkenntnissen erfordert eine Desinfektionstemperatur von + 65 °C eine Reaktionszeit von mindestens 15 Minuten und eine Desinfektionstemperatur von 70 °C eine Reaktionszeit von mindestens 4 Minuten, um sämtliche Legionellen im Desinfektionswasser-Kreislauf abtöten zu können.According to a particularly advantageous development of the invention, a cold water quantity control valve is arranged in the cold water supply line to the first heat exchanger, the second way of which is via a Intermediate line connected to the first heat exchanger and out of it via a connecting line like the third route with the access line to the domestic water storage tank. The cold water quantity control valve can advantageously be controlled by a temperature sensor which is arranged in the process water distribution line to the tapping points. The cold water quantity control valve in the cold water supply line ensures that water of a selectable, constant temperature flows into the circulation water circuit via the process water distribution line without having to increase the water temperature behind the hot water heater in the disinfection water circuit. The lowest permissible temperature in the disinfection water circuit immediately after the water heater is determined by the selected reaction volume of the buffer and by the expected germ concentration of the water to be heated. According to current knowledge, a disinfection temperature of + 65 ° C requires a reaction time of at least 15 minutes and a disinfection temperature of 70 ° C a reaction time of at least 4 minutes in order to be able to kill all Legionella bacteria in the disinfection water circuit.

Um eine Überlastung des Brauchwasser-Speichers bei Zapfung zu unterbinden, ist in der Kaltwasserzuleitung in Strömungsrichtung vor dem Kaltwassermengen-Regelventil ein Sicherheits-Regelventil angeordnet, welches von einem Temperaturfühler im Reaktionsbehälter in der Nähe der Brauchwasser-Abgangsleitung drosselbar oder schließbar ist, falls dort eine einzustellende Mindesttemperatur des Speichervolumens im Reaktionsbehälter unterschritten ist. Durch diese Maßnahme kann kein nicht desinfiziertes Kaltwasser bei Spitzenzapfungen über die Zugangsleitung in den Brauchwasser-Speicher und von dort direkt in die Brauchwasser-Abgangsleitung "durchschießen" und auf diese Weise in den Zirkulationswasser-Kreislauf gelangen.In order to prevent overloading of the process water storage when tapping, a safety control valve is arranged in the cold water supply line in the flow direction upstream of the cold water flow control valve, which is located near the temperature sensor in the reaction vessel Process water outlet line can be throttled or closed if there is a minimum temperature of the storage volume in the reaction vessel that is to be set. As a result of this measure, non-disinfected cold water in the case of peak taps can be "shot through" via the access line into the process water storage tank and from there directly into the process water outflow line and in this way get into the circulation water circuit.

Bei großen Anlagen mit damit verbundenen großen Umwälzleistungen im Zirkulationswasser-Kreislauf ist es vorteilhaft, daß in Strömungsrichtung vor dem Wassermengenbegrenzer und dem Rückflußverhinderer in der Brauchwasser-Sammelleitung ein Zirkulationswasser-Verteilventil angeordnet ist, dessen dritter Weg entweder über eine erste Bypass-Leitung mit der Brauchwasser-Verteilungsleitung zu den Zapfstellen oder über eine zweite Bypass-Leitung und einem ersten Zirkulationswassermengen-Regelventil mit einer Heizschlange hydromechanisch verbunden, die im Grenzbereich zwischen Reaktionsvolumen und Speichervolumen im Reaktionsbehälter angeordnet ist. Über dieses Zirkulationswasser-Verteilventil wird bei Entnahme sichergestellt, daß über die Brauchwasser-Verteilungsleitung in den Zirkulationswasser-Kreislauf nur die unbedingt notwendige Wassermenge an desinfiziertem Wasser mit einer wählbaren konstanten Temperatur einströmen kann.In large systems with the associated high circulation rates in the circulation water circuit, it is advantageous that a circulation water distribution valve is arranged in the direction of flow in front of the water quantity limiter and the backflow preventer in the process water collecting line, the third way of which is either via a first bypass line with the process water -Distribution line to the tapping points or via a second bypass line and a first circulation water quantity control valve with a heating coil which is arranged in the border area between the reaction volume and the storage volume in the reaction container. Via this circulation water distribution valve, it is ensured during removal that only the absolutely necessary amount of disinfected water with a selectable constant temperature can flow into the circulation water circuit via the process water distribution line.

Dabei wird das Zirkulationswasser-Verteilventil zur Entlastung des Desinfektionswasser-Kreislaufes vorteilhaft entweder in Abhängigkeit von der Desinfektionstemperatur im Desinfektionswasser-Kreislauf von einem zwischen Ladepumpe und Speichervolumen angeordneten Temperaturfühler oder in Abhängigkeit von der Zeit über eine Zeitschaltuhr dergestalt geregelt, daß die Gesamtzirkulationswassermenge oder nur eine Teilmenge dieses Wassers aus dem Zirkulationswasser-Kreislauf zum ersten Wärmeübertrager freizugeben und die übrige Gesamtzirkulationswasser- oder Teilmenge entweder über die erste Bypass-Leitung in die Brauchwasser-Verteilungsleitung zu den Zapfstellen oder über die zweite Bypass-Leitung in die Heizschlange zur erneuten Aufheizung förderbar ist.The circulation water distribution valve for relieving the disinfection water circuit is advantageous either depending on the Disinfection temperature in the disinfection water circuit is regulated by a temperature sensor arranged between the charge pump and the storage volume or, depending on the time, by means of a timer such that the total circulation water quantity or only a part of this water is released from the circulation water circuit to the first heat exchanger and the remaining total circulation water or part quantity can be conveyed either via the first bypass line into the process water distribution line to the taps or via the second bypass line into the heating coil for renewed heating.

Das erste Zirkulationswassermengen-Regelventil in der zweiten Bypass-Leitung ist vorteilhaft in Abhängigkeit von einem Temperaturfühler in der Brauchwasser-Abgangsleitung aus dem Reaktionsbehälter regelbar.The first circulation water quantity control valve in the second bypass line can advantageously be regulated as a function of a temperature sensor in the process water outflow line from the reaction vessel.

Die bei Warmwasserversorgungsanlagen im Wohnungsbau vorgeschriebene "Brauchwasservorrangschaltung" erfordert es, daß in einer vorteilhaften Weiterbildung der Erfindung die Ladepumpe, die Zirkulationspumpe und eine Heizmediumpumpe jeweils in Abhängigkeit von Temperaturfühlern in der Brauchwasser-Abgangsleitung, im Brauchwasser-Speicher, in der Verbindungsleitung und in einer Heizmediumleitung des Wassererwärmers geschaltet bzw. geregelt werden. Bei großen Anlagen und hohen Anforderungen an die Temperaturkonstanz im Zirkulationswasser-Kreislauf ist in vorteilhafter Weise bei der 1. Lösungsalternative in der Brauchwasser-Sammelleitung in Strömungsrichtung vor dem zweiten Wärmeübertrager ein zweites Zirkulationswassermengen-Regelventil angeordnet, dessen erster Weg mit dem Wasermengenbegrenzer, dessen zweiter Weg mit dem zweiten Wärmeübertrager und dessen dritter Weg mit der Rücklauf-Verbindungsleitung verbunden ist. Dabei wird dieses zweite Zirkulationswassermengen-Regelventil vorteilhaft von einem Temperaturfühler in der Brauchwasser-Verteilungsleitung zu den Zapfstellen geregelt.The "hot water priority circuit" prescribed for hot water supply systems in residential construction requires that, in an advantageous development of the invention, the charge pump, the circulation pump and a heating medium pump in each case as a function of temperature sensors in the hot water outflow line, in the hot water storage tank, in the connecting line and in a heating medium line of the water heater can be switched or regulated. In the case of large systems and high demands on constant temperature in the circulation water circuit, the first alternative is in the Service water manifold in the flow direction upstream of the second heat exchanger, a second circulation water quantity control valve is arranged, the first way of which is connected to the water quantity limiter, the second way of which is connected to the second heat exchanger and the third way of which is the return connection line. This second circulation water quantity control valve is advantageously controlled by a temperature sensor in the process water distribution line to the tapping points.

Im Rahmen der Erfindung ist der erste Wärmeübertrager von der Brauchwasser-Abgangsleitung und der Kaltwasserzuleitung entweder im Gleichstrom oder im Gegenstrom beaufschlagbar. Die Wahl der Strömungsrichtung hängt unter anderem von dem geforderten Standard, den Anforderungen an die Konstanz der Abgangstemperatur sowie von der Art der 1. oder 2. Lösungsalternative ab. Auch können zur Bildung mehrerer, voneinander unabhängiger Zirkulationswasser-Kreisläufe mehrere Brauchwasser-Verteilungsleitungen und Brauchwasser-Sammelleitungen mit jeweils getrennten Zapfstellen und Zirkulationspumpen zueinander parallel geschaltet werden. In diesem Fall können durch Zusatzheizungen die Zirkulationswasser-Kreisläufe mit unterschiedlichen Vorlauf- und Rücklauftemperaturen gefahren werden.Within the scope of the invention, the first heat exchanger can be acted upon by the process water outflow line and the cold water supply line either in cocurrent or in countercurrent. The choice of flow direction depends, among other things, on the required standard, the requirements for the constancy of the outlet temperature and the type of 1st or 2nd alternative solution. Also, to form a plurality of independent circulation water circuits, a number of process water distribution lines and process water collection lines, each with separate tapping points and circulation pumps, can be connected in parallel. In this case, additional water heaters can be used to run the circulation water circuits at different flow and return temperatures.

Zur Bildung eines Kompaktgerätes bezüglich des Desinfektionswasser-Kreislaufes ist der erste und zweite Wärmeübertrager für sich oder gemeinsam mit dem oder den Wassererwärmern und Ladepumpen sowie mit einem oder mehreren Reaktionsbehältern des Desinfektionswasser-Kreislaufes zu einem Kompaktgerät zusammenschließbar. Ein solches Kompaktgerät ist nicht nur sehr raumsparend, sondern kann ohne besondere Fachkenntnisse des Montagepersonals auch nachträglich in bereits vorhandene Anlagen zur Brauchwasser-Desinfektion problemlos eingesetzt werden.To form a compact device with regard to the disinfection water circuit, the first and second heat exchangers are on their own or together with the or the water heaters and charge pumps as well as one or more reaction vessels of the disinfection water circuit can be combined to form a compact device. Such a compact device is not only very space-saving, but can also be used retrospectively in existing systems for sanitizing hot water without special specialist knowledge of the assembly personnel.

Eine erhebliche weitere Vereinfachung wird dadurch erreicht, indem der erste und/oder der zweite Wärmeübertrager aus insgesamt drei kompakt zusammengefaßten Teilwärmeübertragern, von denen der erste an seinem Eingang mit der Brauchwasser-Ausgangsleitung und an seinem Ausgang mit der Brauchwasser-Verteilungsleitung, der zweite an seinem Eingang mit der Kaltwasserzuleitung und an seinem Ausgang mit der Zugangsleitung zum Brauchwasser-Speicher und der dritte Teilwärmeübertrager mit seinem Eingang an die Brauchwasser-Sammelleitung und mit seinem Ausgang an die Zugangsleitung zum Brauchwasser-Speicher ohne interne Verbindungsleitungen angeschlossen sind.A considerable further simplification is achieved by the first and / or the second heat exchanger consisting of a total of three compact partial heat exchangers, the first of which is connected to the domestic hot water outlet line at its entrance and to the domestic hot water distribution line at its outlet, the second at its Input with the cold water supply line and at its output with the access line to the hot water storage and the third partial heat exchanger with its input to the hot water collecting line and with its output to the access line to the hot water storage are connected without internal connecting lines.

Nach einer besonders vorteilhaften Weiterbildung der Erfindung bilden bei Großanlagen die Brauchwasser-Verteilungsleitung mit der Zirkulationspumpe und der Brauchwasser-Sammelleitung einen Verteiler-Kreislauf, aus welchem eine oder mehrere Stichleitungen zu sekundären Verteilervorrichtungen abzweigen.According to a particularly advantageous development of the invention, in large systems the process water distribution line with the circulation pump and the process water manifold form a distribution circuit from which one or more branch lines branch off to secondary distribution devices.

