EP0592803B1 - Compresseur à arbres multiples et transmission - Google Patents

Compresseur à arbres multiples et transmission Download PDF

Info

Publication number
EP0592803B1
EP0592803B1 EP93114214A EP93114214A EP0592803B1 EP 0592803 B1 EP0592803 B1 EP 0592803B1 EP 93114214 A EP93114214 A EP 93114214A EP 93114214 A EP93114214 A EP 93114214A EP 0592803 B1 EP0592803 B1 EP 0592803B1
Authority
EP
European Patent Office
Prior art keywords
shaft
pressure
compressor according
pressure stage
turbo compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93114214A
Other languages
German (de)
English (en)
Other versions
EP0592803A1 (fr
Inventor
Joachim Dr.-Ing. Kotzur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Turbo AG
Original Assignee
MAN Gutehoffnungshutte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Gutehoffnungshutte GmbH filed Critical MAN Gutehoffnungshutte GmbH
Publication of EP0592803A1 publication Critical patent/EP0592803A1/fr
Application granted granted Critical
Publication of EP0592803B1 publication Critical patent/EP0592803B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/058Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/12Combinations with mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/14Multi-stage pumps with means for changing the flow-path through the stages, e.g. series-parallel, e.g. side-loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • F04D25/163Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/023Details or means for fluid extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0238Details or means for fluid reinjection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft

