EP0591500A1 - Procede de realisation d'un composant photovoltaique multispectral a empilement de cellules - Google Patents

Procede de realisation d'un composant photovoltaique multispectral a empilement de cellules

Info

Publication number
EP0591500A1
EP0591500A1 EP93909024A EP93909024A EP0591500A1 EP 0591500 A1 EP0591500 A1 EP 0591500A1 EP 93909024 A EP93909024 A EP 93909024A EP 93909024 A EP93909024 A EP 93909024A EP 0591500 A1 EP0591500 A1 EP 0591500A1
Authority
EP
European Patent Office
Prior art keywords
layer
substrate
cell
active layer
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP93909024A
Other languages
German (de)
English (en)
Inventor
Linh T. Nuyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Picogiga SA
Original Assignee
Picogiga SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Picogiga SA filed Critical Picogiga SA
Publication of EP0591500A1 publication Critical patent/EP0591500A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates, in general, to the conversion of light energy, in particular of solar energy, into electrical energy by means of components implementing the photovoltaic effect produced in semiconductors.
  • solar cells use only one species of semiconductor material (mainly silicon or gallium arsenide), they cannot transform the light energy of the sun's rays as well as possible, due to the spread of the spectrum of the latter.
  • a given semiconductor material has a determined forbidden bandwidth, so that the photons of energy less than this bandwidth are never absorbed and therefore cannot generate the electron-hole pairs necessary for the photocurrent production.
  • photons of energy greater than that of the forbidden band will, in turn, create electron-hole pairs, but with a excess of energy compared to that of the forbidden band, excess which will be converted into heat and not into electrical energy.
  • multispectral solar cells To improve the conversion of solar energy, it has been proposed to combine, according to various configurations, several different semiconductors having different bandwidths. These components are called “multispectral solar cells”.
  • One of the proposed configurations, to which the invention relates, is said to be "stacked" and consists in making beforehand, each on its own substrate, two (or more) different cells which are then superimposed by fixing with transparent glue.
  • This adhesive can either be conductive, which makes it possible to connect the two cells in series (but in this case, the photocurrent produced by the device is limited by the weakest photocurrent generated), or insulating, each cell then being provided clean electrodes connected separately to circuits separate from the electronics of the load block (which must therefore have been designed accordingly).
  • This configuration has a certain number of drawbacks, in particular the fact that, as two cells have to be produced separately, the final component comprises two thicknesses of substrate, thereby increasing the weight and the cost of the structure, all particu ⁇
  • the GaAs substrate which is the heaviest and most expensive, does not serve as a mechanical support and does not play any active role.
  • One of the aims of the invention is to remedy the drawbacks of multispectral cells of this type, by reducing the cost and the weight thereof by elimination and recovery of one or both of the substrates, with all the correlative advantages which could result.
  • the substrate being eliminated, it is no longer necessary to make vias to cross it and ensure contact with the lower layer of the component; the manufacturing cost of the latter is reduced especially ; the weight of the component is considerably reduced, which is advantageous in the space domain; finally, thermal dissipation is significantly improved due to the elimination of the thermal resistance formed, in current components, by the substrate (GaAs and InP being poor conductors of heat).
  • the invention proposes to produce the component by a process consisting in: (a) producing a first cell comprising a first substrate, a first optically active layer and, between this substrate and this active layer, a thin soluble layer; (b) producing a second cell comprising a second substrate and a second optically active layer, of a different nature from the first; (c) arranging opposite these two cells so that the active layers are turned towards one another; (d) joining the two elementary cells by their active layers by means of a transparent adhesive; and (e) dissolving the material of the soluble layer leaving the other materials intact, so as to separate, without dissolving it, the first substrate from the rest of the structure.
  • step (b) the second cell is produced with, between its substrate and its active layer, a thin soluble layer, so as to also separate, in step (e), the second substrate d 'with the rest of the structure.
  • the material of the first substrate and / or of the second substrate may in particular be a binary or ternary III-V semiconductor, in which case the corresponding soluble thin layer may be an epitaxial layer of a ternary III-V semiconductor material having a molar fraction of aluminum of at least 40% and an atomic mesh compatible with that of the substrate on which it is epitaxied, the dissolution of step (e) being effected by chemical means.
  • This material can also be a semi-insulating or n-type semiconductor, in which case the corresponding soluble thin layer can be a layer of p + doped semiconductor material, the corresponding active layer comprising at least one infe ⁇ higher doped n and the dissolution of step (e) being effected anodically and without illumination.
  • the corresponding soluble thin layer can be a layer of p + doped semiconductor material, the corresponding active layer comprising at least one infe ⁇ higher doped n and the dissolution of step (e) being effected anodically and without illumination.
  • We can also, in either case, fix the structure obtained in step (e) on a reflective support.
  • the subject of the invention is also, as a new product, a multispectral photovoltaic component comprising a stack of at least two elementary cells associated with different spectral response characteristics and comprising a first cell comprising a first layer optically active, a second cell comprising a second optically active layer, of a different nature from the first, and a layer of transparent adhesive joining these two cells.
  • the first cell is essentially devoid of a layer forming a substrate, and the active layers of the two cells are turned towards one another and joined by said layer of transparent adhesive.
  • the second cell can also be, if desired, essentially devoid of a substrate layer.
  • the component may advantageously further comprise a reflective support.
  • FIG. 1 shows the structure of a multispectral cell of the prior art, the two elementary cells of which are connected in series.
  • FIG. 2 shows the structure of a multispectral cell of the prior art, the two elementary cells of which are provided with independent independent electrodes.
  • Figures 3a to 3d illustrate the successive steps of a first method of implementing the invention.
  • FIGS. 1 and 2 illustrate the successive steps of a second method of implementing the invention.
  • FIGS. 1 and 2 the conventional structure of a multispectral cell of the stacking type is shown, according to two alternative embodiments.
  • the component is essentially constituted from two elementary cells 1 and 2 of different band gap widths, most often chosen from cells on amorphous silicon, on gallium arside and on indium phosphide.
  • the first elementary cell 1 comprises a substrate 4 on which an active layer 5 is formed, the thickness and the composition of which are chosen as a function of the component to be produced.
  • This active layer 5 can consist of a stack of successive layers each having a different composition, doping and thickness, the term “active layer” here collectively designating this stack.