Nach einer ersten Ausführungsform zweigt aus dem Verteiler-Kreislauf mindestens eine erste Stichleitung ab, die mit elektrischen Begleitheizungen versehen zu einzelnen Entnahmestellen führt. Aufgrund der individuell einstellbaren Begleitheizungen sind damit gesicherte, die Vermehrung von Legionellen verhindernde Temperaturen sowie an den Zapfstellen individuelle Zapftemperaturen möglich, ohne daß dadurch der Zirkulationswasser-Kreislauf sowie der Desinfektionswasser-Kreislauf nachteilig beeinflußt werden.According to a first embodiment, at least one first branch line branches off from the distributor circuit and, provided with electrical trace heating, leads to individual tapping points. Due to the individually adjustable trace heating, secured temperatures preventing the increase of Legionella as well as individual tapping temperatures at the tapping points are possible without adversely affecting the circulation water circuit and the disinfection water circuit.

Bei einer zweiten Ausführungsform führt mindestens eine zweite Stichleitung aus dem Verteiler-Kreislauf zu jeweils aus einer sekundären Verteilungsleitung zu Zapfstellen, einer Zirkulationspumpe, einer UV-Strahlungseinrichtung und einem dritten Wärmeübertrager bestehenden sekundären Verteilervorrichtung mit hoher Umwälzleistung, dessen Zirkulations-Wärmeverluste über den dritten Wärmeübertrager sowie über ein Warmwasser-Verteilerventil aus dem Verteiler-Kreislauf ausgleichbar sind.In a second embodiment, at least one second branch line from the distribution circuit leads to a secondary distribution device with a high circulation capacity, the circulation heat losses via the third heat exchanger and also from a secondary distribution line to tapping points, a circulation pump, a UV radiation device and a third heat exchanger can be compensated from the distributor circuit via a hot water distributor valve.

Nach einer dritten Ausführungsform führen aus dem Verteiler-Kreislauf eine oder mehrere Stichleitungen zu einem oder mehreren in sich geschlossenen, mit Zapfstellen versehenen sowie je aus einer Zirkulationspumpe, einer Zirkulationsleitung und einem vierten Wärmeübertrager bestehenden sekundären Verteiler-Kreislauf mit hoher Umwälzleistung, der über den vierten Wärmeübertrager mit einem sekundären, aus einem Wassererwärmer und einem Reaktionsbehälter bestehenden Desinfektionswasser-Kreislauf verbunden ist, in welchem die Zirkulationspumpe zugleich die Ladepumpe ist.According to a third embodiment, one or more branch lines lead from the distributor circuit to one or more self-contained, provided with tapping points and each consisting of a circulation pump, a circulation line and a fourth heat exchanger secondary circulation circuit with high circulation capacity, which via the fourth Heat exchanger with a secondary, consisting of a water heater and a reaction tank existing disinfection water circuit is connected, in which the circulation pump is also the charge pump.

Mehrere Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt. Dabei zeigen:

  • Fig. 1 Eine erste Ausführungsform nach der 1. Lösungsalternative mit einem ersten Wärmeübertrager und einem Kaltwassermengen-Regelventil in der Kaltwasserzuleitung,
  • Fig. 2 eine Ausführungsform gemäß Fig. 1 mit einem ersten, aus drei Teilwärmeübertragern bestehenden Wärmeübertrager im Gesamtkreislauf,
  • Fig. 3 eine Anlage nach der 1. Lösungsalternative mit einem ersten Wärmeübertrager, einem Kaltwassermengen-Regelventil und einem Zirkulationswasser-Verteilventil im Zirkulationswasser-Kreislauf,
  • Fig. 4 eine Anlage gemäß der Ausführungsform von Fig. 3, jedoch mit einer Verbindung des Zirkulationswasser-Verteilventils über eine zweite Bypass-Leitung und einem Zirkulationswassermengen-Regelventil mit einer Heizschlange im Reaktionsbehälter,
  • Fig. 5 eine Anlage ähnlich Fig. 4, jedoch mit zwei parallel zueinander angeordneten Wassererwärmern und Ladepumpen im Desinfektionswasser-Kreislauf, mehreren nachgeordneten Brauchwasser-Speichern, einem vorgeordneten Puffer und mehreren zueinander parallel geschalteten Zirkulationswasser-Kreisläufen mit getrennten Zirkulationspumpen,
  • Fig. 6 eine Ausführungsform ähnlich Fig. 5, jedoch mit zwei parallel zueinander geschalteten Reaktionsbehältern mit je einem Zirkulationswassermengen-Regelventil und mit getrennten Wassererwärmern im Desinfektionswasser-Kreislauf,
  • Fig. 7 eine Ausführungsform ähnlich Fig. 5, jedoch mit einem Verteiler-Kreislauf, aus welchem zwei Stichleitungen zu sekundären, in sich geschlossenen Verteilervorrichtungen mit elektrischen Begleitheizungen einerseits und mit einer UV-Strahlungseinrichtung andererseits,
  • Fig. 8 eine Ausführungsform ähnlich Fig. 7, jedoch mit drei von einem Verteiler-Kreislauf abzweigenden Stichleitungen zu drei unterschiedlichen, in sich geschlossenen, sekundären Verteilervorrichtungen,
  • Fig. 9 eine erste Ausführungsform nach der 2. Lösungsalternative mit einem ersten Wärmeübertrager und einem über eine Vorlauf-Verbindungsleitung damit verbundenen zweiten Wärmeübertrager zwischen Desinfektionswasser-Kreislauf und Zirkulationswasser-Kreislauf,
  • Fig. 10 eine Ausführungsform ähnlich Fig. 9, jedoch mit einem Kaltwassermengen-Regelventil vor dem ersten Wärmeübertrager und einem Zirkulationswassermengen-Regelventil vor dem zweiten Wärmeübertrager,
  • Fig. 11 eine Ausführungsform ähnlich Fig. 10, jedoch mit einem dazu unterschiedlich eingeordneten Kaltwassermengen-Regelventil und Zirkulationswassermengen-Regelventil sowie einem zusätzlichen Zirkulationswasser-Verteilventil in der Brauchwasser-Sammelleitung,
  • Fig. 12 eine Ausführungsform ähnlich Fig. 11, jedoch ohne Zirkulationswasser-Verteilventil aber mit einer Heizmediumpumpe im Heizmedium-Kreislauf des Wassererwärmers sowie verschiedenen, zusätzlichen Temperaturfühlern,
  • Fig. 13 eine Ausführungsform ähnlich Fig. 11, jedoch mit einer Verbindung des Zirkulationswasser-Verteilventils über eine zweite Bypass-Leitung zu zwei parallel geschalteten Brauchwasser-Speichern mit Heizschlange und einem nachgeordneten Brauchwasser-Speicher sowie mehreren zueinander parallel geschalteten Zirkulationswasser-Kreisläufen,
  • Fig. 14 eine Ausführungsform ähnlich Fig. 11, jedoch mit einem kompakt zusammengefaßten ersten und zweiten Wärmeübertrager zu insgesamt drei Teilwärmeübertragern,
  • Fig. 15 eine Ausführungsform ähnlich Fig. 14, jedoch ohne Zirkulationswasser-Verteilventil aber mit einer Heizmediumpumpe im Heizmedium-Kreislauf des Wassererwärmers und
  • Fig. 16 eine Ausführungsform ähnlich Fig. 14, jedoch mit einer ersten Bypass-Leitung vom Zirkulationswasser-Verteilventil zur Brauchwasser-Verteilungsleitung, zwei zueinander parallel im Desinfektionswasser-Kreislauf angeordneten Wassererwärmern und Ladepumpen, einem vorgeordneten Puffer und zwei nachgeordneten Brauchwasser-Speichern.
Several embodiments of the invention are shown in the drawings. Show:
  • 1 shows a first embodiment according to the first alternative solution with a first heat exchanger and a cold water quantity control valve in the cold water supply line,
  • 2 shows an embodiment according to FIG. 1 with a first heat exchanger consisting of three partial heat exchangers in the overall circuit,
  • 3 shows a system according to the first alternative solution with a first heat exchanger, a cold water quantity control valve and a circulation water distribution valve in the circulation water circuit,
  • 4 shows a system according to the embodiment of FIG. 3, but with a connection of the circulation water distribution valve via a second bypass line and a circulation water quantity control valve with a heating coil in the reaction container,
  • 5 shows a system similar to FIG. 4, but with two water heaters and charge pumps arranged in parallel in the disinfection water circuit, several downstream process water storage tanks, one upstream buffer and several circulation water circuits connected in parallel with separate circulation pumps,
  • 6 shows an embodiment similar to FIG. 5, but with two reaction vessels connected in parallel to one another, each with a circulation water quantity control valve and with separate water heaters in the disinfection water circuit,
  • 7 shows an embodiment similar to FIG. 5, but with a distributor circuit from which two branch lines to secondary, self-contained distributor devices with electrical trace heating on the one hand and with a UV radiation device on the other hand,
  • 8 shows an embodiment similar to FIG. 7, but with three branch lines branching off from a distributor circuit to three different, self-contained, secondary distributor devices,
  • Fig. 9 shows a first embodiment according to the second alternative solution with a first heat exchanger and one Flow connecting pipe connected to the second heat exchanger between the disinfection water circuit and the circulation water circuit,
  • 10 shows an embodiment similar to FIG. 9, but with a cold water quantity control valve upstream of the first heat exchanger and a circulation water quantity control valve upstream of the second heat exchanger,
  • 11 shows an embodiment similar to FIG. 10, but with a differently arranged cold water quantity control valve and circulation water quantity control valve and an additional circulation water distribution valve in the process water collecting line,
  • 12 shows an embodiment similar to FIG. 11, but without a circulation water distribution valve but with a heating medium pump in the heating medium circuit of the water heater and various additional temperature sensors,
  • 13 shows an embodiment similar to FIG. 11, but with a connection of the circulation water distribution valve via a second bypass line to two process water storage tanks connected in parallel with heating coil and a downstream service water storage tank as well as several circulation water circuits connected in parallel,
  • 14 shows an embodiment similar to FIG. 11, but with a compactly combined first and second heat exchanger for a total of three partial heat exchangers,
  • 15 shows an embodiment similar to FIG. 14, but without a circulation water distribution valve but with a heating medium pump in the heating medium circuit of the water heater and
  • 16 shows an embodiment similar to FIG. 14, but with a first bypass line from the circulation water distribution valve to the process water distribution line, two water heaters and charge pumps arranged parallel to one another in the disinfection water circuit, a upstream buffer and two downstream process water storage tanks.

Jede der nachfolgend beschriebenen Anlagen weist einen Desinfektionswasser-Kreislauf 1 und einen Zirkulationswasser-Kreislauf 2 auf. Der Desinfektionswasser-Kreislauf 1 wird grundsätzlich von einem Wassererwärmer 3, einer Ladepumpe 4, einem Brauchwasser-Speicher 5 und einem Puffer 6 gebildet, welches im vorliegenden Fall in an sich bekannter Weise im oberen Teil des Brauchwasser-Speichers 5 angeordnet ist, der in diesem Fall zugleich als Reaktionsbehälter ausgebildet ist und in dessen unteren Teil sich das Speichervolumen 7 befindet. Diesem Brauchwasser-Speicher 5, der nachfolgend auch als Reaktionsbehälter 5 mit Puffer 6 und Speichervolumen 7 bezeichnet wird, ist im dargestellten Fall ein weiterer Speicher 8 in Serienschaltung nachgeordnet.Each of the systems described below has a disinfection water circuit 1 and a circulation water circuit 2. The disinfection water circuit 1 is basically formed by a water heater 3, a charging pump 4, a domestic water storage 5 and a buffer 6, which in the present case is arranged in a manner known per se in the upper part of the domestic water storage 5, which is in this Case is also designed as a reaction container and in the lower part of which the storage volume 7 is located. This process water storage 5, which is also referred to below as a reaction container 5 with a buffer 6 and Storage volume 7 is designated, in the case shown, another memory 8 is arranged in series.