Definitions

  • the invention relates to a geared multi-shaft turbocompressor with at least one low-pressure and one high-pressure stage and impellers connected in series in terms of flow, impellers being overhung on parallel-mounted pinion shafts which are driven by a central wheel on the circumference thereof.
  • the external drive can be an electric motor, a steam or gas turbine, etc. in a known manner.
  • the power can be transferred to the compressor impellers via the pinion shaft of the drive via the central wheel via the pinion shaft of the compressor impeller or the central wheel via idler gears via the pinion shaft of the compressor impeller.
  • each shaft The numerous compressor impellers and dummy disks (dummies) of each shaft are each arranged on a shaft mounted on both sides, but not overhung.
  • the suction to the first compressor stage does not take place axially from the pinion shaft end, but radially.
  • the direction of flow through the impellers does not extend from the pinion shaft end in the direction of the gear housing, but in the opposite direction.
  • the compressor shafts of the second and third compressor units are not driven via the central gear, but via an intermediate gear.
  • a single-shaft geared turbo compressor is known from US-A-3,941,506.
  • stage group corresponds to that of a stage group of a high-pressure part, but it is only a single-shaft compressor. This type is mainly used as a refrigeration compressor at low peripheral speeds. A multi-shaft compressor is not shown in this prior art.
  • a single-shaft radial compressor in which the impellers of the same size and shape are arranged on a shaft and are mounted on the suction and pressure side of the single-shaft compressor, the compressor having only one suction and a pressure port is equipped.
  • the gas enters the impeller axially via the intake housing and is decelerated in the volute casing.
  • the impellers in the outer diameter become smaller and smaller in order to maintain optimal volume flow numbers and the speeds of the pinion shafts to maintain the peripheral speed of the impellers required for the respective stage compression ratio.
  • this leads to ever smaller pinion diameters and number of pinion teeth.
  • a multi-stage gear turbo compressor is known with a gear having a central drive gear, in which the impellers of the compressor stages are arranged on the ends of pinion shafts, the first pinion shafts being driven by the central drive gear and the gear having two stages .
  • It contains an intermediate gear, which is designed as a double gear and consists of a first gear and a second gear, the first gear meshing with the central drive gear and the second gear having a smaller gear module than the first gear and the further pinion shafts with the second gear of the intermediate gear in Stand by.
  • a multi-stage geared turbocompressor with a two-stage gear having a central drive gear and an intermediate gear is known, in which the impellers of the compressor stages are arranged on the ends of pinion shafts. At least one pinion shaft is driven by the central drive gear.
  • the intermediate gearwheel which has a different tooth module, is in engagement with the central drive gearwheel on the one hand and with at least one further pinion shaft on the other hand.
  • the intermediate gear is designed as a triple gear, the gears of the triple gear meshing with the central drive gear having the larger tooth module and at least one gear of the tip gear having a different diameter.
  • a two-stage gearbox is used in each of the latter two compressors.
  • DE 42 41 141 shows a compressor system with a gear transmission switched on in the drive train between a drive unit and a compressor area of the system, a planetary gear being used to increase the speed of the high pressure stage.
  • the compressor system is driven by a central wheel gear, the central wheel driving the output shafts connected to the compressors by means of pinions of these output shafts.
  • the pinion forms the sun gear of a planetary gear.
  • the planet carrier of this planetary gear is fixed in position, and the ring gear of the planetary gear has, in addition to an internal toothing meshing with the planet gears, an external toothing in engagement with the central wheel.
  • An intermediate cooler is normally arranged between the individual compressor stages, which cools the gas back down to the initial temperature of the compression.
  • the end temperatures of the individual compressor stages are correspondingly low, corresponding to the temperature increase of the stage.
  • the process also requires a high final temperature, the final stage must run at a correspondingly high peripheral speed in order to achieve the required final temperature. This further increases the pinion shaft speed, further exacerbating the above problems.
  • Another option would be to connect two stages in series with a connecting pipe without an intercooler.
  • additional flow losses due to the double energy conversion of pressure and speed energy, additional leakage losses at the exit of the pinion shaft from the spiral housing and mechanical friction losses.
  • the object of the invention is to provide a multi-shaft turbo-compressor which avoids the disadvantages of the prior art and which is characterized in that in multi-shaft turbo-compressors, in particular with high total pressure ratios, a perfect mechanical behavior with high overall efficiency and low construction costs is realized.
  • Claim 23 describes the features according to which both variants are arranged in a common machine.
  • the solution to the object is achieved in the multi-shaft turbo compressor according to the invention in that at least at one end of the pinion shaft of the low pressure stage a single impeller - with or without a cover plate - and at the end of the pinion shaft of the high pressure stage several impellers, also with or without a cover plate, one behind the other Interposition of disc diffusers and return rings are arranged and the impellers of the high pressure stage are designed with a reduced circumferential speed compared to the impeller of the low pressure stage.
  • the low-pressure stages are designed as conventional individual stages, which run in the usual way with a high peripheral speed and great swallowing capacity and thus already greatly reduce the volume flow.