  • Metallizations 6 and 7 ensure contact and constitute the electrodes of this first elementary cell.
  • the second elementary cell 2 has a similar structure (but with a different choice of material): a substrate 8 carries an active layer 9, and metallizations 10, 11 constitute the electrodes of the cell.
  • This cell 2 can be a cell of a common commercial type, used as it is without any particular structural modification, for example an amorphous silicon solar cell such as those described by A. Takeoka, Technology Brightens Prospects for Solar Power, Journal of Electronic Engineering, July 1991, p. 100.
  • the adhesive 3 is conductive (FIG. 1), it electrically connects the electrodes 7 and 10, thus putting the two cells 1 and 2 in series; the electrodes 6 and 11 then constitute the terminals A and B of the component.
  • each group of metallizations is connected to respective terminals A 1? A 2 and B l5 B 2 of the component, which will supply separate circuits to the electronic load block.
  • This configuration is more complex, but it makes it possible to take account of the different electrical parameters of the two cells, in particular avoiding the disadvantage, specific to the coupling in series of two cells, that the photocurrent produced and necessarily limited by most weak photocurrent generated by one of the cells.
  • the two cells are always turned with their active face upwards, that is to say that, during bonding, it is the back (sub ⁇ strat 4) of cell 1 which is just glued against the face (active layer 9) of cell 2.
  • the basic idea of the invention consists in recovering the substrate of at least one of the two cells, for example by chemical or electxochemical dissolution of an intermediate layer provided between sub ⁇ stratum and active layer, this dissolution being done after the two cells are already glued together.
  • Figures 3a to 3d schematically illustrate the successive steps of such a method.
  • First Figure 3a
  • the soluble thin layer 12 is an epitaxial layer of a ternary III-V semiconductor material rich in aluminum and atomic mesh compatible with that of the substrate 4.
  • This material of layer 12 can in particular be Al ⁇ Ga 1. ⁇ As (on GaAs substrate) or Al ⁇ In 1 _ x As (on InP substrate) with a molar fraction (content) of aluminum ⁇ j > 0.50 approximately.
  • the substrate 4 may for example have a thickness of 500 ⁇ m and the soluble thin layer a thickness of the order of a few tens of nanometers.
  • the active layer 5 itself comprises layers rich in aluminum, it will be necessary to protect its sides with an inert material, because otherwise these layers rich in aluminum would also be damaged. during the dissolution.
  • French patent application 91-15139 in the name of the Applicant, which describes in detail such a technique.
  • a photosensitive resin or a passivation layer of the component (oxide or nitride) deposited by a conventional route is chosen as inert protective material, and this material is selectively removed so as to expose the intermediate layer 12 in a region iso ⁇ lée such as that referenced at 13 in Figure 3a.
  • This selective removal can be carried out by conventional techniques of electronic photolithography (in the case of a photosensitive resin layer) or of etching (in the case of a passivation layer).
  • the material constituting the face of the active layer 5 which is in contact with the intermediate layer 12 has a low aluminum content, otherwise the component would be attacked from below when the intermediate layer 12 is dissolved.
  • This material is generally a layer of GaAs, InP or Ga ⁇ ⁇ As, the layers of ⁇ Ga ⁇ As rich in aluminum being located deeper in the stack of layers of the active layer 5.
  • the two components are then bonded together (FIG. 3b) with an adhesive, conductive or insulating as the case may be, in the same way as in the prior art, but with the essential difference that, in the case of the invention, the substrate of cell 1 is turned upwards, i.e. it is by the active layer 5 that cell 1 is bonded to cell 2, and not by its substrate 4 (as was the case with the configuration of the prior art, illustrated in FIGS. 1 and 2).
  • the process continues (FIG. 3d) by depositing metallizations on the free face of cell 1; it will be noted that, due to the absence of a substrate, the deposition of the metallization allows direct contact, without interposition of the substrate, on the rear face of the active layer 5 and therefore without the need to form vias .
  • the component can advantageously be bonded to a reflecting support 14, which makes it possible to double the absorption path of the photons by reflection from them and therefore improve the overall yield of the component.
  • Another technique implementing an electrochemical dissolution (anodic dissolution) can also be used. yée, especially for components which are not realized on a GaAs or InP substrate and to which the above technique is not applicable.
  • This other technique which is set out in French patent application 91-15138 in the name of the Applicant, consists essentially of epitaxing on the substrate 4, which may be made of silicon, GaAs, InP, etc., a thin interlayer 12 which is a p + doped.
  • the active layer 5 is then formed on this intermediate layer 12.
  • the intermediate layer 12 can also be obtained by implantation through the active layer 5.
  • the material constituting the face of the active layer 5 in contact with the intermediate layer 12 is not doped p, ver ⁇ ment the component would be attacked from below during the electrochemical dissolu ⁇ tion of the intermediate layer 12 ; this material is generally an n + doped layer.
  • the active layer has one or more p layers, special precautions must be taken by protecting the sides of the layer with an inert material, in the same way as for layers rich in aluminum in the case of dissolution by chemical means.
  • the anodic dissolution step consists in dissolving the semiconductor material of the p + doped interlayer 12 by contacting with an electrolyte (for example KOH), this material constituting the anode with respect to a reference electrode.
  • this electrode gradually disappears, that is to say that the material of the intermediate layer - and of this single layer - is gradually eliminated.
  • the electrolyte attacks this layer at the exposed place 13, then by the edge of this layer.
  • the rest of the structure, in particular the substrate and regions possibly protected by an inert layer, which are neutral from the electrochemical point of view, are however left intact.
  • cell 2 has an inexpensive substrate, for example silicon, and especially amorphous silicon.
  • the two substrates are expensive or of high weight, such as GaAs and InP, it is preferred to eliminate the substrates from each of the two elementary cells.
  • FIGS. 4a to 4d are homologous to FIGS. 3a to 3d, for such a method: in this case, in addition to the thin soluble layer 12 for the component 1, a soluble thin layer 15 for the component 2 is inserted, inserted between the substrate 8 and the active layer 9, this layer being exposed at 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Selon ce procédé: (a) on produit une première cellule (1) comprenant un premier substrat (4), une première couche optiquement active (5) et, entre ce substrat et cette couche active, une couche mince soluble (12), (b) on produit une seconde cellule (2) comprenant un second substrat (8) et une seconde couche optiquement active (9), de nature différente de la première, (c) on dispose en vis-à-vis ces deux cellules de manière que les couches actives soient tournées l'une vers l'autre, (d) on réunit les deux cellules élémentaires par leurs couches actives au moyen d'une colle transparente (3), et (e) on dissout par voie chimique ou électrochimique le matériau de la couche soluble en laissant intacts les autres matériaux, de manière à séparer, sans le dissoudre, le premier substrat d'avec le reste de la structure.

