EP0593942B1 - Wärmepuffer für den Kühlkreislauf von flüssigkeitsgekühlten Brennkraftmaschinen - Google Patents

Wärmepuffer für den Kühlkreislauf von flüssigkeitsgekühlten Brennkraftmaschinen Download PDF

Info

Publication number
EP0593942B1
EP0593942B1 EP93115519A EP93115519A EP0593942B1 EP 0593942 B1 EP0593942 B1 EP 0593942B1 EP 93115519 A EP93115519 A EP 93115519A EP 93115519 A EP93115519 A EP 93115519A EP 0593942 B1 EP0593942 B1 EP 0593942B1
Authority
EP
European Patent Office
Prior art keywords
heat
cooling circuit
liquid
cooling
storage medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93115519A
Other languages
English (en)
French (fr)
Other versions
EP0593942A1 (de
Inventor
Markus Dipl.-Ing. Eibl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daimler Benz AG
Original Assignee
Daimler Benz AG
Mercedes Benz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz AG, Mercedes Benz AG filed Critical Daimler Benz AG
Publication of EP0593942A1 publication Critical patent/EP0593942A1/de
Application granted granted Critical
Publication of EP0593942B1 publication Critical patent/EP0593942B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • F02N19/10Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines by heating of engine coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/20Indicating devices; Other safety devices concerning atmospheric freezing conditions, e.g. automatically draining or heating during frosty weather
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators

Definitions

  • the invention relates to a cooling circuit for liquid-cooled internal combustion engines according to the preamble of claim 1, as is common in vehicle construction (see SU-A-1129392).
  • the capacity of the air / liquid heat exchanger and the amount of coolant present must be designed so large that sufficient heat is dissipated from the engine block even at peak load, for example at low driving speeds on steep sections in full load operation at high air temperatures, and this does not exceed its maximum operating temperature.
  • the amount of coolant and air / liquid heat exchanger have to be oversized for the needs of normal operation. They therefore take up a larger installation space and have a larger mass than a cooling circuit designed for normal operation.
  • latent heat accumulators in which in a thermally insulated container through which the coolant flows a storage medium separated from the coolant but in heat exchange with it the operation of the vehicle is warmed.
  • the energy stored in the storage medium is returned to the cooling circuit when the vehicle is cold started.
  • storage media are preferred which have a phase transition in a temperature range below the normal operating temperature of the cooling liquid and whose specific heat of evaporation or melting is as large as possible.
  • the object of the invention is to improve the generic cooling circuit in such a way that the dimensioning of the amount of coolant and the air / liquid heat exchanger can be matched to the needs of normal operation and yet an adequate dissipation of the engine heat is guaranteed at peak loads.
  • a heat buffer is arranged in the cooling circuit and contains a heat storage medium which is in heat exchange with the cooling liquid of the cooling circuit.
  • the heat storage medium is selected so that it is subject to a phase change in the upper operating temperature range of the coolant, but at most 10 ° C. above the maximum permissible operating temperature. If the operating temperature of the coolant exceeds the temperature of the phase transition, the heat storage medium extracts a large amount of energy from the coolant due to the phase transition taking place and prevents further heating of the coolant until the phase transition is complete. In order to ensure a high energy consumption, preference will be given to those heat media which have a large specific heat of fusion or evaporation.
  • the phase transition temperature of the heat storage medium must not be above the maximum permissible operating temperature of the coolant, but must be in the range of the normal operating temperature of the coolant. In order to prevent premature cooling of the latent heat storage, it is well thermally insulated from the outside.
  • the thermal buffer should have good thermal conductivity in order to release part of the energy absorbed into the ambient air and thus finally remove it from the cooling circuit.
  • the heat buffer is also regenerated via the cooling circuit as soon as its capacity is no longer fully used by the internal combustion engine.
  • FIG. 1 shows a perspective view of a heat accumulator.
  • the heat storage medium 21 is housed in chambers 24.
  • the cooling liquid 2 flows around the chambers.
  • the shape of the chambers and the heat storage 20 is designed so that the flow rate of the cooling liquid 2 in the heat storage 20 is low and that the largest possible contact area between the chambers 24 and the Coolant 2 exists.
  • cooling fins 22 are arranged on the outside of the heat accumulator.
  • heat storage medium For example, sodium can be used, whose melting point of 97.8 ° C is close to the boiling point of the water usually used as a cooling liquid and whose specific heat of fusion with 113 kJ / kg ensures high energy consumption. Other heat storage media are also possible.
  • the quotient of specific melting or evaporation heat and the specific weight should be used as a selection criterion for the suitable heat storage medium, since this is a measure of the required mass of the storage medium.
  • FIGS 2a) to 2d) show different schematic representations of a cooling circuit, which are common with each different arrangement of the heat accumulator 20 in the cooling circuit.
  • the underlying cooling circuit is common to all four figures.
  • the water is pumped by the circulation pump 6 into the engine block 1, in which it is heated.
  • the coolant temperature is measured in the thermostat 7 and possibly the coolant throughput is regulated.
  • the coolant is fed to the air / liquid heat exchanger 3 - hereinafter referred to as cooler 3 - via the feed 4.
  • the coolant is returned to the circulation pump 6 via the return 5.
  • the coupling of the heat accumulator 20 to the cooling circuit takes place via a control valve 23.
  • FIGS. 2a and 2b show two examples of a serial arrangement of the heat buffer 20 with respect to the cooler 3.
  • the heat buffer 20 is arranged as a branch from the return 5 via the control valve 23.
  • the coolant coming from the cooler is alternatively fed directly to the circulation pump 6 fed or first supplied to the heat buffer 20 in order to then also get to the circulation pump 6.
  • This arrangement of the heat buffer 20 in the cooling circuit is particularly useful when the phase transition temperature of the heat storage medium is below the maximum permissible operating temperature of the coolant temperature.
  • FIG. 2 b shows an arrangement in which the cooling liquid, again controlled by a control valve 23, before it reaches the cooler 3, can be fed to the heat accumulator 20.
  • the arrangement shown in FIG. 2c differs from FIG. 2b only in that the cooling liquid passed through the heat buffer 20 is no longer fed to the cooler 3, but is instead fed directly to the circulation pump 6.
  • These two arrangements of the heat buffer are particularly useful when the phase transition temperature of the heat storage medium is above or near the maximum permissible operating temperature of the coolant.
  • FIG. 2d shows an alternative arrangement in which the heat buffer 20, again controllable via the control valve 23, is integrated in the coolant flow of the engine block. This arrangement is also particularly useful if the phase transition temperature of the heat storage medium is above or close to the maximum operating temperature of the cooling liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