  • the suction to the first impeller of the high-pressure stage group which is formed from one or more recirculation stages and an end spiral stage, takes place via an axial inlet connection.
  • the disc diffuser connected to the impeller can be designed without blades or with a diffuser guide ring.
  • This relief piston is particularly well suited to changing operating pressures of the compressor if the gas generating the axial thrust is directed from the wheel chamber behind the last stage of the high-pressure stage group arranged on the same pinion shaft to the rear of the relief piston and the gas drawn in by the high-pressure stage group the outer end of the relief piston is passed.
  • inlet or outlet connections may be necessary to attach inlet or outlet connections to the return rings of the uncooled stage groups if the inlet or outlet pressure specified by the process is between the inlet and outlet pressure of a high-pressure stage group.
  • the impellers can be connected to one another via spur gears, suitably a Hirth serration. This enables a horizontal, undivided design of the housing rings as in the conventional single stage.
  • the spur toothing consists of radial grooves that are machined into the end faces of the impellers. These interlock, are radially centered and transmit the torque.
  • the toothed components are held together axially by a central expansion screw that is screwed into the pinion shaft.
  • the spur gear elements can also be manufactured separately and attached to the impellers.
  • the spur gear can be arranged in the connected hub of the impeller group so that it is located approximately in the center of gravity of the impellers.
  • the inner housing is designed with a horizontal parting joint and surrounded by a horizontally undivided outer housing.
  • the entire rotor can be installed in the gearbox without disassembly after balancing.
  • no horizontally undivided cover on the gear unit side can seal off the casing.
  • the first impeller of the stage group is used to reduce the rotor mass and shift the center of mass with a smaller outer diameter than the impellers of the subsequent stages and / or, if necessary, without a cover plate.
  • Other variants consist of designing one or more impellers from a material with a density below that of steel, for example titanium or aluminum alloys.
  • rotor dynamic problems are solved, in particular in the case of widely overhanging rotors in the high pressure range, by the use of active magnetic bearings which hold the rotor in position by sensors and have controllable damping.
  • the known pressure combs on the gear pinions or separate axial magnetic bearings can be used.
  • the housing walls of the wheel chambers are provided with swirl breaking grooves in this case, which take the swirl out of the leakage flow before it enters the labyrinth seals.
  • the labyrinth seals on the leakage current inlet side are equipped with swirl breaking ribs arranged perpendicular to the circumferential direction.
  • sealing gas is conducted without swirl or with counter-swirl from the radially outer area of the wheel chambers into the labyrinth, which prevents rotating leakage currents from entering the labyrinth seal from the wheel chamber.
  • axial guide vanes and secondary guide vanes with adjustable diffuser vanes are used in compressors.
  • step groups considered here it proves to be expedient in terms of construction and flow technology to equip the first step of a step group with an axial guide wheel and the last step with an adjustable guide wheel in front of the end spiral.
  • the geared multi-shaft turbo machine By reversing the direction of flow of the geared multiwave turbo machine designed as a geared multiwave turbo compressor, i. H. Entry of the gas on the high pressure side and exit of the gas on the low pressure side when the direction of rotation is reversed, the geared multi-shaft turbo machine works as a radial expander with the same basic design. Compared to the conventional design, the step arrangement according to the invention in the high-pressure part achieves a constant or even greater gradient per pinion shaft end with good vibration stability.
  • the outlet spiral of the compressor becomes the inlet spiral of the radial expander
  • the non-bladed or bladed disc diffuser becomes the inlet guide wheel
  • the intake manifold of the step group becomes the outlet diffuser.
  • the return ring can be carried out with or without blades.
  • Fig. 1 shows the front view of a known turbo compressor.
  • a gearbox (1) On a gearbox (1) three compressor stages with spiral housing (2) are attached, which are driven via a central drive shaft (3) or a pinion shaft (4) arranged on the circumference of the central wheel, into which the pinion shafts (6) of the low pressure stages and Grip the pinion shafts (6a) of the high pressure stages.
  • Fig. 2 shows a section through the lower part of such a turbo compressor.
  • the gas enters the impeller (8) via the intake housing (7).
  • the gas flow is delayed in the volute casing (2).
  • the impellers (8) of stages I to IV are dimensioned smaller and smaller because of the increasing compression in order to maintain optimal volume flow rates in the outer diameter.
  • Fig. 3 a section through the upper horizontal part of the high pressure part of a turbo compressor according to Fig. 1, structural details such as gear (5) and pinion shaft (6a), impellers (8a), housing (1), etc. can be seen.
  • the low pressure part is designed according to FIG. 2.
  • FIG. 4 illustrates in a vertical section through a pinion shaft end (6a) design features of the high pressure stage of the multi-shaft turbo compressor of the prior art according to FIG. 1.
  • FIG. 5 shows the schematic structure of a turbo compressor according to the invention.
  • the turbocompressor with the spiral housing (2) and the intake manifold (7) is equipped with a conventional low-pressure shaft (6) with stages I and II and a high-pressure shaft (6a) according to the invention with stages III to VI.
  • Two compressor impellers (8a) are arranged on the same pinion shaft end in the same flow direction on the high-pressure shaft (6a).
  • Disc diffusers (9) and return rings (10) are interposed.
  • Fig. 6 is a section through the lower horizontal parting of a turbo compressor according to the invention with the high-pressure stages IV and V according to the invention, two impellers (8a) being arranged one behind the other on the pinion shaft (6a). Disc diffusers (9) and return rings (10) are also interposed here.