Description

Composant photovoltaïque multispectral à empilement de cellules, et procédé de réalisation
L'invention concerne, de façon générale, la conversion de l'éner¬ gie lumineuse, notamment de l'énergie solaire, en énergie électrique au moyen de composants mettant en œuvre l'effet photovoltaïque produit dans les semiconducteurs. Lorsque ces composants, généralement appelés « cellules solai¬ res », n'utilisent qu'une seule espèce de matériau semiconducteur (principalement le silicium ou l'arséniure de gallium), ils ne peuvent transformer au mieux l'énergie lumineuse du rayonnement solaire, en raison de l'étalement du spectre de ce dernier. En effet, un maté- riau semiconducteur donné possède une largeur de bande interdite déterminée, de sorte que les photons d'énergie inférieure à cette lar¬ geur de bande ne sont jamais absorbés et ne peuvent donc générer les paires électron-trou nécessaires à la production du photocourant. À l'opposé, les photons d'énergie supérieure à celle de la bande inter- dite vont, quant à eux, créer des paires électron-trou, mais avec un excès d'énergie par rapport à celle de la bande interdite, excès qui sera converti en chaleur et non en énergie électrique.
Pour améliorer la conversion de l'énergie solaire, il a été proposé d'associer, selon diverses configurations, plusieurs semiconducteurs différents ayant des largeurs de bande interdite différentes. Ces composants sont appelés « cellules solaires multispectrales ».
L'une des configurations proposées, à laquelle se rattache l'inven¬ tion, est dite « empilée » et consiste à réaliser au préalable, chacune sur son propre substrat, deux (ou plus) cellules différentes que l'on superpose ensuite en les fixant par une colle transparente. Cette colle peut être soit conductrice, ce qui permet de relier en série les deux cellules (mais dans ce cas, le photocourant produit par le dispo¬ sitif est limité par le plus faible photocourant généré), soit isolante, chacune des cellules étant alors pourvue d'électrodes propres reliées séparément à des circuits distincts de l'électronique du bloc de charge (qui devra donc avoir été conçu en conséquence).
Cette configuration présente un certain nombre d'inconvénients, notamment le fait que, comme l'on doit réaliser séparément deux cellules, le composant final comprend deux épaisseurs de substrat, accroissant d'autant le poids et le coût de la structure, tout particu¬ lièrement lorsque l'on empile une cellule GaAs (ou, a fortiori, IhP) sur une cellule silicium : le substrat GaAs, qui est le plus lourd et le plus cher, ne sert aucunement de support mécanique et ne joue aucun rôle actif. On peut, certes, amincir cette couche par rodage pour réduire le poids de la ceEule, mais ceci en accroît encore le coût, car le matériau ainsi rodé n'est pas récupérable et l'étape supplé¬ mentaire de rodage vient grever d'autant le coût final de production du composant.
L'un des buts de l'invention est de remédier aux inconvénients des cellules multispectrales de ce type, en en réduisant le coût et le poids par élimination et récupération de l'un ou des deux substrats, avec tous les avantages corrélatifs qui pourront en découler. Ainsi : le substrat étant éliminé, il n'est plus nécessaire de réaliser des vias pour le traverser et assurer la prise de contact à la couche inférieure du composant ; le coût de fabrication de ce dernier en est diminué d'autant ; le poids du composant est considérablement réduit, ce qui est avantageux dans le domaine spatial ; enfin, la dissipation ther¬ mique est notablement améliorée du fait de la suppression de la résistance thermique constituée, dans les composants actuels, par le substrat (GaAs et InP étant mauvais conducteurs de la chaleur).
À cet effet, l'invention propose de réaliser le composant par un procédé consistant à : (a) produire une première cellule comprenant un premier substrat, une première couche optiquement active et, entre ce substrat et cette couche active, une couche mince soluble ; (b) produire une seconde cellule comprenant un second substrat et une seconde couche optiquement active, de nature différente de la première ; (c) disposer en vis-à-vis ces deux cellules de manière que les couches actives soient tournées l'une vers l'autre ; (d) réunir les deux cellules élémentaires par leurs couches actives au moyen d'une colle transparente ; et (e) dissoudre le matériau de la couche soluble en laissant intacts les autres matériaux, de manière à séparer, sans le dissoudre, le premier substrat d'avec le reste de la structure.
Avantageusement, à l'étape (b), on produit la seconde cellule avec, entre son substrat et sa couche active, une couche mince solu- ble, de manière à séparer également, à l'étape (e), le second substrat d'avec le reste de la structure.
Le matériau du premier substrat et/ou du second substrat peut notamment être un semiconducteur III-V binaire ou ternaire, auquel cas la couche mince soluble correspondante peut être une couche épitaxiée d'un matériau semiconducteur III-V ternaire présentant une fraction molaire d'aluminium d'au moins 40% et de maille ato¬ mique compatible avec celle du substrat sur lequel elle est épitaxiée, la dissolution de l'étape (e) étant opérée par voie chimique.
Ce matériau peut également être un semiconducteur semi-iso- lant ou de type n, auquel cas la couche mince soluble correspondante peut être une couche d'un matériau semiconducteur dopé p+, la cou¬ che active correspondante comportant au moins une couche infé¬ rieure dopée n et la dissolution de l'étape (e) étant opérée par voie anodique et sans illumination. On peut par ailleurs, dans l'un ou l'autre cas, fixer la structure obtenue à l'étape (e) sur un support réfléchissant.
L'invention a également pour objet, en tant que produit nouveau, un composant photovoltaïque mult-ispectral comprenant un empile¬ ment d'au moins deux cellules élémentaires associées de caractéris- tiques de réponse spectrale différentes et comportant une première cellule comprenant une première couche optiquement active, une seconde cellule comprenant une seconde couche optiquement active, de nature différente de la première, et une couche de colle transpa¬ rente réunissant ces deux cellules. De façon caractéristique de l'in- vention, la première cellule est essentiellement dépourvue de couche formant substrat, et les couches actives des deux cellules sont tour¬ nées l'une vers l'autre et réunies par ladite couche de colle transpa¬ rente.
La seconde cellule peut être également, si on le souhaite, essen- tiellement dépourvue de couche formant substrat. Dans l'un ou l'au¬ tre cas, le composant peut avantageusement comprendre en outre un support réfléchissant.
On va maintenant décrire des exemples de mise en œuvre de l'invention, en référence aux dessins annexés sur lesquels les mêmes références numériques désignent toujours des éléments semblables.
La figure 1 montre la structure d'une cellule multispectrale de l'art antérieur dont les deux cellules élémentaires sont reliées en série.