  • Die Erfindung betrifft einen Kühlkreislauf für flüssigkeitsgekühlte Brennkraftmaschinen nach dem Oberbegriff von Anspruch 1, wie er im Fahrzeugbau allgemein üblich ist (siehe SU-A-1129392).
  • Bei einem üblichen Kühlkreislauf muß die Kapazität des Luft/Flüssigkeits-Wärmetauschers und die Menge des vorhandenen Kühlmittels so groß ausgelegt werden, daß auch bei Spitzenbelastung, beispielsweise bei geringer Fahrgeschwindigkeit auf Steilstrecken im Vollastbetrieb bei hohen Lufttemperaturen, ausreichend Wärme aus dem Motorblock abgeführt wird und dieser seine maximale Betriebstemperatur nicht überschreitet. Dies führt dazu, daß Kühlmittelmenge und Luft/Flüssigkeits-Wärmetauscher für die Bedürfnisse des Normalbetriebs überdimensioniert ausgelegt werden müssen. Sie beanspruchen also einen größeren Bauraum und haben eine größere Masse gegenüber einem für den Normalbetrieb ausgelegten Kühlkreislauf.
  • Ferner sind aus der DE 37 20 319 C2 sowie aus dem Artikel ATZ-1991 Heft 10 Seiten 620-625 Latentwärmespeicher bekannt, bei denen in einem thermisch isolierten, vom dem Kühlmittel durchströmten Behälter ein von der Kühlflüssigkeit abgetrenntes aber mit ihr in Wärmeaustausch stehendes Speichermedium während des Betriebs des Fahrzeugs erwärmt wird. Die im Speichermedium gespeicherte Energie wird beim Kaltstart des Fahrzeugs wieder an den Kühlkreislauf abgegeben. Um die vom Speichermedium speicherbare Energie zu erhöhen, werden Speichermedien bevorzugt, die in einem Temperaturbereich unterhalb der normalen Betriebstemperatur der Kühlflüssigkeit einen Phasenübergang aufweisen und deren spezifische Verdundstungs- bzw. Schmelzwärme möglichst groß ist.
  • Aufgabe der Erfindung ist es, den gattungsgemäß zugrundegelegten Kühlkreislauf dahingehend zu verbessern, daß die Dimensionierung der Kühlmittelmenge und des Luft/Flüssigkeits-Wärmetauschers auf die Bedürfnisse des Normalbetriebes abgestimmt werden können und dennoch eine ausreichende Abführung der Motorwärme bei Spitzenbelastungen gewährleistet ist.
  • Diese Aufgabe wird bei Zugrundelegung des gattungsgemäßen Kühlkreislaufs erfindungsgemäß durch die kennzeichnenden Merkmale von Anspruch 1 gelöst.
  • In dem Kühlkreislauf ist ein Wärmepuffer angeordnet, der ein Wärmespeichermedium enthält, das mit der Kühlflüssigkeit des Kühlkreislaufes im Wärmeaustausch steht. Das Wärmespeichermedium ist so gewählt, daß es im oberen Betriebstemperaturenbereich des Kühlmittels, höchstens jedoch 10°C oberhalb der maximal zulässigen Betriebstemperatur einem Phasenwechsel unterliegt. Überschreitet die Betriebstemperatur des Kühlmittels die Temperatur des Phasenübergangs, so entzieht das Wärmespeichermedium aufgrund des stattfindenden Phasenüberganges dem Kühlmittel eine große Energiemenge und verhindert bis zum vollständigen Abschluß des Phasenübergangs eine weitere Erwärmung des Kühlmittels. Um eine hohe Energieaufnahme zu gewährleisten, wird man solche Wärmemedien bevorzugen, die eine große spezifische Schmelz- bzw. Verdunstungswärme aufweisen.