  • a section through the upper horizontal parting line of a turbo compressor according to the invention one can see design details of two high pressure stages (V, VI and VII, VIII) at the pinion shaft ends (6a).
  • the low pressure part is in this turbo compressor in a conventional manner.
  • Fig. 2 executed.
  • the first impeller (8a) of the high-pressure stage groups has a reduced outer diameter.
  • the impeller is fastened with the help of the well-known Hirth toothing, a spur toothing (11) with a central fastening screw (12).
  • compressed gas is supplied from the wheel chamber (27) via the line (24a) to the inner chamber (28a) on the relief piston, while the outer chamber (28) via the relief line (24) to the suction port (7) of the first stage of the Step group is lowered in the pressure level.
  • a horizontal section through a pinion shaft end (6a) shows the design with two compressor impellers with a cover plate (8a), both impellers (8a) having the same outside diameter.
  • the inner housing (17) is undivided and a relief piston (15) is integrated in the second impeller (8a).
  • Fig. 10 shows a horizontal section of a pinion shaft end (6a) with an undivided inner housing of another design (17a).
  • the first impeller (8) has no cover disk and has a smaller outer diameter than the next stage with cover disk (8a).
  • FIG. 11 shows the pinion shaft end (6a) of a turbo compressor according to the invention with two impellers (8a) shrunk onto the pinion shaft (6a) with a shaft sleeve (29) arranged in between.
  • the compressor inner housing is divided horizontally and screwed with its lower part to the gear housing.
  • the inner housing upper part (18a) is screwed to the inner housing lower part (18b) after inserting the pinion shaft (6a).
  • the undivided outer housing (19) is then pushed over and axially screwed to the gear housing middle (25a) and upper part (25), whereby an additional housing chamber (26) is formed, which can be relieved of pressure via the relief line (24).
  • a turbocompressor according to FIG. 10 additionally has gas feed channels (20) between the compressor stages, which end in the suction-side housing cover (30).
  • FIG. 13 a sectional view corresponding to Fig. 10, additional gas extraction channels (21) can be seen, which are shown between the two compressor stages shown and end in the suction-side housing cover (30).
  • a section through the upper horizontal parting line of a geared multi-shaft turbo compressor according to the invention with the impellers (8a), is intended to indicate the radial (22) and the axial magnetic bearing (23), which compensate for dynamic problems, the magnetic bearings hold the pinion shaft (6a) in the desired position via sensors.
  • Fig. 15 a section through the upper horizontal parting of a geared multi-shaft turbo compressor according to the invention with the impellers (8a), shows radial magnetic bearings (22) on the pinion shaft (6a). The remaining axial thrust is taken up in a conventional manner by pressure combs (39) via the central wheel (5) from the axial pressure bearing of the central wheel shaft, not shown.
  • a horizontal section through a pinion shaft end (6a) shows the structural design with two compressor impellers with a cover plate (8a), both impellers (8a) having the same outside diameter. Both impellers (8a, 8b) are firmly connected to each other, here the impeller (8a) with the cover disk is shown shrunk on the extended hub of the impeller (8b). As a result, only a serration (11) is required, but the inner housing (18) must be horizontally divided (18a, 18b) for installation. A relief piston (15) is integrated in the second impeller (8b).
  • FIG. 17 shows constructive details of an impeller attachment (8a, 8b).
  • the second impeller (8b) with an extended hub of the high-pressure stage group encloses with its extended hub the pinion shaft end (6a), in the end face of which a Hirth toothing is milled.
  • a ring (11a) with counter-Hirth teeth is inserted on a projection (42) for manufacturing reasons.
  • the first impeller (8a) is fixed to the via a centering (43) second impeller (8b) connected (shrunk, soldered, welded).
  • Both impellers (8a, 8b) are attached to the pinion shaft end (6a) together with the central fastening screw (12).
  • FIGS. 18a-18d show details of swirl breakers and the introduction of sealing gas.
  • FIG. 18 The letters A, B, C and D shown in FIG. 18 denote the enlarged sections in FIGS. 18a-18d.
  • the labyrinth seal (36) on the intermediate sleeve (40) between the stages is supplied with sealing gas from the wheel chamber of the subsequent stage via the bores (38).
  • a guide vane (31) with an adjusting device (34) can be seen before the first stage of a compressor, and a guide vane (32) with an adjusting device (32a) after the second stage.
  • FIG. 20 shows the schematic structure of a radial expander according to the invention through the lower horizontal parting line.
  • the radial expander is equipped with a pinion shaft (6a) according to the invention with the high pressure stages I to IV and a conventional pinion shaft (6) with the low pressure stages V and VI.
  • Two expander impellers (8a) are arranged on the same pinion shaft end (6a) in the same flow direction on the high-pressure pinion shaft (6a).
  • the gas From the inlet housing (2a), which is designed as a spiral housing, and the stator (33a) arranged in the disc annulus (9a), the gas enters the impeller (8a) and then via the return ring (10a) into the second stage, from there into the outlet cone diffuser (7a) of the radial expander.
  • FIG. 21 shows in a horizontal section a pinion shaft end (6a) of a radial expander with an undivided inner housing (17a).
  • the wheels (8) are arranged in the disk annulus (9a) inlet guide wheels (33a).
  • the return ring (10a) is designed here without a blade and serves for deflection and as a radial diffuser after the first impeller (8a).
  • FIG. 22 shows the combination of a geared multi-shaft turbomachine with a turbocompressor according to the invention (left side of the picture) with a radial expander (right side of the picture), the turbocompressor compressing a medium other than that in the radial expander.
  • the turbocompressor compressing a medium other than that in the radial expander.
  • the different volume flows are small and allow the pinion shaft speed to be the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Claims (23)