La figure 2 montre la structure d'une cellule multispectrale de Tart antérieur dont les deux cellules élémentaires sont pourvues d'électrodes propres indépendantes. Les figures 3a à 3d illustrent les étapes successives d'un premier procédé de mise en œuvre de l'invention.
Les figures 4a à 4d illustrent les étapes successives d'un second procédé de mise en œuvre de l'invention. Sur les figures 1 et 2, on a représenté la structure classique d'une cellule multispectrale du type à empilement, selon deux variantes de réalisation.
Le composant est essentiellement constitué à partir de deux cel- Iules élémentaires 1 et 2 de largeurs de bande interdite différentes, le plus souvent choisies parmi les cellules sur silicium amorphe, sur arsé iure de gallium et sur phosphure d'indium.
Ces deux cellules sont réunies mécaniquement par une colle transparente (optiquement inactive) 3, cette colle étant soit conduc- trice (cas de la figure 1 ; elle assure alors non seulement une liaison mécanique mais également une liaison électrique) soit non conduc¬ trice (cas de la figure 2).
La première cellule élémentaire 1 comporte un substrat 4 sur lequel est formée une couche active 5 dont l'épaisseur et la constitu- tion sont choisis en fonction du composant à réaliser. Cette couche active 5 peut être constituée d'un empilement de couches successives présentant chacune une composition, un dopage et une épaisseur différents, le terme « couche active » désignant ici collectivement cet empilement. Des métallisations 6 et 7 assurent la prise de contact et constituent les électrodes de cette première cellule élémentaire.
La seconde cellule élémentaire 2 a une structure semblable (mais avec un choix de matériau différent) : un substrat 8 porte une cou¬ che active 9, et des métallisations 10, 11 constituent les électrodes de la cellule. Cette cellule 2 peut être une cellule d'un type commer- cial courant, utilisée telle quelle sans modification particulière de structure, par exemple une cellule solaire en silicium amorphe telle que celles décrites par A. Takeoka, Technology Brightens Prospects for Solar Power, Journal of Electronic Engineering, juillet 1991 , p. 100. Lorsque la colle 3 est conductrice (figure 1), elle relie électrique¬ ment les électrodes 7 et 10, mettant ainsi en série les deux cellules 1 et 2 ; les électrodes 6 et 11 constituent alors les bornes A et B du composant.
Lorsque la colle 3 est non conductrice (figure 2), chaque groupe de métallisations est relié à des bornes respectives A1 ? A2 et Bl5 B2 du composant, qui alimenteront des circuits distincts du bloc électro¬ nique de charge. Cette configuration est plus complexe, mais elle permet de tenir compte des paramètres électriques différents des deux cellules, en évitant notamment l'inconvénient, propre au cou- plage en série de deux cellules, que le photocourant produit et néces¬ sairement limité par le plus faible photocourant généré par l'une des cellules.
On notera que, dans l'une ou l'autre de ces structures de l'art antérieur, les deux cellules sont toujours tournées avec leur face active vers le haut, c'est-à-dire que, lors du collage, c'est le dos (sub¬ strat 4) de la cellule 1 que l'on vient coller contre la face (couche ac¬ tive 9) de la cellule 2.
L'idée de base de l'invention consiste à récupérer le substrat de l'une au moins des deux cellules, par exemple par dissolution chimi- que ou électxochimique d'une couche intercalaire prévue entre sub¬ strat et couche active, cette dissolution étant effectuée une fois les deux cellules déjà collées ensemble.
Les figures 3a à 3d illustrent schématiquement les étapes succes¬ sives d'un tel procédé. Tout d'abord (figure 3a), on réalise séparément deux cellules 1 et
2 de manière classique, à la seule différence près que, pour la cellule 1, on prévoit entre la couche active 5 et le substrat 4 une couche intercalaire soluble, mince, 12. Par exemple, lorsqu'il s'agit d'un sub¬ strat en un semiconducteur III-V binaire ou ternaire, tel que GaAs notamment, la couche mince soluble 12 est une couche épitaxiée d'un matériau semiconducteur III-V ternaire riche en aluminium et de maille atomique compatible avec celle du substrat 4. Ce matériau de la couche 12 peut notamment être AlχGa1.χAs (sur substrat GaAs) ou AlχIn1_xAs (sur substrat InP) avec une fraction molaire (teneur) en aluminium ^j > 0,50 environ. Le substrat 4 peut avoir par exemple une épaisseur de 500 μm et la couche mince soluble une épaisseur de l'ordre de quelques dizaines de nanomètres.
Si la couche active 5 comporte elle-même des couches riches en aluminium, il faudra protéger ses flancs par un matériau inerte, car sinon ces couches riches en aluminium seraient également atta- quées lors de la dissolution. A cet égard, on pourra se référer à la demande de brevet français 91-15139 au nom de la Demanderesse, qui expose en détail une telle technique. Essentiellement, on choisit comme matériau inerte de protection une résine photosensible ou une couche de passivation du composant (oxyde ou nitrure) déposée par une voie classique, et on enlève sélectivement ce matériau de manière à mettre à nu la couche interméd aire 12 en une région iso¬ lée telle que celle référencée en 13 sur la figure 3a. Cet enlèvement sélectif peut être réalisé par des techniques classiques de photolitho- graphie électronique (dans le cas d'une couche en résine photosen¬ sible) ou de gravure (dans le cas d'une couche de passivation).
Bien entendu, le matériau constituant la face de la couche active 5 qui est en contact avec la couche intercalaire 12 présente une faible teneur en aluminium, autrement le composant serait attaqué par le dessous lors de la dissolution de la couche intercalaire 12. Ce matériau est généralement une couche de GaAs, InP ou Ga^ ^As, les couches de ^Ga^As riche en aluminium étant situées plus profondément dans l'empilement de couches de la couche active 5.
On colle alors ensemble les deux composants (figure 3b) avec une colle, conductrice ou isolante selon le cas, de la même manière que dans l'art antérieur, mais à la différence essentielle que, dans le cas de l'invention, le substrat de la cellule 1 est tourné vers le haut, c'est-à-dire que c'est par la couche active 5 que la cellule 1 est collée sur la cellule 2, et non par son substrat 4 (comme cela était le cas avec la configuration de l'art antérieur, illustré figures 1 et 2).
On trempe alors l'ensemble dans un bain d'acide dilué, par exem¬ ple de l'acide chlorhydrique à 50%, ce choix d'acide n'étant en aucu¬ ne façon limitatif.
Cette opération a pour effet (figure 3c) d'attaquer la couche mince 12 riche en aluminium, l'acide venant attaquer la couche de
AlχGa1.χAs par l'endroit 13 mis à nu, puis par le chant de cette cou¬ che.
Le reste de la structure est en revanche laissé intact, notamment le substrat 4 détaché, les flancs éventuellement protégés par une couche inerte et les autres couches 3, 5, 8 et 9. Cette technique de séparation du substrat par dissolution chimi¬ que est basée sur le fait que le composé A^Ga^^-As à forte teneur en aluminium (x^ > 0,50) constituant la couche intercalaire se dissout très rapidement dans l'acide chlorhydrique ou fiuorhydrique, à la différence de GaAs ou A Gaj „As à faible teneur en aluminium