  • Es ist beispielsweise aus der Zeitschrift BWK Brennstoff Wärme Kraft, Band 43 (1991) Nr. 6 (Juni), Seiten 333 bis 337; Dr. O. Schatz "Latentwärmespeicher für Kaltstartverbesserung von Kraftfahrzeugen" bekannt, im Kühlkreislauf eines Fahrzeuges einen Latentwärmespeicher anzuordnen, bei dem während des Betriebs der Brennkraftmaschine ein Wärmespeichermedium erwärmt wird. Aufgabe dieses Latentwärmespeichers ist es jedoch, die aufgenommene Energie zu speichern und bei einem Kaltstart der Brennkraftmaschine zurückzugeben, damit die Betriebstemperatur des Motors schneller erreicht wird. Deshalb unterliegen die Wärmespeichermedien der Wärmepuffer den selben Optimierungsanforderungen wie die der Latentwärmespeicher und sind auch in beiden verwendbar. Jedoch darf bei Latentwärmespeichern die Phasenübergangstemperatur des Wärmespeichermediums nicht oberhalb der maximal zulässigen Betriebstemperatur des Kühlmittels liegen, sondern muß im Bereich der normalen Betriebstemperatur des Kühlmittels liegen. Um ein vorzeitiges Abkühlen des Latentwärmespeichers zu verhindern, wird er nach außen hin gut thermisch isoliert.
  • Im Unterschied dazu soll bei dem Wärmepuffer eine gute thermische Leitfähigkeit gegeben sein, um einen Teil der aufgenommenen Energie an die Umgebungsluft abzugeben und somit endgültig dem Kühlkreislauf zu entziehen. Die Regenerierung des Wärmepuffers erfolgt ebenfalls über den Kühlkreislauf sobald dessen Kapazität von der Brennkraftmaschine nicht mehr voll beansprucht wird.
  • Zweckmäßige Ausgestaltungen der Erfindung können den Unteransprüchen entnommen werden; im übrigen ist die Erfindung an Hand der in den Zeichnungen dargestellten Ausführungsbeispiele nachfolgend noch erläutert; dabei zeigen:
  • Fig. 1
    eine Darstellung eines erfindungsgemäßen Wärmepuffers und die
    Fig. 2a-d
    verschiedene Ausführungsbeispiele einer erfindungsgemäßen Anordnung des Wärmepuffers im Kühlkreislauf.
  • Die Figur 1 zeigt eine perspektivische Darstellung eines Wärmespeichers. Das Wärmespeichermedium 21 ist in Kammern 24 untergebracht. Die Kammern werden von der Kühlflüssigkeit 2 umströmt. Um einen guten Wärmeaustausch zwischen der Kühlflüssigkeit 2 und dem Wärmespeichermedium 21 zu gewährleisten ist die Form der Kammern und des Wärmespeichers 20 so ausgelegt, daß die Strömungsgeschwindigkeit der Kühlflüssigkeit 2 in dem Wärmespeicher 20 niedrig ist und daß eine möglichst große Kontaktfläche zwischen den Kammern 24 und der Kühlflüssigkeit 2 besteht. Zur besseren Abführung der Wärme sind außenseitig am Wärmespeicher 20 Kühlrippen 22 angeordnet. Als Wärmespeichermedium kann beispielsweise Natrium verwendet werden, dessen Schmelzpunkt mit 97,8 °C nahe des Siedepunktes von dem üblicherweise als Kühlflüssigkeit verwendeten Wasser liegt und dessen spezifische Schmelzwärme mit 113 kJ/kg eine hohe Energieaufnahme gewährleistet. Auch andere Wärmespeichermedien sind möglich. Als Auswahlkriterium für das geeignete Wärmespeichermedium ist dabei neben der Phasenumwandlungstemperatur auch der Quotient aus spezifischer Schmelz- bzw Verdunstungswärme und aus dem spezifischen Gewicht heranzuziehen, da dieser ein Maßstab für die benötigte Masse des Speichermediums ist.