  1. Turbocompresseur de transmission à plusieurs arbres avec au moins respectivement un étage basse pression et un étage haute pression et des roues à aubes (8, 8a) montées les unes derrière les autres dans le sens de l'écoulement, les roues à aubes (8, 8a) étant fixées en porte-à-faux sur des arbres de pignon (6, 6a) disposés parallèlement, qui sont entraînés par une roue centrale (5) sur son pourtour,
    caractérisé en ce qu'
    au moins à une extrémité de l'arbre de pignon (6) de l'étage basse pression, il est disposé une roue à aube individuelle (8, 8a) et, à l'extrémité de l'arbre de pignon (6a) de l'étage haute pression, il est disposé plusieurs roues à aubes (8, 8a) les unes derrière les autres en interposant un diffuseur à disque (9) et une bague de recyclage (10).
  2. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1,
    caractérisé en ce que
    les roues à aubes (8, 8a) de l'étage haute pression sont réalisées avec une vitesse périphérique réduite par rapport à la roue à aubes (8, 8a) de l'étage basse pression qui a une vitesse périphérique élevée.
  3. Turbocompresseur de transmission à plusieurs arbres selon les revendications 1 et 2,
    caractérisé en ce que
    les étages basse pression et haute pression sont réalisés avec une aspiration axiale au moyen d'ajutages d'aspiration (7).
  4. Turbocompresseur de transmission à plusieurs arbres selon les revendications 1 à 3,
    caractérisé en ce que
    sur un côté d'un arbre de pignon haute pression (6a), on dispose un groupe d'étages haute pression (III, IV) et sur l'autre côté seulement un piston de décharge (15).
  5. Turbocompresseur de transmission à plusieurs arbres selon les revendications 1 à 4,
    caractérisé en ce que
    sur un ou plusieurs anneaux de recyclage (10), on dispose des ajutages pour l'alimentation (20) ou l'extraction (21) de gaz servant à augmenter ou à diminuer l'écoulement des gaz transférés.
  6. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    des roues à aubes (8, 8a) d'étages haute pression sont reliées par des dentures frontales (11) et des boulons centraux (12).
  7. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    le carter intérieur (18) est réalisé avec un joint horizontal partiel et le carter extérieur (19) non divisé horizontalement entoure le carter intérieur divisé (18) avec le rotor, en ce que le carter de la transmission (1) forme avec le carter intérieur divisé (18) une chambre de carter supplémentaire (26), et en ce qu'une conduite de décharge (24) est raccordée à la chambre de carter (26).
  8. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    les roues à aubes (8a) d'un groupe d'étages haute pression sont réalisées avec disque de recouvrement.
  9. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    la roue à aubes (8) du premier étage d'un groupe d'étages haute pression est réalisée sans disque de recouvrement.
  10. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    la roue à aubes (8, 8a) du premier étage d'un groupe d'étages haute pression a un plus petit diamètre extérieur (D) que l'étage raccordé par l'anneau de recyclage (10).
  11. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    une ou plusieurs roues à aubes (8 ou 8a) d'un groupe d'étages haute pression sont usinées en une matière ayant une densité inférieure à celle de l'acier.
  12. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    un ou plusieurs arbres de pignon (6a) haute pression sont montés sur des paliers magnétiques (22, 23).
  13. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    un ou plusieurs arbres de pignon (6a) haute pression sont montés sur des paliers magnétiques (22) radiaux et en ce que ces arbres de pignon (6a) haute pression et la roue centrale (5) présentent des collets de pression axiaux (39).
  14. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    deux des multiples roues à aubes (8 ou 8a) d'un groupe d'étages haute pression sont fixées avec une denture frontale commune (11) à l'extrémité d'un arbre de pignon haute pression (6a).
  15. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    la denture frontale commune (11) est disposée dans la zone du centre de gravité des roues à aubes (8 ou 8a).
  16. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    les parois de carter des chambres de roues (27a) sont pourvues de rainures hélicoïdales (35) pour briser les tourbillons.
  17. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    dans le cas de garnitures d'étanchéité à labyrinthe (36) des alimentations en gaz de barrage débouchent dans la zone centrale du labyrinthe et dans les roues de bordure du côté d'entrée du courant de fuite du labyrinthe il y a des nervures hélicoïdales (37) pour briser les tourbillons perpendiculaires au sens périphérique.
  18. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    avant le premier étage d'un groupe d'étages haute pression on dispose une roue de préguidage réglable (31) et dans le dernier étage du groupe d'étages haute pression on dispose une roue de postguidage réglable (32).
  19. Turbocompresseur de transmission à plusieurs arbres selon les revendications 1 à 18,
    caractérisé en ce qu'
    il est constitué sous la forme d'un détendeur radial (turbine) par l'inversion du sens de l'écoulement, c'est-à-dire l'entrée des gaz du côté haute pression (2a) et la sortie des gaz du côté basse pression (7a).
  20. Turbocompresseur de transmission à plusieurs arbres selon la revendication 19,
    caractérisé en ce que
    la spirale de sortie (2) d'un groupe d'étages haute pression du compresseur est utilisée comme spirale d'entrée (2a) d'un groupe d'étages haute pression d'un détendeur radial, en ce que le diffuseur à disque (9) d'un groupe d'étages haute pression d'un compresseur est utilisé comme chambre d'anneau de recyclage (9a) d'un groupe d'étages haute pression d'un détendeur radial, en ce que l'anneau de recyclage (10) d'un groupe d'étages haute pression d'un compresseur est réalisé en anneau de recyclage (10a) d'un groupe d'étages haute pression d'un détendeur radial et en ce que l'ajutage d'aspiration (7) d'un groupe d'étages haute pression d'un compresseur est constituée en diffuseur de sortie (7a) d'un groupe d'étages haute pression d'un détendeur radial.
  21. Turbocompresseur de transmission à plusieurs arbres selon les revendications 19 et 20,
    caractérisé en ce que
    les aubes de guidage de diffuseur (33) des étages haute pression du compresseur sont constituées en roue de guidage d'entrée (33a) du détendeur radial.
  22. Turbocompresseur de transmission à plusieurs arbres selon la revendication 20,
    caractérisé en ce que
    l'anneau de recyclage (10a) du détendeur radial n'a pas d'aubes.
  23. Turbocompresseur de transmission à plusieurs arbres selon la revendication 1 et une ou plusieurs des revendications suivantes,
    caractérisé en ce que
    des groupes d'étages haute pression de turbocompresseurs et des détendeurs radiaux pour des fluides de différents types sont disposés sur un arbre de pignon commun (6a) haute pression.
EP93114214A 1992-10-15 1993-09-04 Compresseur à arbres multiples et transmission Expired - Lifetime EP0592803B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4234739A DE4234739C1 (de) 1992-10-15 1992-10-15 Getriebe-Mehrwellenturbokompressor mit Rückführstufen
DE4234739 1992-10-15