(y^j < 0,30). On pourra se référer à cet égard à M. Konagai et al., High Efficiency GaAs Thin Film Solar Cells by Peeled Film Technol¬ ogy, Journal of Crystal Growth, n° 45 (1978), p. 277 ou à E. Yablo- novitch et al., Extrême Selectiυity in the Lift-Off of Epitaxial GaAs Films, Appl. Phys. Lett., Vol. 51, n° 26, 28 décembre 1987, p. 222.
Comme l'indique notamment ce dernier article, on constate une sé¬ lectivité très forte de la vitesse d'attaque en fonction de la composi¬ tion de la couche, cette vitesse croissant très brutalement dès que la fraction molaire d'aluminium dépasse un seuil de 40 à 50%. Ainsi, pour une couche épitaxiale de A^Ga^^ s de plusieurs dizaines de nanomètres, l'immersion pendant une nuit dans HC1 dilué à 50% montre une attaque totale de ce matériau sur une sur¬ face de tranche de 2 pouces de diamètre (5 cm environ), le substrat GaAs se détachant de lui-même du reste du composant. La tranche de substrat ainsi détachée, qui n'a pas été attaquée par l'acide, est parfaitement réutilisable pour la réalisation d'autres cellules sur cette même tranche.
Le processus se poursuit (figure 3d) par dépôt des métallisations sur la face libre de la cellule 1 ; on notera que, du fait de l'absence de substrat, le dépôt de la métallisation permet une prise de contact directe, sans interposition du substrat, sur la face arrière de la cou¬ che active 5 et donc sans avoir besoin de former des vias.
Par ailleurs, le composant peut être avantageusement collé sur un support réfléchissant 14, ce qui permet de doubler le parcours d'absorption des photons par réflexion de ceux-ci et donc d'améliorer le rendement global du composant.
La technique que l'on vient de décrire mettait en œuvre une dis¬ solution par voie chimique.
Un autre technique, mettant en œuvre une dissolution par voie électrochimique (dissolution anodique) peut également être emplo- yée, tout particulièrement pour les composants qui ne sont pas réali¬ sés sur substrat GaAs ou InP et auxquels la technique précédente n'est pas applicable.
Cette autre technique, qui est exposée dans la demande de brevet français 91-15138 au nom de la Demanderesse, consiste essentielle¬ ment à épitaxier sur le substrat 4, qui peut être en silicium, GaAs, InP, etc., une couche intercalaire mince 12 qui est une dopée p+. Sur cette couche intercalaire 12 on forme ensuite la couche active 5. La couche intercalaire 12 peut également être obtenue par implanta- tion à travers la couche active 5.
Bien entendu, le matériau constituant la face de la couche active 5 en contact avec la couche intercalaire 12, n'est pas dopé p, autre¬ ment le composant serait attaqué par le dessous lors de la dissolu¬ tion électrochimique de la couche intercalaire 12 ; ce matériau est généralement une couche dopée n+. Si la couche active comporte une ou plusieurs couches p, des précautions particulières devront être prises en protégeant les flancs de la couche par un matériau inerte, de la même manière que pour les couches riches en aluminium dans le cas de la dissolution par voie chimique. L'étape de dissolution anodique consiste à dissoudre le matériau semiconducteur de la couche intercalaire 12 dopée p+ par mise en contact avec un électrolyte (par exemple KOH), ce matériau consti¬ tuant l'anode par rapport à une électrode de référence. Par le phéno¬ mène d'« anode soluble » cette électrode disparaît progressivement, c'est-à-dire que le matériau de la couche intercalaire — et de cette seule couche — se trouve progressivement éliminé. L'électrolyte vient attaquer cette couche à l'endroit 13 mis à nu, puis par le chant de cette couche. Le reste de la structure, notamment le substrat et des régions éventuellement protégées par une couche inerte, qui sont neutres du point de vue électrochimique, sont en revanche lais¬ sés intacts.
Pour de plus amples détails sur le phénomène de dissolution électrochimique d'un matériau semiconducteur, on pourra se référer notamment à l'étude de T. Ambridge et al., The Electrochemical Characterization of n-Type Gallium Arsenide, Journal of Applied Electrochemistry, Vol. 3 (1973), p. 1, qui décrit un procédé dans lequel cette dissolution est utilisée pour déterminer le dopage d'une couche de GaAs de type n. Il ne s'agit toutefois que d'un procédé visant à la caractérisation électrique d'une couche de surface d'une structure semiconductrice, et il n'est nulle part envisagé d'utiliser cette technique pour séparer un substrat de composants réalisés sur celui-ci par dissolution d'une couche intercalaire enterrée.
On notera que, dans ce phénomène de dissolution anodique, ce sont les trous qui participent au transfert de charges, non les élec- trons (voir notamment à ce sujet H. Gerisher, Physical Chemistry —
An Adυanced Treatise : IX A Electrochemistry, Chap. 5, édité par Eyring, Henderson & Jost, Académie Press, New York (1970)). Au¬ trement dit, en l'absence de trous, le semiconducteur n'est pas dis¬ sous, ce qui revient également à dire que seuls les semiconducteurs de type p peuvent être dissous. En ce qui concerne les semiconduc¬ teurs de type n, ils ne peuvent être dissous que si l'on génère des trous par une action exogène, typiquement par illumination. C'est pourquoi, dans l'étape de processus de dissolution anodique selon l'invention, on prévoit d'effectuer cette dissolution anodique dans l'obscurité, afin de dissoudre exclusivement le semiconducteur de ty¬ pe p et de laisser intacts les semiconducteurs de type n, notamment le matériau constituant la région inférieure de la couche active.
Le procédé que l'on vient de décrire en référence aux figures 3a à 3d s'applique plutôt au cas où la cellule 2 a un substrat bon marché, par exemple le silicium, et surtout le silicium amorphe.
Lorsque les deux substrats sont chers ou de poids élevé, tels que GaAs et InP, on préfère éliminer les substrats de chacune des deux cellules élémentaires.
Les figures 4a à 4d sont homologues des figures 3a à 3d, pour un tel procédé : dans ce cas, on prévoit, outre la couche mince soluble 12 pour le composant 1, une couche mince soluble 15 pour le composant 2, intercalée entre le substrat 8 et la couche active 9, cette couche étant mise à nu en 16.
Les opérations subséquentes ont heu de la même façon que dans le processus précédent, les procédés de dissolution par voie électro- chimique et par voie chimique pouvant être éventuellement utilisés successivement si la nature des matériaux respectifs des deux cel¬ lules le requiert.
Après avoir produit les deux cellules élémentaires (figure 4a), les avoir collées ensemble, face active contre face active (figure 4b) et avoir séparé les substrats (figure 4c), on aboutit à la structure de la figure 4d qui ne comporte que les deux couches actives 5 et 9 et la couche de colle 3. On fixe alors cette structure sur un support 14 qui dans ce dernier cas joue également le rôle de support mécanique.