In Förderrichtung des Brauchwassers gemäß den eingezeichneten, jedoch der Übersicht halber nicht bezeichneten Pfeilen ist der Puffer 6 über die Brauchwasser-Abgangsleitung 9 mit dem ersten Wärmeübertrager 10 verbunden und steht von diesem über die Brauchwasser-Verteilungsleitung 11 zu den Zapfstellen 12 und einer Zirkulationsleitung 13 mit Zirkulationspumpe 14, über eine Brauchwasser-Sammelleitung 15, einen Rückflußverhinderer 16 und einen Wassermengenbegrenzer 17 mit der Kaltwasserzuleitung 18 in Verbindung. In der Kaltwasserzuleitung 18 ist neben einem Sicherheits-Regelventil 19 ein Kaltwassermengen-Regelventil 20 angeordnet. Das Kaltwassermengen-Regelventil 20 ist als Dreiwegeventil ausgebildet, dessen erster Weg 20a mit dem Zufluß der Kaltwasserzuleitung 18, dessen zweiter Weg 20b über eine Zwischenleitung 21 mit dem ersten Wärmeübertrager 10 und aus diesem 10 heraus über eine Verbindungsleitung 22 wie der dritte Weg 20c mit der Zugangsleitung 23 zum Brauchwasser-Speicher 5 verbunden ist. Auf diese Weise ist der Zirkulationswasser-Kreislauf 2 mit dem Desinfektionswasser-Kreislauf 1 zu einem Gesamtkreislauf 1, 2 verbunden.In the conveying direction of the process water according to the arrows drawn in, but for the sake of clarity, the buffer 6 is connected to the first heat exchanger 10 via the process water outlet line 9 and is connected to the first heat exchanger 10 via the process water distribution line 11 to the tapping points 12 and a circulation line 13 Circulation pump 14, via a service water collecting line 15, a backflow preventer 16 and a water quantity limiter 17 with the cold water supply line 18 in connection. In addition to a safety control valve 19, a cold water quantity control valve 20 is arranged in the cold water supply line 18. The cold water quantity control valve 20 is designed as a three-way valve, the first way 20a with the inflow of the cold water supply line 18, the second way 20b via an intermediate line 21 with the first heat exchanger 10 and out of this 10 via a connecting line 22 like the third way 20c with the Access line 23 to the domestic water storage 5 is connected. In this way, the circulation water circuit 2 is connected to the disinfection water circuit 1 to form an overall circuit 1, 2.

Das Kaltwassermengen-Regelventil 20 ist von einem Temperaturfühler 24 regelbar, der in der Brauchwasser-Verteilungsleitung 11 zu den Zapfstellen 12 angeordnet ist. Das Sicherheits-Regelventil 19 in der Kaltwasserzuleitung 18 wird von einem Temperaturfühler 25 geregelt, der im Reaktionsbehälter 5 in der Nähe der Brauchwasser-Abgangsleitung 9 angeordnet ist und das Sicherheits-Regelventil 19 drosselt oder schließt, falls im Desinfektionswasser-Kreislauf 1 die erforderliche Mindesttemperatur des Speichervolumens 7 im Reaktionsbehälter 5 unterschritten ist.The cold water quantity control valve 20 can be controlled by a temperature sensor 24 which is arranged in the process water distribution line 11 to the tapping points 12. The safety control valve 19 in the cold water supply line 18 is controlled by a temperature sensor 25, which is arranged in the reaction vessel 5 near the process water outflow line 9 and throttles or closes the safety control valve 19 if the required minimum temperature of the disinfection water circuit 1 Storage volume 7 is below in the reaction container 5.

Der Wassererwärmer 3 im Desinfektionswasser-Kreislauf 1 wird von einer Heizmediumleitung 26 mit einem Heizmedium-Regelventil 27 beaufschlagt, welches von einem Fühler 28 in der Verbindungsleitung 29 zwischen Wassererwärmer 3 und Brauchwasser-Speicher 5 geregelt wird.The water heater 3 in the disinfection water circuit 1 is acted upon by a heating medium line 26 with a heating medium control valve 27 which is controlled by a sensor 28 in the connecting line 29 between the water heater 3 and the domestic water storage 5.

Nach einer vorteilhaften Weiterbildung der Erfindung saugt bei Zapfruhe die über die Förderleistung der Zirkulationspumpe 14 hinausgehende Förderleistung der Ladepumpe 4 das im Brauchwasser-Speicher 5 befindliche Speichervolumen 7 über eine Verbindungsleitung 30 sowie das Brauchwasser aus dem Zirkulationswasser-Kreislauf 2 über die Zugangsleitung 23 an und erhitzt es stets wieder im Desinfektionswasser-Kreislauf 1 auf die erforderliche Desinfektionstemperatur. Dadurch wird die Keimkonzentration im Zirkulationswasser-Kreislauf 2 bei Zapfruhe erheblich reduziert und bei längeren Zapfintervallen auch unter Umständen vollständig abgetötet.According to an advantageous further development of the invention, when the pump is at rest, the delivery capacity of the charging pump 4, which goes beyond the delivery rate of the circulation pump 14, draws in and heats the storage volume 7 located in the service water store 5 via a connecting line 30 and the service water from the circulation water circuit 2 via the access line 23 it always in the disinfection water circuit 1 on the required disinfection temperature. As a result, the concentration of germs in the circulation water circuit 2 is considerably reduced in the event of a tapping rest and, under certain circumstances, is also completely destroyed in the event of longer tapping intervals.

In sämtlichen nachfolgend beschriebenen Figuren sind übereinstimmende Teile stets mit gleichen Bezugsziffern bezeichnet.In all of the figures described below, identical parts are always designated with the same reference numbers.

Gemäß Fig. 2 besteht der erste Wärmeübertrager 10 aus insgesamt drei kompakt zusammengefaßten Teilwärmeübertragern 10a, 10b und 10c, von denen der erste 10a an seinem Eingang mit der Brauchwasser-Abgangsleitung 9 und an seinem Ausgang mit der Brauchwasser-Verteilungsleitung 11, der zweite 10b an seinem Eingang mit der Kaltwasserzuleitung 18 und an seinem Ausgang mit der Zugangsleitung 23 zum Brauchwasser-Speicher 5 und der dritte Teilwärmeübertrager 10c mit seinem Eingang und Ausgang an die Zugangsleitung 23 zum Brauchwasser-Speicher 5 angeschlossen sind. Dabei kennzeichnen die Pfeile jeweils die Strömungsrichtungen. Das Heizmedium-Regelventil 27 in der Heizmediumleitung 26 wird im vorliegenden Fall nicht nur vom Fühler 28 in der Verbindungsleitung 29, sondern von einem weiteren Fühler 31 geregelt, der in der Brauchwasser-Verteilungsleitung 11 angeordnet ist. Das Kaltwassermengen-Regelventil 20 von Fig. 1 wird im Ausführungsbeispiel der Fig. 2 aufgrund der Strömungsrichtung in den drei Teilwärmeübertragern 10a, 10b, 10c, dem zusätzlichen Fühler 31 und der damit verbundenen flexiblen Regelungsmöglichkeit entbehrlich.According to FIG. 2, the first heat exchanger 10 consists of a total of three compact partial heat exchangers 10a, 10b and 10c, of which the first 10a is connected to the process water outlet line 9 at its entrance and to the process water distribution line 11 at its outlet, the second 10b its input with the cold water supply line 18 and at its output with the access line 23 to the hot water tank 5 and the third partial heat exchanger 10c with its input and output are connected to the access line 23 to the hot water tank 5. The arrows indicate the flow directions. In the present case, the heating medium control valve 27 in the heating medium line 26 is controlled not only by the sensor 28 in the connecting line 29, but also by a further sensor 31 which is arranged in the process water distribution line 11. The cold water quantity control valve 20 of FIG. 1 is based on the exemplary embodiment of FIG. 2 the flow direction in the three partial heat exchangers 10a, 10b, 10c, the additional sensor 31 and the associated flexible control option can be dispensed with.

In sämtlichen Figuren ist außerdem zwischen der Ladepumpe 4 und dem Wassererwärmer 3 ein Wassermengen-Regelventil 32 angeordnet, welches in Abstimmung mit dem Wassermengenbegrenzer 17 in der Brauchwasser-Sammelleitung 15 dafür sorgt, daß die Ladepumpe 4 im Desinfektionswasser-Kreislauf 1 in Abhängigkeit von der Größe des Puffers 6 und des Speichervolumens 7 eine derartige Fördermenge umwälzt, daß sämtliche Keime der Legionellen in dem Brauchwasser abgetötet sind, welches der Puffer 6 über die Brauchwasser-Abgangsleitung 9 in Richtung auf den Zirkulationswasser-Kreislauf 2 verläßt.In all figures, a water quantity control valve 32 is also arranged between the charge pump 4 and the water heater 3, which in coordination with the water quantity limiter 17 in the process water collecting line 15 ensures that the charge pump 4 in the disinfection water circuit 1 depending on the size of the buffer 6 and the storage volume 7 circulates such a delivery quantity that all germs of Legionella in the process water are killed, which the buffer 6 leaves via the process water outlet line 9 in the direction of the circulation water circuit 2.

Gemäß Fig. 3 ist in der Brauchwasser-Sammelleitung 15 in Strömungsrichtung vor dem Rückflußverhinderer 16 und dem Wassermengenbegrenzer 17 ein Zirkulationswasser-Verteilventil 33 angeordnet, dessen erster Weg 33a und dessen zweiter Weg 33b mit der Brauchwasser-Sammelleitung 15 verbunden sind, wohingegen sein dritter Weg 33c über eine erste Bypass-Leitung 34 mit der Brauchwasser-Verteilungsleitung 11 zu den Zapfstellen 12 verbunden ist. Dieses Zirkulationswasser-Verteilventil 33 wird entweder in Abhängigkeit von der Desinfektionstemperatur im Desinfektionswasser-Kreislauf 1 von einem zwischen der Ladepumpe 4 und dem Speichervolumen 7 in der Verbindungsleitung 30 angeordneten Temperaturfühler 35 oder in Abhängigkeit von der Zeit über eine Zeitschaltuhr 36 geregelt. Diese Regelung erfolgt derart, daß die Gesamtzirkulationswassermenge oder nur eine Teilmenge dieses Wassers aus dem Zirkulationswasser-Kreislauf 2 zum ersten Wärmeübertrager 10 nur dann freigegeben wird, wenn der Desinfektionswasser-Kreislauf 1 einschließlich Brauchwasser-Speicher 5 vollständig erwärmt ist und damit die Ladeleistung weitgehend für die Zirkulationsmenge zur Verfügung steht. Die übrige Gesamtzirkulationswasser- oder Teilmenge muß über die erste Bypass-Leitung 34 in die Brauchwasser-Verteilungsleitung 11 zu den Zapfstellen 12 strömen.According to Fig. 3, a circulation water distribution valve 33 is arranged in the direction of flow in the flow direction upstream of the backflow preventer 16 and the water quantity limiter 17, the first path 33a and the second path 33b of which are connected to the process water collecting line 15, whereas its third path 33c is connected via a first bypass line 34 to the domestic water distribution line 11 to the tapping points 12. This circulation water distribution valve 33 is either depending on the disinfection temperature in the disinfection water circuit 1 between the charge pump 4 and the storage volume 7 in the connecting line 30 arranged temperature sensor 35 or depending on the time controlled by a timer 36. This regulation is carried out in such a way that the total amount of circulation water or only a portion of this water from the circulation water circuit 2 to the first heat exchanger 10 is only released when the disinfection water circuit 1, including the service water reservoir 5, is completely heated and thus the charging capacity largely for the Circulation amount is available. The rest of the total circulation water or partial quantity must flow via the first bypass line 34 into the process water distribution line 11 to the tapping points 12.

Die weitere Ausführungsform gemäß Fig. 4 unterscheidet sich von derjenigen gemäß Fig. 3 dadurch, daß das Zirkulationswasser-Verteilventil 33 mit seinem dritten Weg 33c über eine zweite Bypass-Leitung 37 und einem ersten Zirkulationswassermengen-Regelventil 38 mit einer Heizschlange 39 hydromechanisch verbunden ist, die im Grenzbereich 40 zwischen dem Puffervolumen 6 und Speichervolumen 7 im Reaktionsbehälter 5 angeordnet ist. Hier erfolgt die Regelung des Zirkulationswasser-Verteilventils 33 entweder über den Temperaturfühler 35 oder die Zeitschaltuhr 36 dergestalt, daß die Gesamtzirkulationswassermenge aus dem Zirkulationswasser-Kreislauf 2 zum ersten Wärmeübertrager 10 entweder freigegeben oder über die zweite Bypass-Leitung 37 in die Heizschlange 39 förderbar ist. Dadurch steht die Ladeleistung (Desinfektionsleistung) bei Entnahmen immer vollständig zur Erwärmung des Brauchwasser-Speichers 5 zur Verfügung. Die Ladepumpe 4 ist in diesem Ausführungsbeispiel entweder von einem Fühler 41 in der Verbindungsleitung 30 und/oder über einen Fühler 42 in der Brauchwasser-Abgangsleitung 9 und/oder von einem Fühler 69 schaltbar, um den Anforderungen der im Wohnungsbau vorgeschriebenen Brauchwasservorrangschaltung zu entsprechen. Das erste Zirkulationswassermengen-Regelventil 38 besteht aus einem Dreiwege-Mischventil, dessen erster Weg 38a mit der zweiten Bypass-Leitung 37, dessen zweiter Weg 38b mit dem Eintritt der Heizschlange 39 in den Brauchwasser-Speicher 5 und dessen dritter Weg 38c mit der Brauchwasser-Abgangsleitung 9 verbunden ist.The other embodiment according to FIG. 4 differs from that according to FIG. 3 in that the circulation water distribution valve 33 is hydromechanically connected to a heating coil 39 by its third path 33c via a second bypass line 37 and a first circulation water quantity control valve 38, which is arranged in the boundary region 40 between the buffer volume 6 and the storage volume 7 in the reaction container 5. Here, the circulation water distribution valve 33 is controlled either via the temperature sensor 35 or the timer 36 such that the total amount of circulation water from the circulation water circuit 2 to the first Heat exchanger 10 is either released or can be conveyed into the heating coil 39 via the second bypass line 37. As a result, the charging capacity (disinfection capacity) is always completely available for heating the domestic water storage 5 during withdrawals. In this exemplary embodiment, the charge pump 4 can be switched either by a sensor 41 in the connecting line 30 and / or by a sensor 42 in the process water outlet line 9 and / or by a sensor 69 in order to meet the requirements of the process water priority circuit prescribed in residential construction. The first circulation water quantity control valve 38 consists of a three-way mixing valve, the first way 38a with the second bypass line 37, the second way 38b with the entry of the heating coil 39 into the hot water tank 5 and the third way 38c with the hot water Outgoing line 9 is connected.