  • Die Figuren 2a) bis 2d) zeigen unterschiedliche schematische Darstellungen eines Kühlkreislaufes, die allgemein üblich sind mit jeweils unterschiedlicher Anordnung des Wärmespeichers 20 in dem Kühlkreislauf. Der zugrundegelegte Kühlkreislauf ist allen vier Figuren gemeinsam. Das Wasser wird von der Umwälzpumpe 6 in den Motorblock 1 gepumpt, in dem es erwärmt wird. Im Ausflußbereich der Kühlflüssigkeit wird in dem Thermostat 7 die Kühlflüssigkeitstemperatur gemessen und eventuell der Kühlflüssigkeitsdurchsatz geregelt. Über den Vorlauf 4 wird die Kühlflüssigkeit dem Luft/Flüssigkeits-Wärmetauscher 3 - im folgenden kurz Kühler 3 genannt - zugeführt. Von dort wird die Kühlflüssigkeit über den Rücklauf 5 wieder der Umwälzpumpe 6 zugeleitet. Bei allen vier Beispielen erfolgt die Ankopplung des Wärmespeichers 20 an den Kühlkreislauf über ein Steuerventil 23. Alternativ dazu ist es auch möglich, den Wärmespeicher 20 ständig vom vollen oder von einem festgelegten Teilstrom des Kühlwasserstromes durchflossen, anzuordnen.
  • Die Figuren 2a und 2b zeigen zwei Beispiele einer seriellen Anordnung des Wärmepuffers 20 in Bezug auf den Kühler 3. In Figur 2a ist der Wärmepuffer 20 über das Steuerventil 23 als Abzweigung von dem Rücklauf 5 angeordnet. Die vom Kühler kommende Kühlflüssigkeit wird alternativ direkt der Umwälzpumpe 6 zugeleitet oder zuerst dem Wärmepuffer 20 zugeführt um anschließend ebenfalls zur Umwälzpumpe 6 zu gelangen. Diese Anordnung des Wärmepuffer 20 im Kühlkreislauf ist insbesondere dann sinnvoll, wenn die Phasenumwandlungstemperatur des Wärmespeichermediums unterhalb der maximal zulässigen Betriebstemperatur der Kühlflüssigkeitstemperatur liegt.
  • Die Figur 2b zeigt eine Anordnung, bei der die Kühlflüssigkeit, wiederum über ein Steuerventil 23 geregelt, bevor es zum Kühler 3 gelangt, dem Wärmespeicher 20 zugeführt werden kann. Die in der Figur 2c gezeigte Anordnung unterscheidet sich nur darin von der Figur 2b, daß die durch den Wärmepuffer 20 geleitete Kühlflüssigkeit nicht mehr dem Kühler 3 zugeführt wird, sondern direkt der Umwälzpumpe 6 zugeleitet wird. Dies beiden Anordnungen des Wärmepuffers sind insbesondere dann sinnvoll, wenn die Phasenumwandlungstemperatur des Wärmespeichermediums oberhalb oder nahe der maximal zulässigen Betriebstemperatur der Kühlflüssigkeit liegt.
  • In Figur 2d ist eine alternative Anordnung gezeigt, bei der der Wärmepuffer 20, abermals über das Steuerventil 23 regelbar, in den Kühlmitteldurchfluß des Motorblocks intergriert ist. Auch diese Anordnung ist insbesondere dann sinnvoll, wenn die Phasenumwandlungstemperatur des Wärmespeichermediums oberhalb oder nahe der maximalen Bertriebstemperatur der Kühlflüssigkeit liegt.