Claims

REVENDICATIONS
1. Un procédé de réalisation d'un composant photovoltaïque mul- tispectral comprenant un empilement d'au moins deux cellules élé- mentaires associées de caractéristiques de réponse spectrale diffé¬ rentes, caractérisé par les étapes consistant à :
(a) produire une première cellule (1) comprenant un premier substrat (4), une première couche optiquement active (5) et, entre ce substrat et cette couche active, une couche mince soluble (12),
(b) produire une seconde cellule (2) comprenant un second sub¬ strat (8) et une seconde couche optiquement active (9), de nature différente de la première,
(c) disposer en vis-à-vis ces deux cellules de manière que les couches actives soient tournées l'une vers l'autre,
(d) réunir les deux cellules élémentaires par leurs couches acti¬ ves au moyen d'une colle transparente (3), et
(e) dissoudre le matériau de la couche soluble en laissant intacts les autres matériaux, de manière à séparer, sans le dis-' soudre, le premier substrat d'avec le reste de la structure.
2. Le procédé de la revendication 1, dans lequel, à l'étape (b), on produit la seconde cellule avec, entre son substrat (8) et sa couche active (9), une couche mince soluble (15) de manière à séparer égale- ment, à l'étape (e), le second substrat d'avec le reste de la structure.
3. Le procédé de la revendication 1 ou de la revendication 2, dans lequel, le matériau du premier substrat et/ou du second substrat est un semiconducteur m-V binaire ou ternaire, la couche mince soluble correspondante est une couche épitaxiée d'un matériau semiconduc¬ teur m-V ternaire présentant une fraction molaire d'aluminium d'au moins 40% et de maille atomique compatible avec celle du sub¬ strat sur lequel elle est épitaxiée, et la dissolution de l'étape (e) est opérée par voie chimique.
4. Le procédé de la revendication 1 ou de la revendication 2, dans lequel, le matériau du premier substrat et ou du second substrat est un semiconducteur semi-isolant ou de type n, la couche mince soluble correspondante est une couche d'un matériau semiconduc- teur dopé p+, la couche active correspondante comporte au moins une couche inférieure dopée n, et la dissolution de l'étape (e) est opé¬ rée par voie anodique et sans illumination.
5. Le procédé de la revendication 1 ou de la revendication 2, com- prenant en outre une étape finale consistant à :
(f) fixer la structure obtenue à l'étape (e) sur un support réflé¬ chissant (14).
6. Un composant photovoltaïque multispectral comprenant un empilement d'au moins deux cellules élémentaires associées de caractéristiques de réponse spectrale différentes, comprenant :
— une première cellule (1) comprenant une première couche opti¬ quement active (5),
— une seconde cellule (2) comprenant une seconde couche opti- quement active (9), de nature différente de la première, et
— une couche de colle transparente (3) réunissant ces deux cel¬ lules, composant caractérisé en ce que :
— la première cellule est essentiellement dépourvue de couche formant substrat, et
— les couches actives des deux cellules sont tournées l'une vers l'autre et réunies par ladite couche de colle transparente.
7. Le composant de la revendication 6, dans lequel la seconde cel- Iule est également essentiellement dépourvue de couche formant substrat.
8. Le composant de la revendication 6 ou de la revendication 7, comprenant en outre un support réfléchissant (14).
EP93909024A 1992-04-15 1993-04-15 Procede de realisation d'un composant photovoltaique multispectral a empilement de cellules Ceased EP0591500A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9204633 1992-04-15
FR9204633A FR2690278A1 (fr) 1992-04-15 1992-04-15 Composant photovoltaïque multispectral à empilement de cellules, et procédé de réalisation.
PCT/FR1993/000375 WO1993021662A1 (fr) 1992-04-15 1993-04-15 Composant photovoltaique multispectral a empilement de cellules, et procede de realisation

Publications (1)

Publication Number Publication Date
EP0591500A1 true EP0591500A1 (fr) 1994-04-13

Family

ID=9428902

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93909024A Ceased EP0591500A1 (fr) 1992-04-15 1993-04-15 Procede de realisation d'un composant photovoltaique multispectral a empilement de cellules

Country Status (5)