Die Anlage gemäß Fig. 5 unterscheidet sich von der Anlage gemäß Fig. 4 im wesentlichen durch folgende Änderungen:The system according to FIG. 5 differs from the system according to FIG. 4 essentially in the following changes:

Zum einen ist der Zirkulationswasser-Kreislauf 2 in mehrere zueinander parallel geschaltete Zirkulationswasser-Kreisläufe 2a, 2b und 2c mit unterschiedlichen Zirkulationspumpen 14a, 14b und 14c und separaten Wassermengenbegrenzern 43a, 43b und 43c versehen.On the one hand, the circulation water circuit 2 is provided with a plurality of circulation water circuits 2a, 2b and 2c connected in parallel with one another with different circulation pumps 14a, 14b and 14c and separate water quantity limiters 43a, 43b and 43c.

Ferner beinhaltet der Desinfektionswasser-Kreislauf 1 zwei getrennte Wassererwärmer 3a und 3b, mit getrennten Heizmedium-Regelventilen 27a, 27b in getrennten Heizmediumleitungen 26a, 26b sowie mit getrennten Ladepumpen 4a und 4b, die zueinander parallel geschaltet sind. Außerdem ist dem Reaktionsbehälter 5 gemäß Fig. 4 nunmehr ein Puffer 6a über die Verbindungsleitung 29 vorgeschaltet und mehrere Speichervolumina 7a und 7b dem Speichervolumen 7 über die Verbindungsleitung 30 und zwei weitere Verbindungsleitungen 44, 46 nachgeordnet.Furthermore, the disinfection water circuit 1 contains two separate water heaters 3a and 3b, with separate heating medium control valves 27a, 27b in separate heating medium lines 26a, 26b and with separate charging pumps 4a and 4b, which are connected in parallel to one another. 4, a buffer 6a is now connected upstream via the connecting line 29 and a plurality of storage volumes 7a and 7b are arranged downstream of the storage volume 7 via the connecting line 30 and two further connecting lines 44, 46.

Wie aus Fig. 5 ersichtlich ist, kann das Puffervolumen 6, 6a den Desinfektionswasser-Kreislauf 1 nur über die Verbindungsleitung 45 verlassen, wenn das in die Brauchwasser-Abgangsleitung 9 einströmende Wasser der erforderlichen Desinfektionstemperatur und der erforderlichen Desinfektionszeit ausgesetzt worden ist. Ganz Entsprechendes gilt auch für die Speichervolumina 7a und 7b, die über die Verbindungsleitung 46 mit dem Speichervolumen 7 im Reaktionsbehälter 5 in Verbindung stehen. Durch diese beiden zusätzlichen Brauchwasser-Speicher 7a und 7b ist über die Leitungen 30, 44 und 46 der Desinfektionswasser-Kreislauf 1 gegenüber dem Ausführungsbeispiel der Fig. 4 vergrößert worden. In beiden Ausführungsformen der Figuren 4 und 5 wird das erste Zirkulationswassermengen-Regelventil 38 in Abhängigkeit von einem Temperaturfühler 47 in der Brauchwasser-Abgangsleitung 9 aus dem Reaktionsbehälter 5 geregelt.As can be seen from FIG. 5, the buffer volume 6, 6a can only leave the disinfection water circuit 1 via the connecting line 45 if the water flowing into the process water outlet line 9 has been exposed to the required disinfection temperature and the required disinfection time. The same applies correspondingly to the storage volumes 7a and 7b, which are connected to the storage volume 7 in the reaction container 5 via the connecting line 46. By means of these two additional process water reservoirs 7a and 7b, the disinfection water circuit 1 has been enlarged via the lines 30, 44 and 46 compared to the exemplary embodiment in FIG. 4. In both embodiments of Figures 4 and 5, the first circulation water quantity control valve 38 is dependent on a temperature sensor 47 in the Process water outlet line 9 regulated from the reaction tank 5.

Es versteht sich, daß die Ladepumpe 4 bzw. die Ladepumpen 4a, 4b wie im dargestellten Fall der Fig. 4 jeweils in Abhängigkeit von Temperaturfühlern 41, 42 in der Verbindungsleitung 30 und/oder der Brauchwasser-Abgangsleitung 9 und/oder den weiteren Temperaturfühlern 69, 82 im Brauchwasser-Speicher 5 und in einer Heizmediumleitung 26 des Wassererwärmers 3 schaltbar sind.It goes without saying that the charge pump 4 or the charge pumps 4a, 4b, as in the case shown in FIG. 4, each as a function of temperature sensors 41, 42 in the connecting line 30 and / or the process water outlet line 9 and / or the further temperature sensors 69 , 82 in the domestic water storage 5 and in a heating medium line 26 of the water heater 3 are switchable.

Das weitere Ausführungsbeispiel der Fig. 6 unterscheidet sich von der Anlage gemäß Fig. 5 im wesentlichen dadurch, daß im Desinfektionswasser-Kreislauf 1 zwei Reaktionsbehälter 5a und 5b mit separaten ersten Zirkulationswassermengen-Regelventilen 38a und 38b angeordnet sind. Jeder der Reaktionsbehälter 5a und 5b beinhaltet in seinem oberen Teil ein Reaktionsvolumen 6a, 6b als Puffer und in seinem unteren Teil ein Speichervolumen 7a, 7b, welches durch den nachgeordneten Brauchwasser-Speicher 7c vergrößert ist.The further exemplary embodiment in FIG. 6 differs from the system in accordance with FIG. 5 essentially in that two reaction vessels 5a and 5b with separate first circulation water quantity control valves 38a and 38b are arranged in the disinfection water circuit 1. Each of the reaction containers 5a and 5b contains in its upper part a reaction volume 6a, 6b as a buffer and in its lower part a storage volume 7a, 7b, which is enlarged by the downstream service water storage 7c.

In den Figuren 7 und 8 bilden die Brauchwasser-Verteilungsleitung 11 mit der Zirkulationspumpe 14 und der Brauchwasser-Sammelleitung 15 jeweils einen Verteilerkreislauf 48, aus welchem eine oder mehrere Stichleitungen 49, 50, 51, 52 zu sekundären Verteilervorrichtungen 53 bis 56 abzweigen. Dabei führt die erste Stichleitung 49 zu einzelnen Entnahmestellen 12, die mit elektrischen Begleitheizungen 57 versehen sind.In FIGS. 7 and 8, the process water distribution line 11 together with the circulation pump 14 and the process water collection line 15 each form a distribution circuit 48, from which one or more branch lines 49, 50, 51, 52 form branch secondary manifolds 53 to 56. The first stub 49 leads to individual tapping points 12 which are provided with electrical trace heaters 57.

Ferner führt aus dem Verteiler-Kreislauf 48 eine zweite Stichleitung 50 zu einer aus einer sekundären Verteilungsleitung 58 zu Zapfstellen 12, einer Zirkulationspumpe 59, einer UV-Strahlungseinrichtung 60 und einem Wärmeübertrager 61 bestehenden sekundären Verteilervorrichtung 54 mit hoher Umwälzleistung, dessen Zirkulationswasser-Wärmeverluste über den Wärmeübertrager 61 sowie über ein Warmwasser-Verteilerventil 62 aus dem Verteilerkreislauf 48 ausgleichbar sind.Furthermore, a second branch line 50 leads from the distribution circuit 48 to a secondary distribution device 54 with a high circulation capacity, the circulation water heat losses of which consist of a secondary distribution line 58 to tapping points 12, a circulation pump 59, a UV radiation device 60 and a heat exchanger 61 Heat exchangers 61 and a hot water distributor valve 62 from the distributor circuit 48 can be compensated.

Gemäß Fig. 8 führen aus dem Verteilerkreislauf 48 zwei weitere Stichleitungen 51, 52 zu mehreren in sich geschlossenen, mit Zapfstellen 12 versehenen sowie je eine Zirkulationspumpe 63, 64, eine Zirkulationsleitung 65 und einem Wärmeübertrager 66 bestehenden sekundären Verteiler-Kreisläufen 68, die über den Wärmeübertrager 66 mit einem sekundären, aus einem Wassererwärmer 67 und einem Reaktionsbehälter 70 bestehenden Desinfektionswasser-Kreislauf 71 verbunden sind, in denen die Zirkulationspumpen 63, 64 zugleich die Ladepumpen sind. Dabei ist vor dem Eintritt der Zirkulationsleitung 65 in den Wärmeübertrager 66 in der sekundären Verteilervorrichtung 56 ein weiteres Zirkulationswasser-Regelventil 72 angeordnet, welches in Abhängigkeit von einem Temperaturfühler 73 regelbar ist.8 lead from the distribution circuit 48 two further branch lines 51, 52 to several self-contained, provided with tapping points 12 and each a circulation pump 63, 64, a circulation line 65 and a heat exchanger 66 existing secondary distributor circuits 68, which via the Heat exchangers 66 are connected to a secondary disinfection water circuit 71 consisting of a water heater 67 and a reaction container 70, in which the circulation pumps 63, 64 are also the charging pumps. Here, before the circulation line 65 enters the heat exchanger 66 in the secondary distributor device 56 Another circulation water control valve 72 is arranged, which can be controlled depending on a temperature sensor 73.