Claims (9)

  1. Kühlkreislauf für eine insbesondere zum Antrieb eines Nutzfahrzeuges dienende, flüssigkeitsgekühlte Brennkraftmaschine (1),
    - mit motorintegrierten, durch einen Flüssigkeitsmantel gebildeten, die Motorabwärme an die Kühlflüssigkeit (2) übertragenden Wärmeaustauschflächen,
    - mit wenigstens einem mit Außenluft beaufschlagbaren, die Motorabwärme an die Atmosphäre abgebenden Luft/Flüssigkeits-Wärmetauscher (3),
    - mit Vor- und Rücklaufleitungen (4,5), die den Flüssigkeitsmantel der Brennkraftmaschine und den Luft/Flüssigkeits-Wärmetauscher zu einem geschlossenen Kühlkreislauf verbinden und
    - mit einer im Kühlkreislauf angeordneten Umwälzpumpe (6) zur Aufrechterhaltung eines Flüssigkeitsumlaufes innerhalb des Kühlkreislaufes, wobei
    im Kühlkreislauf ein Wärmepuffer (20) angeordnet ist, der ein mit der Kühlflüssigkeit (2) des Kühlkreislaufes in Wärmeaustausch stehendes, von der Kühlflüssigkeit (2) abgetrenntes Wärmespeichermedium (21) enthält, wobei das Wärmespeichermedium (21) eine beliebige Anzahl von Phasenumwandlungen, insbesondere zwischen fest und flüssig und umgekehrt, durchführen kann, dadurch gekennzeichnet daß, die Phasenumwandlungstemperatur im oberen Bereich der Betriebstemperatur der Kühlflüssigkeit (2) liegt und zwischen Wärmepuffer (20) und Umgebungsluft eine gute thermische Leitfähigkeit gegeben ist.
  2. Kühlkreislauf nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Phasenumwandlungstemperatur höchstens 10 Grad, vorzugsweise höchstens 3 Grad oberhalb der maximal zulässigen Betriebstemperatur der Kühlflüssigkeit liegt.
  3. Kühlkreislauf nach Anspruch 1,
    dadurch gekennzeichnet,
    daß das Wärmespeichermedium (21) ein Wachs, ein niedrig schmelzendes Metall, z.B. Natrium oder ein in Wasser gelöstes Salz oder ein gelöstes Ion, insbesondere Bariumhydroxid ist.
  4. Kühlkreislauf nach Anspruch 1,
    dadurch gekennzeichnet,
    daß der Wärmepuffer (20) an seiner Außenseite, vorzugsweise dem Fahrtwind ausgesetzte, wärmeabgebende Kühlrippen (22) aufweist.
  5. Kühlkreislauf nach Anspruch 1,
    dadurch gekennzeichnet,
    daß der Wärmepuffer (20) parallel zum Luft/Flüssigkeits-Wärmetauscher (3) innerhalb des Kühlkreislaufes angeordnet ist.
  6. Kühlkreislauf nach Anspruch 1,
    dadurch gekennzeichnet,
    daß der Wärmepuffer (20) seriell zum Luft/Flüssigkeits-Wärmetauscher (3) innerhalb des Kühlkreislaufes angeordnet ist,
  7. Kühlkreislauf nach Anspruch 6,
    dadurch gekennzeichnet,
    daß die Phasenumwandlungstemperatur des Wärmespeichermediums (21) oberhalb der maximal zulässigen Betriebstemperatur der Kühlflüssigkeit (2) liegt und daß der Wärmepuffer (20) in der die Motorabwärme vom Flüssigkeitsmantel der Brennkraftmaschine zum Luft/Flüssigkeits-Wärmetauscher (3) fördernden Vorlaufleitung (4) angeordnet ist.
  8. Kühlkreislauf nach Anspruch 6,
    dadurch gekennzeichnet,
    daß die Phasenumwandlungstemperatur des Wärmespeichermediums (21) unterhalb der maximal zulässigen Betriebstemperatur der Kühlflüssigkeit (2) liegt und daß der Wärmespeicher (20) in der die durch den Luft/Flüssigkeits-Wärmetauscher (3) abgekühlte Kühlflüssigkeit (2) zur Brennkraftmaschine zurückfördernden Rücklaufleitung (5) angeordnet ist.
  9. Kühlkreislauf nach Anspruch 1,
    dadurch gekennzeichnet,
    daß der Wärmepuffer (20) mittels eines vorzugsweise temperaturgesteuerten Steuerventiles (23) mehr oder weniger stark von der Kühlflüssigkeit (2) durchströmt ist.
EP93115519A 1992-10-23 1993-09-25 Wärmepuffer für den Kühlkreislauf von flüssigkeitsgekühlten Brennkraftmaschinen Expired - Lifetime EP0593942B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4235883A DE4235883C2 (de) 1992-10-23 1992-10-23 Kühlkreislauf von flüssigkeitsgekühlten Brennkraftmaschinen mit Wärmepuffer
DE4235883 1992-10-23