Publications (2)

Publication Number Publication Date
EP0592803A1 EP0592803A1 (fr) 1994-04-20
EP0592803B1 true EP0592803B1 (fr) 1997-03-05

Family

ID=6470505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93114214A Expired - Lifetime EP0592803B1 (fr) 1992-10-15 1993-09-04 Compresseur à arbres multiples et transmission

Country Status (5)

Country Link
US (1) US5490760A (fr)
EP (1) EP0592803B1 (fr)
JP (1) JPH06193585A (fr)
DE (2) DE4234739C1 (fr)
RU (1) RU2111384C1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005041003A1 (de) * 2005-08-29 2007-03-01 Man Turbo Ag Wellendichtung für einen Getriebeexpander oder -kompressor
DE10003018B4 (de) * 2000-01-25 2009-09-24 Atlas Copco Energas Gmbh Turboverdichter
DE102014203251A1 (de) 2014-02-24 2015-08-27 Siemens Aktiengesellschaft Rückführstufe für eine Radialturbomaschine
EP3361101A1 (fr) 2017-02-10 2018-08-15 Siemens Aktiengesellschaft Canal de retour de compresseur ou turbodétendeur multicellulaire avec aubes directrices vrillées
EP3364039A1 (fr) 2017-02-21 2018-08-22 Siemens Aktiengesellschaft Étage de retour
DE102008031116B4 (de) 2008-05-29 2022-02-03 Man Energy Solutions Se Getriebeturbomaschine für einen Maschinenstrang, Maschinenstrang mit und Getriebe für Getriebeturbomaschine
EP4015832A1 (fr) 2020-12-18 2022-06-22 Siemens Energy Global GmbH & Co. KG Guidage d'écoulement statique, turbomachine radiale
DE102021120100A1 (de) 2021-08-03 2023-02-09 Voith Patent Gmbh Stirnradgetriebe