Nach einer vorteilhaften Weiterbildung der Erfindung ist das Zirkulationswasser-Regelventil 72 als ein über eine Zeitschaltuhr 93 und den Temperaturfühler 73 steuerbares Drei-Wege-Ventil ausgebildet, dessen erster Weg 72a mit der Zirkulationsleitung 65, dessen zweiter Weg 72b mit dem vierten Wärmeübertrager 66 und dessen dritter Weg 72c über eine Verbindungsleitung 90 mit einer vom vierten Wärmeübertrager 66 zur Stichleitung 52 führenden Verbindungsleitung 91 verbunden ist, hinter deren Verbindungspunkt 92 in Strömungsrichtung (s. Pfeile) der Temperaturfühler 73 angeordnet ist. Bei dieser Ausführungsform kann das Ventil 72 vorteilhaft im Normalbetrieb bei Tage in Abhängigkeit vom Temperaturfühler 73 über den Weg 72b nur so viel Zirkulationswasser durch die Verbindungsleitung 94 in den Desinfektionskreislauf 66, 67, 71, 70 strömen lassen, wie am Verbindungspunkt 92 von den Leitungen 90, 91 zur Sicherstellung der Solltemperatur am Temperaturfühler 73 erforderlich ist. Hingegen kann in den Nachtstunden außerhalb der Normalbetriebszeit in einer über die Zeitschaltuhr 93 einstellbaren Zeit über das Zirkulationswasser-Regelventil 72 die gesamte Zirkulationswassermenge über die Verbindungsleitung 94 in den Desinfektionskreislauf 66, 67, 71, 70 geleitet und dabei diese Gesamtmenge in dieser Zeit so lange sicher desinfiziert werden, bis entweder über die Abschaltung durch die Zeitschaltuhr 93 oder über eine am Temperaturfühler 73 einzustellende maximale Vorlauftemperatur zu den Zapfstellen 12 wieder der Normalbetrieb eingeleitet wird. Eine derartige Einstellung der höher als die Solltemperatur liegenden Maximaltemperatur ermöglicht einerseits eine periodische Reduzierung von eventuell auf den inneren Rohroberflächen des sekundären Verteilerkreislaufes 52-12 haftenden Keime und eine wirtschaftliche Auslegung des vierten Wärmeübertragers 66, da insbesondere bei großen Zirkulationswassermengen die Differenz zwischen der Eintrittstemperatur in den Verteilungskreislauf 52, 12, 64, 72, 92, 90 und der Rücklauftemperatur am ersten Weg 72a in das Zirkulationswasser-Regelventil 72 sehr gering sein kann. Dadurch kann die aus der Verbindungsleitung 94 in den vierten Wärmeübertrager 66 eintretende Wassermenge mit einer Temperatur von z.B. 45 °C die aus der Leitung 95 in den vierten Wärmeübetrager 66 eintretende Heißwassermenge von z.B. 70 °C bei wirtschaftlicher Auslegung nur auf ca. 50 °C bis 55 °C abkühlen und dadurch eine langsam ansteigende Temperatur im Verteilerkreislauf 52, 12, 64, 72, 90, 92 bis zu einer einstellbaren maximalen Temperatur bewirken.According to an advantageous development of the invention, the circulation water control valve 72 is designed as a three-way valve which can be controlled via a timer 93 and the temperature sensor 73, the first route 72a with the circulation line 65, the second route 72b with the fourth heat exchanger 66 and the latter third route 72c is connected via a connecting line 90 to a connecting line 91 leading from the fourth heat exchanger 66 to the branch line 52, behind the connecting point 92 of which the temperature sensor 73 is arranged in the flow direction (see arrows). In this embodiment, the valve 72 can advantageously only flow as much circulation water through the connecting line 94 into the disinfection circuit 66, 67, 71, 70 in the daytime depending on the temperature sensor 73 via the path 72b as at the connecting point 92 from the lines 90 , 91 is required to ensure the target temperature at temperature sensor 73. In contrast, in the night hours outside the normal operating time in a time adjustable via the timer 93 via the circulation water control valve 72, the entire amount of circulation water can be passed via the connecting line 94 into the disinfection circuit 66, 67, 71, 70 and this total quantity is safely disinfected during this time until normal operation is initiated again either by switching off by the timer 93 or via a maximum flow temperature to be set on the temperature sensor 73 to the tapping points 12. Such a setting of the maximum temperature that is higher than the target temperature enables on the one hand a periodic reduction of any germs adhering to the inner pipe surfaces of the secondary distributor circuit 52-12 and an economical design of the fourth heat exchanger 66, since, in particular with large amounts of circulation water, the difference between the inlet temperature in the Distribution circuit 52, 12, 64, 72, 92, 90 and the return temperature on the first route 72a in the circulation water control valve 72 can be very low. As a result, the amount of water entering the fourth heat exchanger 66 from the connecting line 94 with a temperature of, for example, 45 ° C., the amount of hot water entering the fourth heat exchanger 66 from the line 95, for example 70 ° C., can only be increased to approx Cool down to 55 ° C and thereby cause a slowly increasing temperature in the distribution circuit 52, 12, 64, 72, 90, 92 to an adjustable maximum temperature.

Weiterhin kann durch den Einbau eines dem Wassererwärmer nachgeordneten, elektrisch beheizten Wassererwärmers 96 mit Steuerung durch einen Fühler 97 die Temperatur in der Verbindungsleitung 71 bei zu niedrigem Temperaturangebot des Heizmediums am Wassererwärmer 67 auf das zur Abtötung der Keime notwendige Temperaturniveau angehoben werden.Furthermore, by installing an electrically heated water heater 96 downstream of the water heater with control by a sensor 97 the temperature in the connecting line 71 can be raised to the temperature level necessary to kill the germs if the temperature of the heating medium at the water heater 67 is too low.

Die Ausführungsform gemäß Fig. 9 nach der 2. Lösungsalternative unterscheidet sich von der 1. Lösungsalternative gemäß Fig. 1 im wesentlichen dadurch, daß nunmehr der erste Wärmeübertrager 10 in an sich bekannter Weise über eine Vorlauf-Verbindungsleitung 74 und einem zweiten Wärmeübertrager 75 mit der Brauchwasser-Verteilungsleitung 11 zu den Zapfstellen 12, über eine Zirkulationsleitung 13 mit Zirkulationspumpe 14 und über eine Brauchwasser-Sammelleitung 15, über einen Rückflußverhinderer 16, einen Wassermengenbegrenzer 17 sowie über den zweiten Wärmeübertrager 75, eine Rücklauf-Verbindungsleitung 76 und über eine Zugangsleitung 23 mit dem Brauchwasser-Speicher 5 und dem Puffer 6 zu einem Gesamtkreislauf 1, 2 verbunden ist. Ferner ist im Gegensatz zur Fig. 1 nunmehr die Kaltwasserzuleitung 18 zum ersten Wärmeübertrager 10 zu der Brauchwasser-Abgangsleitung 9 im Gleichstrom geschaltet. Das im ersten Wärmeübertrager 10 vorgewärmte Kaltwasser verläßt diesen über eine Verbindungsleitung 77 zur Zugangsleitung 23. Der wesentliche Unterschied der Ausführungsform der Fig. 9 beruht in dem Hinzutreten eines zweiten Wärmeübertragers 75 und dem Fortfall des Kaltwassermengen-Regelventils 20 von Fig. 1, was insbesondere bei kleineren Anlagen mit geringen Anforderungen an die Konstanz und Höhe der Austrittstemperatur in Frage kommt.The embodiment according to FIG. 9 according to the second alternative solution differs from the first alternative solution according to FIG. 1 essentially in that now the first heat exchanger 10 in a manner known per se via a flow connecting line 74 and a second heat exchanger 75 with the Process water distribution line 11 to the tapping points 12, via a circulation line 13 with circulation pump 14 and via a process water collecting line 15, via a backflow preventer 16, a water quantity limiter 17 and also via the second heat exchanger 75, a return connection line 76 and via an access line 23 the domestic water storage 5 and the buffer 6 is connected to an overall circuit 1, 2. Furthermore, in contrast to FIG. 1, the cold water supply line 18 to the first heat exchanger 10 to the process water outflow line 9 is now connected in direct current. The cold water preheated in the first heat exchanger 10 leaves the latter via a connecting line 77 to the access line 23. The main difference between the embodiment of FIG. 9 resides in the addition of a second heat exchanger 75 and the elimination of the Cold water quantity control valve 20 of FIG. 1, which is particularly suitable for smaller systems with low requirements for the constancy and level of the outlet temperature.

In Fig. 10 sind gegenüber Fig. 9 in die Kaltwasserzuleitung 18 ein Kaltwassermengen-Regelventil 20 und in die Brauchwasser-Sammelleitung 15 in Strömungsrichtung nach dem Wassermengenbegrenzer 17 ein zweites Zirkulationswassermengen-Regelventil 78 angeordnet. Mit den beiden Regelventilen 20, 78 können sowohl die Kaltwassermenge als auch die Zirkulationswassermenge und damit die Warmwasserabgangstemperatur ausgewählt und geregelt werden. Dabei erfolgt die Regelung des Kaltwassermengen-Regelventils 20 über den Temperaturfühler 24 in der Brauchwasser-Verteilungsleitung 11 und die Regelung des Zirkulationswassermengen-Regelventils 78 durch einen Temperaturfühler 79, der gleichfalls in der Brauchwasser-Verteilungsleitung 11 angeordnet ist. Diese Anlage zeichnet sich nicht nur durch eine äußerst variantenreiche Regelungsmöglichkeit über die beiden Regelventile 20 und 78 aus, sondern schließt auch die Möglichkeit ein, daß bei Ausfall eines der beiden Regelventile 20, 78 das andere zumindest teilweise die Funktion des jeweils anderen übernehmen kann.In FIG. 10, compared to FIG. 9, a cold water quantity control valve 20 is arranged in the cold water supply line 18 and a second circulation water quantity control valve 78 is arranged in the process water collecting line 15 downstream of the water quantity limiter 17. With the two control valves 20, 78, both the amount of cold water and the amount of circulation water and thus the hot water outlet temperature can be selected and controlled. The control of the cold water quantity control valve 20 takes place via the temperature sensor 24 in the process water distribution line 11 and the control of the circulation water quantity control valve 78 by a temperature sensor 79, which is likewise arranged in the process water distribution line 11. This system is not only characterized by an extremely varied control option via the two control valves 20 and 78, but also includes the possibility that if one of the two control valves 20, 78 fails, the other can at least partially take over the function of the other.

Die Ausführungsform der Fig. 11 ergibt sich im wesentlichen aus einer Kombination der Ausführungsform der Fig. 10 in Verbindung mit dem Zirkulationswassermengen-Verteilventil 33 von Fig. 3. Dabei ist im ersten Wärmeübertrager 10 die Kaltwasserzuleitung 18 zur Brauchwasser-Abgangsleitung 9 im Gleichstrom und im zweiten Wärmeübertrager 75 die Vorlauf-Verbindungsleitung 74 zur Brauchwasser-Sammelleitung 15 im Gegenstrom geschaltet. Außerdem ist das Kaltwassermengen-Regelventil 20 mit seinem ersten Weg 20a und seinem zweiten Weg 20b in der Kaltwasserzuleitung 18 angeordnet, hingegen mit seinem dritten Weg 20c über eine Verbindungsleitung 79 als Bypass mit der Verbindungsleitung 77 verbunden. Ferner ist das Zirkulationswassermengen-Regelventil 78 mit seinem ersten Weg 78a und seinem zweiten Weg 78b in der Brauchwasser-Sammelleitung 15 angeordnet, hingegen mit seinem dritten Weg 78c über eine Verbindungsleitung 80 als Bypass mit der Rücklauf-Verbindungsleitung 76 verbunden. Das Zirkulationswassermengen-Regelventil 78 wird von einem Fühler 81 in der Brauchwasser-Verteilungsleitung 11 geregelt, der jedoch hinter der Einbindung der Leitung 34 in die Leitung 11 angebracht ist. Das Zirkulationswasser-Verteilventil 33 wird wie beim Ausführungsbeispiel der Fig. 3 entweder über den Fühler 35 oder die Zeitschaltuhr 36 geregelt.The embodiment of FIG. 11 essentially results from a combination of the embodiment of FIG. 10 in conjunction with the circulation water quantity distribution valve 33 from FIG. 3. In the first heat exchanger 10, the cold water supply line 18 to the process water outlet line 9 is in direct current and in second heat exchanger 75 connected the flow connection line 74 to the process water collecting line 15 in countercurrent. In addition, the cold water quantity control valve 20 is arranged with its first path 20a and its second path 20b in the cold water supply line 18, on the other hand connected with its third path 20c via a connecting line 79 as a bypass to the connecting line 77. Furthermore, the circulation water quantity control valve 78 is arranged with its first path 78a and its second path 78b in the process water collecting line 15, on the other hand with its third path 78c it is connected to the return connection line 76 as a bypass via a connecting line 80. The circulation water quantity control valve 78 is controlled by a sensor 81 in the process water distribution line 11, which, however, is attached behind the connection of line 34 into line 11. The circulation water distribution valve 33 is regulated, as in the embodiment of FIG. 3, either via the sensor 35 or the timer 36.

Das Ausführungsbeispiel der Fig. 12 entspricht im wesentlichen dem Ausführungsbeispiel der Fig. 11, jedoch unter Fortlassung des Zirkulationswasser-Verteilventils 33. Ferner ist nunmehr im Heizmedium-Kreislauf 86 des Wassererwärmers 3 eine Heizmediumpumpe 83 angeordnet, die gemeinsam oder getrennt von der Ladepumpe 4 und der Zirkulationspumpe 14 über den Temperaturfühler 84 in der Verbindungsleitung 30 und/oder den Temperaturfühler 85 im Brauchwasser-Speicher 5 und/oder den Temperaturfühler 82 im Vorlauf des Heizmedium-Kreislaufes 86 geregelt werden kann. Durch diese auf die Ladepumpe 4, die Heizmediumpumpe 83 und die Zirkulationspumpe 14 wirkenden, miteinander verkoppelten Schaltungen werden über die Temperaturfühler 82, 84 und 85 die Anforderungen durch die Brauchwasservorrangschaltung erfüllt.The embodiment of FIG. 12 corresponds essentially to the embodiment of FIG. 11, but with the circulation water distribution valve 33 omitted. Furthermore, a heating medium pump 83 is now arranged in the heating medium circuit 86 of the water heater 3, which pump pump jointly or separately from the charging pump 4 and the circulation pump 14 can be regulated via the temperature sensor 84 in the connecting line 30 and / or the temperature sensor 85 in the domestic water storage 5 and / or the temperature sensor 82 in the flow of the heating medium circuit 86. By means of these circuits, which act on the charge pump 4, the heating medium pump 83 and the circulation pump 14 and are coupled to one another, the requirements of the service water priority circuit are met via the temperature sensors 82, 84 and 85.