Publications (2)

Publication Number Publication Date
EP0593942A1 EP0593942A1 (de) 1994-04-27
EP0593942B1 true EP0593942B1 (de) 1996-07-24

Family

ID=6471226

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93115519A Expired - Lifetime EP0593942B1 (de) 1992-10-23 1993-09-25 Wärmepuffer für den Kühlkreislauf von flüssigkeitsgekühlten Brennkraftmaschinen

Country Status (3)

Country Link
EP (1) EP0593942B1 (de)
AT (1) ATE140765T1 (de)
DE (1) DE4235883C2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19500607C2 (de) * 1995-01-11 2000-02-17 Richard Ambros Anordnung eines Latentwärmespeichers für eine Brennkraftmaschine
DE19521292A1 (de) * 1995-06-10 1996-12-12 Opel Adam Ag Kreislauf für eine Wärmeübertragungsflüssigkeit einer mit einem Wärmespeicher zusammenarbeitenden Brennkraftmaschine
DE19615509B4 (de) * 1996-04-19 2006-03-23 Pierburg Gmbh Heizung oder Klimaanlage eines Kraftfahrzeugs
DE19654495A1 (de) * 1996-12-18 1998-06-25 Burkhard Dipl Ing Schmidt Wärmespeicher für Kühlwasser im Kfz
DE19700674C2 (de) * 1997-01-10 1999-03-11 Richard Ambros Sicherheitskraftfahrzeug mit Latentwärmespeicher und Standheizung
FR2864148B1 (fr) * 2003-12-23 2006-06-09 Peugeot Citroen Automobiles Sa Dispositif de regulation thermique de fluides circulant dans un vehicule a moteur thermique et procede mis en oeuvre par ce dispositif
DE102006010247B4 (de) 2006-03-02 2019-12-19 Man Truck & Bus Se Antriebseinheit mit Wärmerückgewinnung
DE102010003688A1 (de) 2010-04-07 2011-10-13 Dbk David + Baader Gmbh Kühlmittelkreislauf, Verfahren zum Steuern eines Kühlmittelkreislaufs und Latentwärmespeicher
DE102011007186A1 (de) * 2011-04-12 2012-10-18 J. Eberspächer GmbH & Co. KG Innenraum-Heizeinrichtung für ein Fahrzeug
DE102011050199A1 (de) * 2011-05-06 2012-11-08 Dbk David + Baader Gmbh Kühlmittelkreislauf
DE102011050200A1 (de) 2011-05-06 2012-11-08 Dbk David + Baader Gmbh Wärmespeicher