Country Link
US (1) US5458694A (fr)
EP (1) EP0591500A1 (fr)
JP (1) JPH06511357A (fr)
FR (1) FR2690278A1 (fr)
WO (1) WO1993021662A1 (fr)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827751A (en) * 1991-12-06 1998-10-27 Picogiga Societe Anonyme Method of making semiconductor components, in particular on GaAs of InP, with the substrate being recovered chemically
JP2571024B2 (ja) * 1994-09-28 1997-01-16 日本電気株式会社 マルチチップモジュール
US5789278A (en) * 1996-07-30 1998-08-04 Micron Technology, Inc. Method for fabricating chip modules
JPH10284535A (ja) * 1997-04-11 1998-10-23 Toshiba Corp 半導体装置の製造方法及び半導体部品
US6326241B1 (en) * 1997-12-29 2001-12-04 Visteon Global Technologies, Inc. Solderless flip-chip assembly and method and material for same
US6117382A (en) 1998-02-05 2000-09-12 Micron Technology, Inc. Method for encasing array packages
US6166318A (en) 1998-03-03 2000-12-26 Interface Studies, Inc. Single absorber layer radiated energy conversion device
FR2777116A1 (fr) * 1998-04-03 1999-10-01 Picogiga Sa Structure a semiconducteurs de composant photovoltaique
US6259036B1 (en) 1998-04-13 2001-07-10 Micron Technology, Inc. Method for fabricating electronic assemblies using semi-cured conductive elastomeric bumps
FR2894990B1 (fr) 2005-12-21 2008-02-22 Soitec Silicon On Insulator Procede de fabrication de substrats, notamment pour l'optique,l'electronique ou l'optoelectronique et substrat obtenu selon ledit procede
GB0118150D0 (en) * 2001-07-25 2001-09-19 Imperial College Thermophotovoltaic device
US6582990B2 (en) 2001-08-24 2003-06-24 International Rectifier Corporation Wafer level underfill and interconnect process
FR2837625B1 (fr) * 2002-03-19 2004-09-17 Commissariat Energie Atomique Dispositif photovoltaique multi-jonctions a cellules independantes sans effet d'ombrage et procede de realisation d'un tel dispositif
US7488890B2 (en) * 2003-04-21 2009-02-10 Sharp Kabushiki Kaisha Compound solar battery and manufacturing method thereof
EP1513171A1 (fr) * 2003-09-05 2005-03-09 Sony International (Europe) GmbH Cellule solaire sensibilisé par un colorant et méthode pour sa fabrication
US20050247339A1 (en) * 2004-05-10 2005-11-10 Imperial College Innovations Limited Method of operating a solar cell
GB0519599D0 (en) * 2005-09-26 2005-11-02 Imp College Innovations Ltd Photovoltaic cells
TWI349371B (en) * 2007-02-13 2011-09-21 Epistar Corp An optoelectronical semiconductor device having a bonding structure
US20080216885A1 (en) * 2007-03-06 2008-09-11 Sergey Frolov Spectrally adaptive multijunction photovoltaic thin film device and method of producing same
EP2168172B1 (fr) * 2007-07-03 2019-05-22 Microlink Devices, Inc. Procédés de fabrication d'une cellule solaire à composé iii-v en couche mince
WO2009049048A2 (fr) * 2007-10-12 2009-04-16 Ultradots, Inc. Modules solaires à rendement amélioré grâce à l'utilisation de concentrateurs spectraux
JP5315008B2 (ja) * 2007-11-16 2013-10-16 株式会社半導体エネルギー研究所 光電変換装置
US20090223554A1 (en) * 2008-03-05 2009-09-10 Emcore Corporation Dual Sided Photovoltaic Package
US20090229667A1 (en) * 2008-03-14 2009-09-17 Solarmer Energy, Inc. Translucent solar cell
US20100043863A1 (en) * 2008-03-20 2010-02-25 Miasole Interconnect assembly
US20110197947A1 (en) 2008-03-20 2011-08-18 Miasole Wire network for interconnecting photovoltaic cells
GB2459651A (en) * 2008-04-28 2009-11-04 Quantasol Ltd Concentrator photovoltaic cell
US8602707B2 (en) * 2008-05-30 2013-12-10 Alta Devices, Inc. Methods and apparatus for a chemical vapor deposition reactor
WO2009155122A2 (fr) 2008-05-30 2009-12-23 Alta Devices, Inc. Empilements et procédés de retraits épitaxiaux
US8367798B2 (en) * 2008-09-29 2013-02-05 The Regents Of The University Of California Active materials for photoelectric devices and devices that use the materials
EP2351069A4 (fr) * 2008-10-10 2014-06-04 Alta Devices Inc Dépôt chimique en phase vapeur alimenté en continu
CA2739327A1 (fr) * 2008-10-10 2010-04-15 Alta Devices, Inc. Procede de mesa gravure et composition pour retrait epitaxial
CN102301450A (zh) * 2008-12-08 2011-12-28 奥塔装置公司 用于外延剥离的多个堆栈沉积
WO2010078022A2 (fr) 2008-12-17 2010-07-08 Alta Devices, Inc. Appareils et procédés de retrait épitaxial de type bande
IT1392995B1 (it) * 2009-02-12 2012-04-02 St Microelectronics Srl Pannello solare con due moduli fotovoltaici multicellulari monolitici di diversa tecnologia
TW201040331A (en) 2009-02-27 2010-11-16 Alta Devices Inc Tiled substrates for deposition and epitaxial lift off processes
US20100276071A1 (en) * 2009-04-29 2010-11-04 Solarmer Energy, Inc. Tandem solar cell
WO2010140522A1 (fr) * 2009-06-05 2010-12-09 Semiconductor Energy Laboratory Co., Ltd. Dispositif de conversion photoélectrique et son procédé de fabrication
WO2010140539A1 (fr) * 2009-06-05 2010-12-09 Semiconductor Energy Laboratory Co., Ltd. Dispositif de conversion photoélectrique et son procédé de fabrication
KR101677076B1 (ko) * 2009-06-05 2016-11-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 광전 변환 디바이스 및 그 제조 방법
JP5360818B2 (ja) * 2009-06-05 2013-12-04 国立大学法人福井大学 タンデム太陽電池及びその生産方法
FR2947955B1 (fr) * 2009-07-08 2014-07-04 Total Sa Procede de fabrication de cellules photovoltaiques multi-jonctions et multi-electrodes
US8440496B2 (en) 2009-07-08 2013-05-14 Solarmer Energy, Inc. Solar cell with conductive material embedded substrate
US8372945B2 (en) 2009-07-24 2013-02-12 Solarmer Energy, Inc. Conjugated polymers with carbonyl substituted thieno[3,4-B]thiophene units for polymer solar cell active layer materials
JPWO2011024534A1 (ja) * 2009-08-27 2013-01-24 独立行政法人産業技術総合研究所 多接合光電変換装置、集積型多接合光電変換装置、並びにその製造方法
US11393683B2 (en) 2009-10-14 2022-07-19 Utica Leaseco, Llc Methods for high growth rate deposition for forming different cells on a wafer
US9834860B2 (en) * 2009-10-14 2017-12-05 Alta Devices, Inc. Method of high growth rate deposition for group III/V materials
US8399889B2 (en) 2009-11-09 2013-03-19 Solarmer Energy, Inc. Organic light emitting diode and organic solar cell stack
US20120180854A1 (en) 2011-01-18 2012-07-19 Bellanger Mathieu Mechanical stacking structure for multi-junction photovoltaic devices and method of making
KR101279586B1 (ko) * 2011-01-20 2013-06-27 한국과학기술연구원 플렉서블 광전극과 그 제조방법, 및 이를 이용한 염료감응 태양전지
US20120199188A1 (en) * 2011-02-09 2012-08-09 Alta Devices, Inc. Metal contact formation and window etch stop for photovoltaic devices
TWI553890B (zh) * 2011-03-10 2016-10-11 友達光電股份有限公司 太陽電池模組
US8951824B1 (en) 2011-04-08 2015-02-10 Apollo Precision (Fujian) Limited Adhesives for attaching wire network to photovoltaic cells
FR2981195A1 (fr) 2011-10-11 2013-04-12 Soitec Silicon On Insulator Multi-jonctions dans un dispositif semi-conducteur forme par differentes techniques de depot
CN103137612A (zh) * 2011-12-02 2013-06-05 杜邦太阳能有限公司 太阳能电池组及其制作方法
EP2645430A1 (fr) * 2012-03-28 2013-10-02 Soitec Fabrication de dispositifs à cellules solaires multijonctions
DE102014112430A1 (de) 2014-08-29 2016-03-03 Ev Group E. Thallner Gmbh Verfahren zur Herstellung eines leitenden Mehrfachsubstratstapels
DE102016113002B4 (de) * 2016-07-14 2022-09-29 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Bauelemente mit verbesserter Effizienz und Verfahren zur Herstellung von Bauelementen
US20220173089A1 (en) * 2019-04-09 2022-06-02 Shin-Etsu Handotai Co., Ltd. Method for producing electronic device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094704A (en) * 1977-05-11 1978-06-13 Milnes Arthur G Dual electrically insulated solar cells
US4377723A (en) * 1980-05-02 1983-03-22 The University Of Delaware High efficiency thin-film multiple-gap photovoltaic device
US4289920A (en) * 1980-06-23 1981-09-15 International Business Machines Corporation Multiple bandgap solar cell on transparent substrate
US4338480A (en) * 1980-12-29 1982-07-06 Varian Associates, Inc. Stacked multijunction photovoltaic converters
US4680422A (en) * 1985-10-30 1987-07-14 The Boeing Company Two-terminal, thin film, tandem solar cells
JPS62171167A (ja) * 1986-01-23 1987-07-28 Mitsubishi Electric Corp 太陽電池の製造方法
US4686323A (en) * 1986-06-30 1987-08-11 The Standard Oil Company Multiple cell, two terminal photovoltaic device employing conductively adhered cells
US4692557A (en) * 1986-10-16 1987-09-08 Shell Oil Company Encapsulated solar cell assemblage and method of making
DE3727823A1 (de) * 1987-08-20 1989-03-02 Siemens Ag Tandem-solarmodul
US4846931A (en) * 1988-03-29 1989-07-11 Bell Communications Research, Inc. Method for lifting-off epitaxial films
US4935383A (en) * 1988-09-23 1990-06-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Preparation of dilute magnetic semiconductor films by metalorganic chemical vapor deposition
HU213196B (en) * 1990-07-12 1997-03-28 Semilab Felvezetoe Fiz Lab Rt Process for electrochemical solving semiconductive materials and process for measuring parameters of semiconductive materials dependent on depth as a function of depth by electrochemical solving of semiconductive materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9321662A1 *