Die weitere Ausführungsform gemäß Fig. 13 setzt sich im wesentlichen aus einer Kombination der Ausführungsform der Figuren 11 und 6 zusammen. Demzufolge sind auch damit übereinstimmende Teile mit gleichen Bezugsziffern bezeichnet, ohne daß auf deren Funktion erneut eingegangen wird. Im Ausführungsbeispiel der Fig. 13 ist das Zirkulationswasser-Verteilventil 33 über eine zweite Bypass-Leitung 37 mit den beiden parallel zueinander geschalteten Reaktionsbehältern 5a, 5b verbunden. Ebenso sind im Zirkulationswasser-Kreislauf 2 insgesamt drei getrennte Zirkulationswasser-Kreisläufe 2a, 2b und 2c zueinander parallel angeordnet.The further embodiment according to FIG. 13 essentially consists of a combination of the embodiment of FIGS. 11 and 6. Accordingly, parts that correspond to it are also designated with the same reference numbers, without their function being discussed again. In the exemplary embodiment in FIG. 13, the circulation water distribution valve 33 is connected via a second bypass line 37 to the two reaction containers 5a, 5b connected in parallel to one another. Likewise, in the circulation water circuit 2 there are a total of three separate circulation water circuits 2a, 2b and 2c arranged parallel to each other.

Der erste Wärmeübertrager 10 ist mit dem zweiten Wärmeübertrager 75 sowie über das Kaltwassermengen-Regelventil 20 und das zweite Zirkulationswassermengen-Regelventil 78 gemäß Fig. 11 miteinander verbunden. Auch diese Ausführungsform eignet sich besonders für große Anlagen mit hohen Anforderungen an die Betriebssicherheit sowie mit Zirkulationswassermengen in z.B. drei getrennten Zirkulationswasser-Kreisläufen 2a, 2b, 2c mit unterschiedlichen Zirkulationsmengen oder Druckhöhen.The first heat exchanger 10 is connected to the second heat exchanger 75 and via the cold water quantity control valve 20 and the second circulation water quantity control valve 78 according to FIG. 11. This embodiment is also particularly suitable for large systems with high operational safety requirements and with circulating water in e.g. three separate circulation water circuits 2a, 2b, 2c with different circulation quantities or pressure levels.

Die Ausführungsform der Fig. 14 ergibt sich im wesentlichen aus einer Kombination der Anlagen gemäß den Figuren 2, 3 und 12, wobei nunmehr der erste und zweite Wärmeübertrager 10, 75 zu einem kompakten Wärmeübertrager 10 ähnlich der Fig. 2 zusammengefaßt sind, der sich aus insgesamt drei Teilwärmeübertragern 10a, 10b, 10c zusammensetzt. Das Zirkulationswasser-Verteilventil 33 ist wie in Fig. 3 in die Brauchwasser-Sammelleitung 15 angeordnet und über die erste Bypass-Leitung 34 mit der Brauchwasser-Verteilungsleitung 11 verbunden. Der erste Teilwärmeübertrager 10a ist mit seinem Eingang und Ausgang an die Brauchwasser-Abgangsleitung 9 angeschlossen.The embodiment of FIG. 14 essentially results from a combination of the systems according to FIGS. 2, 3 and 12, the first and second heat exchangers 10, 75 now being combined to form a compact heat exchanger 10 similar to FIG a total of three partial heat exchangers 10a, 10b, 10c. The circulation water distribution valve 33 is arranged in the process water collecting line 15 as in FIG. 3 and is connected to the process water distribution line 11 via the first bypass line 34. The input and output of the first partial heat exchanger 10a is connected to the process water outlet line 9.

Die Kaltwasserzuleitung 18 führt vom Sicherheits-Regelventil 19 über das Kaltwassermengen-Regelventil 20 zum Eintritt in den Teilwärmeübertrager 10b, dessen Austritt über die Verbindungsleitung 89 ähnlich der Verbindungsleitung 77 gemäß Fig. 13 mit der Zugangsleitung 23 verbunden ist.The cold water supply line 18 leads from the safety control valve 19 via the cold water quantity control valve 20 to the inlet into the partial heat exchanger 10b, the outlet of which is connected to the access line 23 via the connecting line 89 similar to the connecting line 77 according to FIG. 13.

Das Zirkulationswassermengen-Regelventil 78 ist mit seinen beiden Wegen 78a und 78b in der Brauchwasser-Sammelleitung 15 angeordnet und mit seinem dritten Weg 78c über die Leitung 87 mit dem Eintritt des Teilwärmeübertragers 10a verbunden, aus welchem diese Leitung über die Verbindungsleitung 88 mit der Zugangsleitung 23 zum Brauchwasser-Speicher 5 verbunden ist. In bezug auf den Teilwärmeübertrager 10a ist der Teilwärmeübertrager 10b im Gleichstrom und der Teilwärmeübertrager 10c im Gegenstrom geschaltet. Sowohl das Kaltwassermengen-Regelventil 20 als auch das zweite Zirkulationswassermengen-Regelventil 78 werden über die beiden Temperaturfühler 24 und 81 geregelt, die in der Brauchwasser-Verteilungleitung 11 angeordnet sind. Das Zirkulationswasser-Verteilventil 33 wird wie in Fig. 11 wahlweise entweder über den Temperaturfühler 35 in der Verbindungsleitung 30 oder über eine Zeitschaltuhr 36 geregelt. Der Brauchwasser-Speicher 8 ist dem Brauchwasser-Speicher 5 nachgeordnet.The circulation water quantity control valve 78 is arranged with its two paths 78a and 78b in the process water collecting line 15 and is connected with its third path 78c via the line 87 to the entry of the partial heat exchanger 10a, from which this line via the connecting line 88 to the access line 23 is connected to the domestic water storage 5. With respect to the partial heat exchanger 10a, the partial heat exchanger 10b is connected in cocurrent and the partial heat exchanger 10c in countercurrent. Both the cold water quantity control valve 20 and the second circulation water quantity control valve 78 are regulated via the two temperature sensors 24 and 81, which are arranged in the process water distribution line 11. The circulation water distribution valve 33 is regulated, as in FIG. 11, either via the temperature sensor 35 in the connecting line 30 or via a timer 36. The hot water tank 8 is arranged downstream of the hot water tank 5.

Da die Ausführungsformen der Figuren 2 und 14 jeweils einen sich aus insgesamt drei Teilwärmeübertragern 10a, 10b, 10c zusammensetzenden kompakten Wärmeübertrager 10 aufweisen, der sowohl nur als der erste 10 oder nur als der zweite 75 oder auch als eine Kombination des ersten und zweiten Wärmeübertragers 10, 75 betrachtet werden kann, stellen die Ausführungsformen der Figuren 2 und 14 in gewisser Weise eine verbindende Ausführungsform zwischen den beiden Lösungsalternativen der Nebenansprüche 1 und 2 dar.Since the embodiments of FIGS. 2 and 14 each have a compact heat exchanger 10 composed of a total of three partial heat exchangers 10a, 10b, 10c have, which can be considered both only as the first 10 or only as the second 75 or as a combination of the first and second heat exchangers 10, 75, the embodiments of FIGS. 2 and 14 represent in a way a connecting embodiment between the two alternative solutions of subsidiary claims 1 and 2.

Das gilt auch für die weiteren Ausführungsformen der Figuren 15 und 16.This also applies to the further embodiments of FIGS. 15 and 16.

So ist in Fig. 15 die Schaltung des Kompakt-Wärmeübertragers 10 in bezug auf das Kaltwassermengen-Regelventil 20 und das zweite Zirkulationswassermengen-Regelventil 78 gemäß Fig. 14 angeordnet, wobei das Zirkulationswasser-Verteilventil 33 der Fig. 14 entfallen ist. Ferner ist nunmehr wie in Fig. 12 im Heizmedium-Kreislauf 86 eine Heizmediumpumpe 83 angeordnet, welche wie die Ladepumpe 4 und die Zirkulationswasserpumpe 14 über die Fühler 82, 84, 85 schaltbar ist.The circuit of the compact heat exchanger 10 is arranged in FIG. 15 with respect to the cold water quantity control valve 20 and the second circulation water quantity control valve 78 according to FIG. 14, the circulation water distribution valve 33 from FIG. 14 being omitted. Furthermore, as in FIG. 12, a heating medium pump 83 is now arranged in the heating medium circuit 86, which, like the charging pump 4 and the circulation water pump 14, can be switched via the sensors 82, 84, 85.

Die Ausführungsform der Fig. 16 besteht im wesentlichen aus einer Kombination der Ausführungsformen der Fig. 15 mit der Ausführungsform der Fig. 5, wobei mit diesen Figuren übereinstimmende Teile auch hier mit gleichen Bezugsziffern bezeichnet sind. Die Ausführungsform gemäß Fig. 16 enthält den gleichen Kompaktwärmeübertrager 10 mit dem Kaltwassermengen-Regelventil 20 und dem zweiten Zirkulationswassermengen-Regelventil 78 gemäß Fig. 15, wobei außerdem in die Brauchwasser-Sammelleitung 15 das Zirkulationswasser-Verteilventil 33 mit der zweiten Bypass-Leitung 37 zum Reaktionsbehälter 5 angeordnet ist. Diesem Reaktinsbehälter 5 ist gemäß Fig. 5 ein Puffer 6a vorgeordnet und zwei Speichervolumina 7a, 7b nachgeordnet. Diese Ausführungsform zeichnet sich durch eine große Puffer- und Speicherkapazität, durch mehrere zueinander parallel geschaltete Zirkulationswasser-Kreisläufe 2a, 2b, 2c sowie durch den Kompaktwärmeübertrager 10 mit seinen vielfältigen Regelungsmöglichkeiten aus. Diese Ausführungsform ist gleichfalls für große Anlagen mit sowohl großen Zirkulationswasser- als auch Desinfektionswasser-Umlaufmengen geeignet. Die Zu- und Abschaltmöglichkeiten sowohl der Zirkulationswasser-Kreisläufe 2a, 2b, 2c als auch der Speichervolumina 7a und 7b und des vorgeordneten Puffers 6a im Desinfektionswasser-Kreislauf 1 gewährleisten wie auch die parallel geschalteten Ladepumpen 4a und 4b mit den parallel geschalteten Wassererwärmern 3a und 3b einen äußerst energiewirtschaftlichen und flexiblen Betrieb.The embodiment of FIG. 16 essentially consists of a combination of the embodiments of FIG. 15 with the embodiment of FIG. 5, parts which correspond to these figures being identified here with the same reference numerals. The embodiment according to FIG. 16 contains the same compact heat exchanger 10 with the cold water quantity control valve 20 and the second one 15, wherein the circulation water distribution valve 33 with the second bypass line 37 to the reaction container 5 is also arranged in the process water collecting line 15. 5, a buffer 6a is arranged upstream of this reactine container 5 and two storage volumes 7a, 7b are arranged downstream. This embodiment is characterized by a large buffer and storage capacity, by a plurality of circulation water circuits 2a, 2b, 2c connected in parallel with one another and by the compact heat exchanger 10 with its various control options. This embodiment is also suitable for large systems with both large circulation water and circulating water quantities. The connection and disconnection options of the circulation water circuits 2a, 2b, 2c, as well as the storage volumes 7a and 7b and the upstream buffer 6a in the disinfection water circuit 1, as well as the parallel-connected charging pumps 4a and 4b with the water heaters 3a and 3b connected in parallel an extremely energy-efficient and flexible operation.

Es versteht sich, daß zwischen den Ausführungsformen der Figuren 1 bis 16 noch weitere Kombinationsmöglichkeiten existieren, die jedoch das Erfindungsprinzip gemäß den Nebenansprüchen 1 und 2 nicht verlassen.It goes without saying that there are still further possible combinations between the embodiments of FIGS. 1 to 16, which, however, do not leave the principle of the invention according to the dependent claims 1 and 2.