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9404991D0 (en) * 1994-03-15 1994-04-27 Boc Group Plc Cryogenic air separation
DE4416497C1 (de) * 1994-05-10 1995-01-12 Gutehoffnungshuette Man Getriebe-Mehrwellenturbokompressor und Getriebe-Mehrwellenradialexpander
GB2321502B (en) * 1997-01-24 2001-02-07 Europ Gas Turbines Ltd Turbocharger arrangement
KR19990075384A (ko) * 1998-03-20 1999-10-15 이헌석 소형터보압축기
WO2007013892A2 (fr) * 2004-11-12 2007-02-01 Board Of Trustees Of Michigan State University Rotor tisse de turbomachine
US7555891B2 (en) 2004-11-12 2009-07-07 Board Of Trustees Of Michigan State University Wave rotor apparatus
DE102005002702A1 (de) * 2005-01-19 2006-07-27 Man Turbo Ag Mehrstufiger Turbokompressor
KR100861000B1 (ko) * 2007-07-31 2008-09-30 경주전장 주식회사 터보 압축기
DE102009019061A1 (de) * 2009-04-27 2010-10-28 Man Diesel & Turbo Se Mehrstufiger Radialverdichter
JP4927129B2 (ja) * 2009-08-19 2012-05-09 三菱重工コンプレッサ株式会社 ラジアルガスエキスパンダ
JP5567968B2 (ja) * 2010-09-30 2014-08-06 株式会社日立製作所 多段遠心圧縮機
WO2012116285A2 (fr) 2011-02-25 2012-08-30 Board Of Trustees Of Michigan State University Appareil de moteur à disque à ondes
CN102758653B (zh) * 2011-04-28 2015-06-24 中国科学院工程热物理研究所 一种多级向心透平系统
JP5863320B2 (ja) 2011-08-05 2016-02-16 三菱重工コンプレッサ株式会社 遠心圧縮機
ITCO20120002A1 (it) * 2012-01-27 2013-07-28 Nuovo Pignone Srl Sistema compressore per gas naturale, metodo per comprimere gas naturale ed impianto che li utilizza
US9121460B2 (en) * 2012-03-23 2015-09-01 GM Global Technology Operations LLC Transmission control fluid diffuser
DE102012205159A1 (de) * 2012-03-29 2013-10-02 Siemens Aktiengesellschaft Turbinensystem mit drei an einem zentralen Getriebe angekoppelten Turbinen, Turbinenanlage und Verfahren zum Betreiben einer Arbeitsmaschine
DE102012217441A1 (de) * 2012-09-26 2014-03-27 Siemens Aktiengesellschaft Getriebeverdichter
KR20140100111A (ko) * 2013-02-05 2014-08-14 삼성테크윈 주식회사 압축 시스템
DE102013210497A1 (de) * 2013-06-06 2014-12-11 Siemens Aktiengesellschaft Getriebeverdichter
RU2528891C1 (ru) * 2013-08-08 2014-09-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Газотурбинный двигатель
RU2528889C1 (ru) * 2013-08-12 2014-09-20 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Газотурбинный двигатель
DE102013110727A1 (de) * 2013-09-27 2015-04-02 Abb Turbo Systems Ag Verdichteranordnung für einen Turbolader
WO2016042639A1 (fr) * 2014-09-18 2016-03-24 三菱重工コンプレッサ株式会社 Système de compression
DE102015200439A1 (de) * 2015-01-14 2016-07-14 Siemens Aktiengesellschaft Anordnung, Getriebeverdichter
JP6049807B2 (ja) * 2015-06-08 2016-12-21 三菱重工コンプレッサ株式会社 遠心圧縮機
ITUB20152497A1 (it) * 2015-07-24 2017-01-24 Nuovo Pignone Tecnologie Srl Treno di compressione di gas di carica di etilene
CN105275834B (zh) * 2015-10-27 2018-05-11 上海华鼓鼓风机有限公司 一种低速多级垂直剖分筒型结构的三元流离心鼓风机
JP2017101636A (ja) * 2015-12-04 2017-06-08 三菱重工業株式会社 遠心圧縮機
ES2892902T3 (es) * 2016-03-08 2022-02-07 Fluid Handling Llc Buje central para equilibrar las fuerzas axiales en bombas multietapa
WO2018150576A1 (fr) * 2017-02-20 2018-08-23 三菱重工コンプレッサ株式会社 Turbine, machine rotative, procédé de fabrication de turbine et procédé de fabrication de machine rotative
JP6763815B2 (ja) * 2017-03-31 2020-09-30 三菱重工コンプレッサ株式会社 遠心圧縮機及びターボ冷凍機
RU2670993C1 (ru) * 2017-08-02 2018-10-29 Василий Сигизмундович Марцинковский Компрессорный агрегат компримирования азото-водородной смеси в производстве аммиака (варианты)
RU2653643C1 (ru) * 2017-09-28 2018-05-11 Акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Центробежный многоступенчатый компрессорный агрегат
CN108223031A (zh) * 2017-12-26 2018-06-29 王尚锦 S-co2布雷顿循环透平、压缩机和发电机一体式机组
CN109611162A (zh) * 2018-10-25 2019-04-12 北京康吉森节能环保技术有限公司 一种利用低压饱和蒸汽发电的节能蒸汽透平发电机组
IT201900003077A1 (it) * 2019-03-04 2020-09-04 Nuovo Pignone Tecnologie Srl Configurazione di turbomacchina compressore-espantore multistadio
FR3095007B1 (fr) * 2019-04-12 2022-01-14 Psa Automobiles Sa Ensemble comprenant deux compresseurs radiaux et deux turbines radiales
FR3095008B1 (fr) * 2019-04-12 2021-04-16 Psa Automobiles Sa Ensemble comprenant deux compresseurs radiaux et deux turbines radiales
CN112983846A (zh) * 2019-12-02 2021-06-18 开利公司 离心压缩机和运行离心压缩机的方法
WO2021171658A1 (fr) * 2020-02-28 2021-09-02 日立グローバルライフソリューションズ株式会社 Dispositif de pompe
CN112483436B (zh) * 2020-11-23 2023-04-07 东方电气集团东方汽轮机有限公司 一种压缩膨胀一体化涡轮机组
CN113586412B (zh) * 2021-09-29 2022-01-21 三一汽车制造有限公司 压缩机系统及其控制方法、控制装置和加氢站
CN114635866B (zh) * 2022-03-16 2023-04-11 西安交通大学 一种大型空分装置配套用三级大流量系数压缩机结构
CN115788939B (zh) * 2023-02-07 2023-06-30 山东华东风机有限公司 一种基于磁悬浮轴承旋转器械的防喘振控制方法及系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202295A (en) * 1922-08-12 1924-06-05 Bbc Brown Boveri & Cie Improvements in multi-stage centrifugal compressors
FR885488A (fr) * 1942-08-26 1943-09-16 Cie Des Procedes Gohin Poulenc Compresseur double pour moteur à gazogène
GB595011A (en) * 1944-03-14 1947-11-25 Sulzer Ag Improvements in or relating to blowers
DE974418C (de) * 1948-10-02 1960-12-15 Demag Ag Kreiselverdichter mit mindestens vier hintereinander-geschalteten Stufen
US3001692A (en) * 1949-07-26 1961-09-26 Schierl Otto Multistage compressors
CH307746A (de) * 1951-12-08 1955-06-15 Von Roll Ag Als Arbeitsmaschine ausgebildete Strömungsmaschine.
DE1750958B1 (de) * 1968-06-21 1971-09-16 Bbc Brown Boveri & Cie Getriebeanordnung zur verteilung der antriebsleistung auf mehrere getriebene wellen
BE790651A (fr) * 1971-10-30 1973-02-15 Demag Ag Turbocompresseur radial a plusieurs etages
US3861820A (en) * 1973-04-10 1975-01-21 Ingersoll Rand Co Centrifugal gas compressor unit
FR2234490A1 (en) * 1973-06-20 1975-01-17 Bhs Bayerische Berg Compressor drive gear with central wheel - has pinion shafts equipped with thrust rings
US3941506A (en) * 1974-09-05 1976-03-02 Carrier Corporation Rotor assembly
JPS5938440B2 (ja) * 1975-01-31 1984-09-17 株式会社日立製作所 流体回転機械
DE2518628A1 (de) * 1975-04-26 1976-10-28 Gutehoffnungshuette Sterkrade Mehrstufiger turbokompressor
JPS5817358B2 (ja) * 1978-03-07 1983-04-06 川崎重工業株式会社 多段タ−ボ形圧縮機
DD137000A1 (de) * 1978-06-19 1979-08-08 Bernd Wunderlich Zentrifugalpumpe
CH655357A5 (en) * 1981-09-28 1986-04-15 Sulzer Ag Method and device for reducing the axial thrust in turbo machines
SU1275120A1 (ru) * 1985-03-26 1986-12-07 Предприятие П/Я Ж-1287 Центробежный насос
JPH0646035B2 (ja) * 1988-09-14 1994-06-15 株式会社日立製作所 多段遠心圧縮機
DE4003482A1 (de) * 1990-02-06 1991-08-08 Borsig Babcock Ag Getriebe-turboverdichter
US5190440A (en) * 1991-03-11 1993-03-02 Dresser-Rand Company Swirl control labyrinth seal
US5161943A (en) * 1991-03-11 1992-11-10 Dresser-Rand Company, A General Partnership Swirl control labyrinth seal
US5320482A (en) * 1992-09-21 1994-06-14 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for reducing axial thrust in centrifugal pumps
DE4241141A1 (de) * 1992-12-07 1994-06-09 Bhs Voith Getriebetechnik Gmbh Verdichteranlage mit einem im Antriebsstrang zwischen einer Antriebseinheit und einem Verdichterbereich der Anlage eingeschalteten Zahnradgetriebe