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1576746A1 (de) * 1967-08-18 1970-11-05 Lokomotivbau Elektrotech Abgeschlossene Fluessigkeitskuehleinrichtung fuer Brennkraftmaschinen
DE1805862A1 (de) * 1967-10-30 1969-07-10 Wistisen Preben Christian Vorrichtung an Brennkraftmaschinen zur Vermeidung von Kaltstart
DE3720319A1 (de) * 1987-06-19 1989-01-05 Lothar Dipl Ing Griesser Verfahren und anordnung zur enteisung der scheiben und vorwaermung von personenwagen

Also Published As

Publication number Publication date
ATE140765T1 (de) 1996-08-15
DE4235883A1 (de) 1994-04-28
DE4235883C2 (de) 1995-04-13
EP0593942A1 (de) 1994-04-27

Similar Documents

Publication Publication Date Title
DE69005701T2 (de) Verfahren zur Kühlung von elektronischen Bausteinen, Vorrichtung zur Durchführung dieses Verfahrens und Verwendung bei Bausteinen für Kraftfahrzeuge.
DE69216844T2 (de) Thermoelektrisches kühlsystem mit flexibelem wärmeleitelement
EP0593942B1 (de) Wärmepuffer für den Kühlkreislauf von flüssigkeitsgekühlten Brennkraftmaschinen
DE69834891T2 (de) Kühlungsanlage für die Brennkraftmaschine einer Lokomotive
DE19849492B4 (de) Steuervorrichtung für einen Kühlkreislauf einer Brennkraftmaschine
DE112007001140T5 (de) Fahrzeug-Kühlungssystem mit gelenkten Strömen
DE60223979T2 (de) Vorrichtung zur thermischen Regelung von Personenkraftfahrzeugen
DE102010043978A1 (de) Anordnung zum Kühlen von Bauteilen eines HEV
DE102013209045A1 (de) Kühlsystem für ein Hybridfahrzeug sowie Verfahren zum Betrieb eines derartigen Kühlsystems
DE10161851A1 (de) Kühlkreislauf einer flüssigkeitsgekühlten Brennkraftmaschine
DE4026678C1 (de)
DE4220672C2 (de) Kühleranordnung
DE102013225839A1 (de) Klimatisierungssystem und -verfahren für eine Hochspannungsbatterie eines Fahrzeuges
DE102010063057A1 (de) Batteriesystem für ein Kraftfahrzeug mit wenigstens einer elektrochemischen Zelle und wenigstens einem Latentwärmespeicher
DE2829456A1 (de) Waermetauscher
DE102010015331A1 (de) Kühleranordnung für ein Fahrzeug und Verfahen zum Betreiben einer Kühleranordnung
DE202012012516U1 (de) Kompaktes Heiz-/Kühlmodul
DE3990275C1 (de) Wärmespeicher, insbesondere Latentwärmespeicher für Kraftfahrzeuge
DE69618084T2 (de) Thermostatgehäuse für eine Brennkraftmaschine
DE102006032852A1 (de) Fahrzeug mit einem Kühlsystem mit mehreren Fluidkreisläufen und einer gemeinsamen Steuer/Regeleinrichtung und einem Ausgleichsbehälter mit Wärmetauschspeichereinrichtung
EP1772607B1 (de) Wärmeübertrager zur Kühlung von Ladeluft
DE102019106162A1 (de) Wärmemanagementsystem für ein fahrzeugantriebssystem
DE3517567A1 (de) Antriebsanlage fuer geraete und fahrzeuge, insbesondere kraftfahrzeuge
DE3200683A1 (de) Aufgeladene brennkraftmaschine
DE19535782C2 (de) Klimatisierungsanordnung für Nutzfahrzeuge, insbesondere Omnibusse, mit einem mindestens kühlseitigen Zwischenüberträger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH FR IT LI

17Q First examination report despatched

Effective date: 19950303

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR IT LI

REF Corresponds to:

Ref document number: 140765

Country of ref document: AT

Date of ref document: 19960815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: MERCEDES-BENZ AG TRANSFER- MERCEDES-BENZ AG;DAIMLER-BENZ AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: MERCEDES-BENZ AG;DAIMLER-BENZ AKTIENGESELLSCHAFT TRANSFER- DAIMLERCHRYSLER AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990923

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990927

Year of fee payment: 7

Ref country code: CH

Payment date: 19990927

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050925