Bezugszeichenliste:Reference symbol list:

Desinfektionswasser-KreislaufDisinfection water circuit
11
Zirkulationswasser-KreisläufeCirculation water circuits
2, 2a, 2b, 2c2, 2a, 2b, 2c
WassererwärmerWater heater
3, 3a, 3b, 673, 3a, 3b, 67
LadepumpeCharge pump
4, 4a, 4b4, 4a, 4b
Brauchwasser-Speicher bzw. ReaktionsbehälterProcess water storage tank or reaction tank
5, 8, 5a, 5b;5, 8, 5a, 5b;
Pufferbuffer
6, 6a, 706, 6a, 70
SpeichervolumenStorage volume
7, 7a, 7b, 7c7, 7a, 7b, 7c
Brauchwasser-AbgangsleitungProcess water outlet pipe
99
WärmeübertragerHeat exchanger
10, 61, 66, 7510, 61, 66, 75
TeilwärmeübertragerPartial heat exchanger
10a, 10b, 10c10a, 10b, 10c
Brauchwasser-VerteilungsleitungService water distribution line
1111
ZapfstellenTaps
1212th
ZirkulationsleitungCirculation line
1313
ZirkulationspumpenCirculation pumps
14, 59, 63, 6414, 59, 63, 64
Brauchwasser-SammelleitungProcess water manifold
1515
RückflußverhindererBackflow preventer
1616
WassermengenbegrenzerWater flow limiter
1717th
KaltwasserzuleitungCold water supply
1818th
Sicherheits-RegelventilSafety control valve
1919th
Kaltwassermengen-RegelventilCold water flow control valve
2020th
Wege des Kaltwassermengen-Regelventils 20Paths of the cold water quantity control valve 20
20a, 20b, 20c20a, 20b, 20c
ZwischenleitungIntermediate line
2121
VerbindungsleitungenConnecting lines
22, 29, 30, 44, 45, 46, 77, 79, 80, 87, 88, 8922, 29, 30, 44, 45, 46, 77, 79, 80, 87, 88, 89
ZugangsleitungAccess line
2323
TemperaturfühlerTemperature sensor
24, 25, 28, 31, 35, 41, 42, 47, 69, 73, 79, 81, 82, 84, 85, 8624, 25, 28, 31, 35, 41, 42, 47, 69, 73, 79, 81, 82, 84, 85, 86
HeizmediumleitungHeating medium line
2626
Heizmedium-RegelventilHeating medium control valve
2727
Wassermengen-RegelventilWater flow control valve
3232
Zirkulationswasser-VerteilventilCirculating water distribution valve
3333
Wege des Zirkulationswasser-Verteilventils 33Routes of the circulation water distribution valve 33
33a, 33b, 33c33a, 33b, 33c
erste Bypass-Leitungfirst bypass line
3434
ZeitschaltuhrTimer
3636
zweite Bypass-Leitungsecond bypass line
3737
erstes Zirkulationswassermengen-Regelventilfirst circulation water quantity control valve
3838
Wege des ersten Zirkulationswassermengen-Regelventils 38Paths of the first circulation water quantity control valve 38
38a, 38b, 38c38a, 38b, 38c
HeizschlangeHeating coil
3939
GrenzbereichBorder area
4040
WassermengenbegrenzerWater flow limiter
43a, 43b, 43c43a, 43b, 43c
VerteilerkreislaufDistribution circuit
4848
StichleitungenStub lines
49, 50, 51, 5249, 50, 51, 52
VerteilervorrichtungenDistribution devices
53, 54, 55, 5653, 54, 55, 56
BegleitheizungTrace heating
5757
VerteilungsleitungDistribution line
5858
UV-StrahlungseinrichtungUV radiation device
6060
Warmwasser-VerteilerventilHot water distribution valve
6262
ZirkulationsleitungCirculation line
6565
sekundärer Verteiler-Kreislaufsecondary distribution circuit
6868
sekundärer Desinfektions-Wasserkreislaufsecondary disinfection water cycle
7171
Vorlauf-VerbindungsleitungFlow connecting line
7474
Rücklauf-VerbindungsleitungReturn connection line
7676
zweites Zirkulationswassermengen-Regelventilsecond circulation water quantity control valve
7878
Wege des Zirkulationswassermengen-Regelventils 78Routes of the circulation water quantity control valve 78
78a, 78b, 78c78a, 78b, 78c
HeizmediumpumpeHeating medium pump
8383
Heizmedium-KreislaufHeating medium circuit
8686

Claims (28)

  1. Installation for the purpose of raising the temperature of service water and for destroying legionelle in this service water comprising a cold water supply duct (18) leading to a first heat exchanger (10) for preheating the cold water supplied and for the purpose of cooling the service water supplied via a service water output duct (9) from a water disinfecting circuit (1) which has been heated to disinfecting temperature and which consists of a water heater (3), a charge pump (4), a service water storage device (5) and a buffer (6), wherein in the direction in which the service water is being conveyed the buffer (6) is connected via the service water output duct (9) to the first heat exchanger (10) and from there to the service water distribution duct (11) leading to the dispensing points (12) and a circulation duct (13) having a circulating pump (14), characterised in that the service water distribution duct (11) is connected via a service water collecting duct (15), via a non-return device (16), a water quantity limiter (17), the cold water input duct (18) as well as via an input duct (23) to the charge pump (4) via the water heater (3) and to the buffer (6) to form an entire circuit (1,2).
  2. Installation for the purpose of raising the temperature of service water and for destroying legionelle in this service water comprising a cold water supply duct (18) leading to a first heat exchanger (10) for preheating the cold water supplied and for the purpose of cooling the service water supplied via a service water output duct (9) from a water disinfecting circuit (1) which has been heated to disinfecting temperature and which consists of a water heater (3), a charge pump (4), a service water storage device (5) and a buffer (6), wherein in the direction in which the service water is being conveyed the buffer (6) is connected via the service water output duct (9) to the first heat exchanger (10) and from there to a service water distribution duct (11) leading to the dispensing points (12) and a circulation duct (13) having a circulating pump (14), characterised in that the first heat exchanger (10) is connected via a flow connecting duct (74) and a second heat exchanger (75) to the service water distribution duct (11) leading to the dispensing points (12), via a service water collecting duct (15), via a non-return device (16), a water quantity limiter (17) as well as via the second heat exchanger (75), a return connecting line (76) and via an input line (23) to the charge pump (4) via the water heater (3) and to the buffer (6) to form an entire circuit (1, 2).
  3. Installation according to claim 1 or 2, characterised in that when the dispensing points are not in use the carrying capacity of the charge pump (4) which exceeds the carrying capacity of the circulating pump (14) draws in the stored volume (7) located in the service water storage device (5) via a connecting duct (30) into said storage device and constantly raises the temperature of the volume in the disinfecting circuit (1) again to disinfecting temperature.
  4. Installation according to any one of claims 1 to 3, characterised in that the service water storage device (5) is formed in a manner known per se simultaneously as a reaction vessel (5) in whose upper portion is located a reaction volume (6) as a buffer (6) and in whose lower portion is located the stored volume (7).
  5. Installation according to any one of claims 1 to 4, characterised in that the buffer (6) located in the service water storage device (5) is enlarged by virtue of one or several buffers (6, 6a) arranged upstream and/or the stored volume (7) is enlarged by virtue of one or several warm water storage devices (5, 7a, 7b, 7c, 8) arranged downstream in the flow direction of the charge pump (4, 4a, 4b).
  6. Installation according to any one of claims 1 to 5, characterised in that in the disinfecting circuit (1) a plurality of charge pumps (4a, 4b) are allocated either connected in parallel to a common water heater (3) or to a dedicated water heater (3a, 3b) respectively.
  7. Installation according to any one of claims 1 to 6, characterised in that in the water disinfecting circuit (1) a plurality of parallel-connected charge pumps (4a, 4b) are allocated to one or several reaction vessels (5, 5a, 5b) connected in series or in each case charge a dedicated reaction vessel (5a, 5b) which is connected in parallel to the other respective reaction vessel.
  8. Installation according to claim 1 and 3 to 7, characterised in that in the cold water supply duct (18) the first heat exchanger (10) is allocated a cold water quantity control valve (20) whose second branch (20b) is connected via an intermediate duct (21) to the first heat exchanger (10) and from there (10) via a connecting duct (22) such as the third branch (20c) to the input duct (23) leading to the service water storage device (5).
  9. Installation according to claim 8, characterised in that the cold water quantity control valve (20) can be controlled by a temperature sensor (24) which is arranged in the service water distribution duct (11) leading to the dispensing points (12).
  10. Installation according to any one of claims 1 to 9 to 12 [sic] characterised in that a safety control valve (19) is arranged in the cold water supply duct (18) in the flow direction before the cold water quantity control valve (20), which safety control valve can be restricted or closed by a temperature sensor (25) in the reaction vessel (5) in the proximity of the service water output duct (9) in the event that in the water disinfecting circuit (1) the lowest permissible disinfecting temperature of the stored volume (7) in the reaction vessel (5) is not achieved.
  11. Installation according to any one of claims 1 to 10, characterised in that in the flow direction before the water quantity limiter (17) and the non-return device (16) a circulating water distribution valve (33) is disposed in the service water collecting duct (15), the third branch (33c) of the said valve being connected either via a first bypass duct (34) to the service water distribution duct (11) leading to the dispensing points (12) or via a second bypass line (37) and a first circulating water quantity control valve (38) to a heating coil (39), which heating coil is disposed in the boundary region (40) between the reaction volume (6) and the stored volume (7) in the reaction vessel (5).
  12. Installation according to claim 11, characterised in that the circulating water distribution valve (33) can be controlled either in response to the disinfecting temperature in the water disinfecting circuit (1) by a temperature sensor disposed between the charge pump (4) an'd the stored volume (7) or in response to the time via a time switch (36) in such a manner that the total quantity of circulating water or only a partial quantity of this water is to be released from the circulating water circuit (2) to the first heat exchanger (10) and the remaining total or partial quantity of circulating water can be conveyed either via the first bypass duct (34) into the service water distribution duct (11) leading to the dispensing points (12) or via the second bypass duct (37) into the heating coil (39).
  13. Installation according to any one of claims 1 and 3 to 13 characterised in that the first circulating water quantity control valve (38) in the second bypass duct (37) can be controlled in dependence upon a temperature sensor (47) in the service water output duct (9) out of the reaction vessel (5).
  14. Installation according to any one of claims 1 to 13, characterised in that the charge pump (4), the circulating pump (14) and a heating medium pump (83) can be switched in each case in dependence upon temperature sensors (41, 42, 69, 82, 84, 85) in the service water output duct (9), in the service water storage device (5) in the connecting duct (30) and in a heating medium duct (26)of the water heater (3).
  15. Installation according to any one of claims 2 to 14 and 16 to 18, characterised in that in the service water collecting duct (15) in the flow direction before the second heat exchanger (75) there is located a second circulating water quantity control valve (78) whose first branch (78a) is connected to the water quantity limiter (17) and whose second branch (78b) is connected to the second heat exchanger (75) and whose third branch (78c) is connected to the return connecting duct (76).
  16. Installation according to claim 15, characterised in that the second circulating water quantity control valve (78) can be controlled by a temperature sensor (79, 81) in the service water distribution duct (11) leading to the dispensing points (12).
  17. Installation according to claims 1 to 16, characterised in that the first heat exchanger (10) can be influenced by the service water output duct (9) and the cold water duct (18) either in parallel flow or reverse flow.
  18. Installation according to any one of claims 1 to 17, characterised in that a plurality of service water distribution ducts (11) and service water collecting ducts (15) having respective separate dispensing points (12) and circulating pumps (14a, 14b, 14c) are connected in parallel with each other to form separate circulating water circuits (2a, 2b, 2c).
  19. Installation according to any one of claims 2 to 18, characterised in that the first and the second heat exchanger (10, 75) can themselves or together with the one or several water heaters (3, 3a, 3b) and charge pumps (4, 4a, 4b) as well as with one or several reaction vessels (5a, 5b) of the disinfecting circuit (1) be combined to form a compact unit .
  20. Installation according to any one of claims 1 to 19, characterised in that the first and/or the second heat exchanger (10, 75) consists in total of three compact combined partial heat exchangers (10a, 10b, 10c) of which the first (10a) is connected at its input to the service water output duct (9) and at its output to the service water distribution line (11), the second (10b) at its input to the cold water supply duct (18) and at its output to the input duct (23) leading to the service water storage device (5) and the third partial heat exchanger (10c) is connected at its input to the service water collecting duct (15) and at its output to the input duct (23) leading to the service water storage device (5).
  21. Installation according to claim 20, characterised in that the second circulating water quantity control valve (78) is disposed with its first branch (78a) and third branch (78c) between the water quantity limiter (17) and the input to the third partial heat exchanger (10c) whereas the second branch (78b) is connected to the input duct (23).
  22. Installation according to any one of claims 1 to 21, characterised in that the service water distribution duct (11) forms with the circulating pump (14) and the service water collecting duct (15) a distribution circuit (48) from which one or several stub ducts (49 to 52) branch off towards secondary distributing devices (53 to 56).
  23. Installation according to claim 22, characterised in that at least a first stub duct (49) branches off from the distribution circuit (48), the said stub duct being provided with auxiliary electrical heaters (57) and leading to individual dispensing points (12).
  24. Installation according to claim 22, characterised in that from the distribution circuit (48) at least one second stub duct (50) leads to a secondary distributing device (54) which has a high circulating capacity and consists of a secondary distribution duct (58) leading to the dispensing points (12), a circulating pump (59), a UV-radiating device (60) and a third heat exchanger (61), whose circulation heat losses can be compensated by way of the third heat exchanger (61) as well as via a warm water distributing valve (62) from the distribution circuit (48).
  25. Installation according to claim 22, characterised in that from the distribution circuit (48) one or several stub ducts (51, 52) lead to one or several secondary distribution circuits (68) which are closed in themselves, are provided with dispensing points (12) and consist in each case of a circulating pump (63, 64), a circulation duct (65) and a fourth heat exchanger (66) and which are connected by way of the fourth heat exchanger (66) to a secondary disinfecting water circuit (71) which consists of a water heater (67) and a reaction vessel (70) and in which the circulating pump (63, 64) is also the charge pump.
  26. Installation according to daim 25, characterised in that before the inlet of the circulation duct (65) a further circulation water control valve (72), which can be controlled in dependence upon a temperature sensor (73), Is disposed in the fourth heat exchanger (66).
  27. Installation according to claim 25 and 26, characterised in that the water circulation water control valve (72) is in the form of a three-way valve which can be controlled by way of a time switch (93) and the temperature sensor (73), the first path (72a) of the said three-way valve being connected to the circulation duct (65), the second path (72b) being connected to the fourth heat exchanger (66) and the third path (72c) being connected by way of a connecting duct (90) to a connecting duct (91) leading from the fourth heat exchanger (66) to the stub duct (52), and the temperature sensor (73) is disposed in the flow direction behind the connection point (92) of the connecting duct (91).
  28. Installation according to claims 25 to 27, characterised in that a water heater (96) and the temperature sensor thereof (97) is connected downstream of the water heater (67) in the absence of an increasing temperature level of the heating medium.
EP93116412A 1992-10-17 1993-10-11 Installation for heating domestic water and for killing the legionella in this water Expired - Lifetime EP0594020B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4235038A DE4235038C5 (en) 1992-10-17 1992-10-17 Plant for heating domestic water and killing legionella in this process water
DE4235038 1992-10-17