Also Published As

Publication number Publication date
JPH06511357A (ja) 1994-12-15
WO1993021662A1 (fr) 1993-10-28
US5458694A (en) 1995-10-17
FR2690278A1 (fr) 1993-10-22

Similar Documents

Publication Publication Date Title
WO1993021662A1 (fr) Composant photovoltaique multispectral a empilement de cellules, et procede de realisation
FR2690279A1 (fr) Composant photovoltaïque multispectral.
EP0617839B1 (fr) Procédé de réalisation de composants semi-conducteurs, notamment sur GaAs ou InP, avec récupération du substrat par voie chimique
FR2619248A1 (fr) Cellule photovoltaique protegee, son procede de fabrication et ensemble comprenant de telles cellules
EP1262003B1 (fr) Laser a cascade quantique et procede pour la fabrication d&#39;un tel laser
FR3039005A1 (fr) Batterie en couches minces autosupportee et procede de fabrication d&#39;une telle batterie
EP3042398A1 (fr) Module photovoltaique semi-transparent et procédé d&#39;obtention correspondant
EP4002491A1 (fr) Module photovoltaïque leger et flexible ameliore
EP3435423A1 (fr) Cellule photovoltaïque tandem
FR2837625A1 (fr) Dispositif photovoltaique multi-jonctions a cellules independantes sans effet d&#39;ombrage et procede de realisation d&#39;un tel dispositif
EP0913002A1 (fr) Detecteur infrarouge bicolore a coherence spatio-temporelle planaire
WO1999052155A1 (fr) Structure a semiconducteurs de composant photovoltaique
FR3004002A1 (fr) Procede d&#39;assemblage avance de cellule photovoltaique concentree
EP2831920A2 (fr) Structure de cellule photovoltaïque en couches minces avec une couche miroir.
EP0617841B1 (fr) Procédé de réalisation de composants semi-conducteurs avec récupération du substrat par voie électrochimique
FR3060852A1 (fr) Dispositif photovoltaique et procede de fabrication associe
FR2954002A1 (fr) Procede pour la production de cellules solaires multijonction metamorphiques inversees
FR3047350A1 (fr)
FR3118530A1 (fr) Module photovoltaïque avec electrode de mise au potentielpour centrale photovoltaïque
WO2013004923A1 (fr) Procédé de réalisation d&#39;une cellule photovoltaïque à homojonction comprenant un film mince de passivation en oxyde cristallin de silicium.
EP4082049A1 (fr) Diode comportant au moins deux couches de passivation, en particulier formées de diélectrique, localement superposées pour optimiser la passivation
WO2021156410A1 (fr) Dispositif électronique destiné à être raccordé à un connecteur électrique et procédé de raccordement associé
FR3118531A1 (fr) Cellule photovoltaïque tandem à deux terminaux et procédé de fabrication associé
EP3903341A1 (fr) Procede de fabrication d&#39;un substrat pour un capteur d&#39;image de type face avant
FR3047351A1 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19940425

17Q First examination report despatched

Effective date: 19950906

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19970620