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003018B4 (de) * 2000-01-25 2009-09-24 Atlas Copco Energas Gmbh Turboverdichter
DE102005041003A1 (de) * 2005-08-29 2007-03-01 Man Turbo Ag Wellendichtung für einen Getriebeexpander oder -kompressor
DE102008031116B4 (de) 2008-05-29 2022-02-03 Man Energy Solutions Se Getriebeturbomaschine für einen Maschinenstrang, Maschinenstrang mit und Getriebe für Getriebeturbomaschine
DE102014203251A1 (de) 2014-02-24 2015-08-27 Siemens Aktiengesellschaft Rückführstufe für eine Radialturbomaschine
EP3361101A1 (fr) 2017-02-10 2018-08-15 Siemens Aktiengesellschaft Canal de retour de compresseur ou turbodétendeur multicellulaire avec aubes directrices vrillées
EP3364039A1 (fr) 2017-02-21 2018-08-22 Siemens Aktiengesellschaft Étage de retour
WO2018153583A1 (fr) 2017-02-21 2018-08-30 Siemens Aktiengesellschaft Étage de retour
EP4015832A1 (fr) 2020-12-18 2022-06-22 Siemens Energy Global GmbH & Co. KG Guidage d'écoulement statique, turbomachine radiale
DE102021120100A1 (de) 2021-08-03 2023-02-09 Voith Patent Gmbh Stirnradgetriebe
WO2023011894A1 (fr) 2021-08-03 2023-02-09 Voith Patent Gmbh Transmission par engrenage cylindrique à denture droite

Also Published As

Publication number Publication date
DE4234739C1 (de) 1993-11-25
US5490760A (en) 1996-02-13
JPH06193585A (ja) 1994-07-12
DE59305589D1 (de) 1997-04-10
RU2111384C1 (ru) 1998-05-20
EP0592803A1 (fr) 1994-04-20

Similar Documents

Publication Publication Date Title
EP0592803B1 (fr) Compresseur à arbres multiples et transmission
DE4416497C1 (de) Getriebe-Mehrwellenturbokompressor und Getriebe-Mehrwellenradialexpander
EP1726814B1 (fr) Moteur à réaction
DE602005000116T2 (de) Strahltriebwerks-Architektur mit zwei Fans an der Vorderseite
DE19828562B4 (de) Triebwerk mit gegenläufig drehenden Rotoren
EP2128448B1 (fr) Turbomachine à boîte de vitesse pour un faisceau de machines, faisceau de machines et boîte de vitesse pour une turbomachine à boîte de vitesse
DE2200497C3 (de) Zweistufiges Frontgebläse für ein Gasturbinenstrahltriebwerk
DE4122008C2 (fr)
DE69914199T2 (de) Langsamlaufender hochdruckturbolader
DE2518919C2 (de) Gasturbinenanlage
DE3714990C2 (fr)
DE102008057472B4 (de) Mehrstufiger Radial-Turboverdichter
DE3943102A1 (de) Turbogeblaesetriebwerk mit einer gegenrotierenden geblaeseantriebsturbine
DE102007052110A1 (de) Strahltriebwerksanordnung und Verfahren, dies zu Montieren
DE69817638T2 (de) Kompressionssystem für eine Turbomaschine
DE102011003525A1 (de) Gestufte Teilfuge an einem Getriebegehäuse
DE102012022131A1 (de) Getriebeturbomaschine
DD237533A5 (de) Seitenkanalpumpe mit kraefteausgleich
DE3315914C2 (fr)
DE102014221339A1 (de) Gestufte Teilfuge an einem Getriebegehäuse
EP0402693B1 (fr) Turbine à gaz avec compresseur à écoulement mixte
DE102009044959A1 (de) Turbokompressor
DE2921965A1 (de) Ein- oder mehrstufiges radiales kreiselverdichteraggregat
DE102017108333A1 (de) Getriebevorrichtung
EP0558769A1 (fr) Turboréacteur avec soufflante ayant un compresseur de suralimentation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI NL

17P Request for examination filed

Effective date: 19940416

17Q First examination report despatched

Effective date: 19950519

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI NL

ITF It: translation for a ep patent filed

Owner name: 0403;01MIFBARZANO' E ZANARDO MILANO S.P.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59305589

Country of ref document: DE

Date of ref document: 19970410

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: GHH BORSIG TURBOMASCHINEN GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: MAN GUTEHOFFNUNGSHUETTE AKTIENGESELLSCHAFT -DANN A

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060914

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060915

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060922

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060926

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070904