Publications (2)

Publication Number Publication Date
EP0594020A1 EP0594020A1 (en) 1994-04-27
EP0594020B1 true EP0594020B1 (en) 1996-11-27

Family

ID=6470694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93116412A Expired - Lifetime EP0594020B1 (en) 1992-10-17 1993-10-11 Installation for heating domestic water and for killing the legionella in this water

Country Status (3)

Country Link
EP (1) EP0594020B1 (en)
AT (1) ATE145719T1 (en)
DE (2) DE4235038C5 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508061C2 (en) * 1995-02-23 1999-06-02 Hellersdorfer Gebaeudeservice Control for a flow water heating system
NL1013341C1 (en) * 1999-10-19 2001-04-23 Heatex Bv Management of heated water in a storage boiler with anti-Legionella facilities.
DK200000773A (en) * 2000-02-21 2001-08-22 Dantaet Electronics As Process and plant for controlling bacterial conditions in domestic water installations
FR2809099B1 (en) * 2000-05-16 2003-02-14 Inst Francais Du Petrole CONTINUOUS CURATIVE AND PREVENTIVE PROCESS FOR LEGIONELLOSIS DISINFECTION AND CONTROL IN STORAGE AND PRODUCTION EQUIPMENT AND DOMESTIC HOT WATER DISTRIBUTION CIRCUITS
US6835307B2 (en) * 2000-08-04 2004-12-28 Battelle Memorial Institute Thermal water treatment
DE60211925T2 (en) 2001-09-28 2006-10-19 Honeyman Group Ltd. FLUID DISTRIBUTION DEVICE
NL1021713C2 (en) * 2002-10-22 2004-04-26 Pantser Stichting Legionella bacteria free water spray system, especially for air conditioning, includes control unit for monitoring Legionella bacteria growth situations and carrying out rinse sequences
NL1024796C2 (en) * 2003-11-17 2005-05-18 Kalsbeek Assen Holding B V A Water sterilization system for producing drinking water, e.g. on boats, has system for supplying hot sterilized water directly to tap point from hot water storage vessel
ITNO20030014A1 (en) * 2003-12-15 2005-06-16 Zonca Studio Tecnico Associato TOTAL ANTILEGIONELLA PROTECTION SYSTEM FOR WATER AND SANITARY SYSTEMS.
DE102004001170A1 (en) * 2004-01-07 2005-08-04 Cetetherm Gmbh Bypass in the reaction storage advance
DE102005005091B4 (en) * 2004-02-11 2011-07-28 Dünnleder, Werner, Dipl.-Ing., 22850 Plant for heating drinking water and killing legionella in this drinking water
FR2874326B1 (en) * 2004-08-20 2008-06-13 Caleffi France Sarl SYSTEM FOR THE PREVENTION AND ERADICATION OF LEGIONELLOSIS IN HYDRAULIC INSTALLATIONS FOR THE PRODUCTION AND DISTRIBUTION OF HOT WATER AND IN WET-RUNWATER TOWERS
FR2876125B1 (en) * 2004-10-01 2008-04-18 Alfa Laval Vicarb Soc Par Acti DEVICE FOR DESTRUCTING MICROORGANISMS, ESPECIALLY LEGIONELLAS, IN A SANITARY OR OTHER WATER NETWORK
DE102005007452A1 (en) * 2005-02-18 2006-08-24 Sirius 12 Gmbh Device for thermal disinfection of domestic hot water supply systems
DE102005034021B4 (en) * 2005-07-18 2007-05-16 Rolf Schulze Process for heating, disinfecting and storing drinking water
DE102007037988B4 (en) 2007-08-10 2009-05-14 Schulze, Rolf, Dipl.-Ing. Device for heating, disinfecting and storing drinking water
DE102008016191A1 (en) 2008-03-27 2009-10-01 Schulze, Rolf, Dipl.-Ing. Device for heating and storage of drinking water, comprises a hot water feed line, a hot water discharge, a hot water storage, a pump for hot water storage, a mixing point for hot water, and a feed pipe for drinking cold water
DE202008004421U1 (en) 2008-04-01 2008-07-03 Kesap Kessel- Und Apparatebau Gmbh Device for heating drinking water
AT506890A1 (en) * 2008-06-09 2009-12-15 Gerhard Synek Ges M B H DEVICE AND METHOD FOR REMOVING
DE102008045496B3 (en) * 2008-09-03 2009-11-19 Schulze, Rolf, Dipl.-Ing. Device for heating and storage of drinking water, comprises cold water supply line, circulation supply line, hot water derivative, three pumps, heat exchangers, drinking water storage, mixing- and/or distribution point, and mixing valve
DE102008045497B3 (en) * 2008-09-03 2009-12-03 Schulze, Rolf, Dipl.-Ing. Device for heating and storing drinking water, comprises cold water supply conduit, circulation supply conduit, hot water discharge conduit, three pumps, two heat exchangers, storage for drinking water, mixing point, and distribution point
DE202008011719U1 (en) 2008-09-03 2008-11-06 Schulze, Rolf, Dipl.-Ing. Device for heating and storing drinking water
DE102011008762B4 (en) 2011-01-17 2021-04-29 Werner Dünnleder System for heating drinking water and for killing legionella and other germs in the drinking water
DE102013015014A1 (en) 2013-09-07 2015-03-12 Gerd Haberland Hot water provision in hot water supply systems after a counter
CN104656634B (en) * 2014-12-31 2017-05-31 哈尔滨工业大学 A kind of water-supply plant efficiency diagnostic method for having return-flow system
EP3529537B1 (en) * 2016-10-19 2022-03-16 LegioGuard Pty Ltd Improvements in hot, tempered and cold water delivery systems
IT202100027374A1 (en) * 2021-10-25 2023-04-25 Ivar Spa DEVICE FOR RECIRCULATING A FLUID, DOMESTIC WATER DISTRIBUTION SYSTEM USING SAID DEVICE
DE202022102207U1 (en) * 2022-04-25 2022-05-04 Gebr. Kemper Gmbh + Co. Kg Hot water supply system with heat recovery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3840516C3 (en) * 1988-12-01 1996-08-01 Duennleder Werner Plant for heating domestic water and killing Legionella
DE9214861U1 (en) * 1992-11-02 1993-01-28 Duennleder, Werner, Dipl.-Ing., 2000 Norderstedt, De

Also Published As

Publication number Publication date
DE4235038C5 (en) 2011-06-16
EP0594020A1 (en) 1994-04-27
DE4235038A1 (en) 1994-04-21
DE4235038C2 (en) 1995-02-23
ATE145719T1 (en) 1996-12-15
DE59304604D1 (en) 1997-01-09

Similar Documents

Publication Publication Date Title
EP0594020B1 (en) Installation for heating domestic water and for killing the legionella in this water
EP0372293B1 (en) Sanitary hot water installation with a device for killing Legionnella pneumophila
EP0338056B1 (en) Apparatus for prevention of the occurence or proliferation of microorganisms in water for industrial use
EP2154436B1 (en) Method and device for heat utilization
DE102006009411B4 (en) Plant for heating drinking water and killing legionella and other germs
EP1170554A2 (en) System and method for preparing hot sanitary water
DE4236959C2 (en) Plant for heating domestic water and killing Legionella in this domestic water
DE202005001757U1 (en) Assembly to treat drinking water, to kill legionella, has a circuit with a heater where the water is recirculated constantly at the required temperature before taken out to the user points
DE3727442C2 (en)
DE19504730C1 (en) Hot water heater working according to throughflow principle
EP1371910B1 (en) District heating distribution station
DE102005005091B4 (en) Plant for heating drinking water and killing legionella in this drinking water
DE19508061C2 (en) Control for a flow water heating system
DE102006033834B4 (en) Plant for heating drinking water and killing legionella and other germs
DE202006003226U1 (en) Plant for heating drinking water to kill Legionella and other germs, comprising heated water disinfection circuit, circulating water circuit and preheater-recooler for cooling the hot, disinfected water
DE102015118826A1 (en) Arrangement and method for providing warm drinking water with a heat exchanger
DE10034513A1 (en) Heater for drinking water comprises disinfection chamber where water is held at disinfection temperature long enough time to kill Legionella bacteria after which it is fed via heat exchanger and mixer valves to taps
EP1553353B1 (en) Bypass within reaction storage tank supply
AT500552B1 (en) DRINKING WATER SYSTEM
DE3710927C2 (en)
DE3928074A1 (en) Storage system reducing risk of legionella in hot water systems - in which water circulates continuously from storage tank to water heater and mixing of waters of different temps. is prevented
CH687786A5 (en) Means for preparation and distribution of hot mixing and / or hot water.
EP3647667B1 (en) Continuous flow drinking water heater, drinking water heating system and method for operating a continuous flow drinking water heater
DE102005020474A1 (en) System for providing safe warm drinking water has cold inlet water heated to a set level and cooled to acceptable level via a heat exchanger cooled by the cold supply line
DE3727442C3 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19941018

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960201

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19961127

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19961127

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19961127

REF Corresponds to:

Ref document number: 145719

Country of ref document: AT

Date of ref document: 19961215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59304604

Country of ref document: DE

Date of ref document: 19970109

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970227

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970326

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011010

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011012

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021011

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: DUENNLEDER, WERNER, DIPL.-ING.

Free format text: DUENNLEDER, WERNER, DIPL.-ING.#AM OCHSENZOLL 41B#D-22850 NORDERSTEDT (DE) -TRANSFER TO- DUENNLEDER, WERNER, DIPL.-ING.#AM OCHSENZOLL 41B#D-22850 NORDERSTEDT (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20071015

Year of fee payment: 15

Ref country code: AT

Payment date: 20071015

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110426

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59304604

Country of ref document: DE

Effective date: 20130501