EP0591499A1 - Composant photovoltaique multispectral - Google Patents

Composant photovoltaique multispectral

Info

Publication number
EP0591499A1
EP0591499A1 EP93909023A EP93909023A EP0591499A1 EP 0591499 A1 EP0591499 A1 EP 0591499A1 EP 93909023 A EP93909023 A EP 93909023A EP 93909023 A EP93909023 A EP 93909023A EP 0591499 A1 EP0591499 A1 EP 0591499A1
Authority
EP
European Patent Office
Prior art keywords
elementary cells
cells
component
cell
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP93909023A
Other languages
German (de)
English (en)
Inventor
Linh T. Nuyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Picogiga SA
Original Assignee
Picogiga SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Picogiga SA filed Critical Picogiga SA
Publication of EP0591499A1 publication Critical patent/EP0591499A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates, in general, to the conversion of light energy, in particular solar energy, into electrical energy by the photovoltaic effect produced in semiconductors.
  • solar cells most often use only one species of semiconductor material, generally silicon or gallium arsenide GaAs.
  • FIG. 1 shows the spectral characteristic of solar light (considered excluding atmospheric absorption), with the irradiance in function of the wavelength or (which is equivalent) of the energy of the photons.
  • the width of the forbidden band is 1.43 eV, corresponding to a wavelength ⁇ 0 of 867 nm. Photons with an energy of less than 1.43 eV (i.e. with a wavelength greater than
  • dichroic the incident solar spectrum is split by means of an optical system separating dichroic mirrors into several portions corresponding to sub-bands of the spectrum. Each of these portions is sent to a different type of solar cell, optimized for a given photon energy.
  • This configuration is effective, but involves implementing a complex, bulky, fragile and expensive optical system.
  • a second configuration called “monolithic” consists in providing a stack of solar cells constituted by successive layers epitaxially grown on the same substrate, the different cells being electrically coupled together, in series, by tunnel junctions.
  • the first cell captures the most energetic photons of the incident flux, lets through the others which are absorbed by the cell of the lower level, and so on.
  • This second configuration due to its monolithic character, is extremely compact and robust, but nevertheless has several drawbacks.
  • a first drawback stems from the fact that it is not possible to associate silicon cells, the advantages and ease of production of which are well known, with GaAs cells, because we do not know so far make a tunnel junction between silicon and gallium arsenide.
  • a second drawback stems from the fact that, although we know how to realize tunnel junctions between III-V semiconductors by epitaxy as soon as these materials have compatible crystal lattice parameters (that is to say identical or very neighbors), in practice, only two series of materials can be chosen, one having the GaAs mesh parameter, the other that of InP.
  • the materials that can be epitaxied on GaAs such as AlGaAs, have forbidden bandwidths greater than those of GaAs, so that the losses "by transparency", of approximately 40% of the total energy, will not be not reduced compared to a GaAs cell alone.
  • the materials that can be epitaxied on InP are limited to small bandwidths, and thus introduce significant losses by excess energy.
  • a third drawback of the monolithic configuration is linked to the fact that the different cells are coupled in series and therefore produce, together, a photocurrent necessarily limited by the weakest photocurrent generated by one of the cells. Even if the photocurrents of the different cells are adjusted to be close to each other, they vary significantly and very differently depending on atmospheric conditions, the direction of incidence of the radiation, etc.
  • a third proposed configuration of a multispecular cell, called a "stacked" cell two (or more) different cells are produced beforehand, each on its own substrate, which are then superposed by fixing them with a transparent adhesive.
  • This adhesive can either be conductive, which makes it possible to connect the two cells in series (but in this case, the photocurrent produced by the device is, as in the case of the monolithic configuration, limited by the weakest photocurrent generated), or insulating, each cell being then provided with its own electrodes connected separately to circuits separate from the electronics of the load block (which must have been designed accordingly).
  • This configuration also has a certain number of disadvantages, in particular the fact that, since two cells have to be produced separately, the final component will comprise two thicknesses of substrate, adding to the weight and the cost of the structure, especially in a structure where a GaAs cell (or, even more so InP) is stacked on a sificium cell: the GaAs substrate, which is the heaviest and most expensive, does not serve as a support mechanical and plays no active role.
  • the object of the invention is to remedy the respective drawbacks of these different known configurations, by proposing a new configuration, intermediate between the known monolithic and stacked configurations, which combines the respective advantages of these structures without presenting any the inconvenients.
  • the invention proposes, in a first form of implementation, of producing solar cells having an overlapping of semiconductor layers of different mesh parameters thanks to a new method of producing tunnel junction, thus making it possible to widen the energy spectrum of the photons absorbed and significantly improve the conversion efficiency while retaining the advantages of compactness and simplicity of the monolithic configuration.
  • the invention proposes, in a second form of implementation, to simplify the manufacture of a stacked cell by dispensing with bonding, and also to reduce the cost and the weight by elimination and recovery of that of the substrates which plays no active role or mechanical support, in particular in the case of a GaAs or InP substrate.
  • the multispectral cell of the invention which comprises a stack of at least two associated elementary cells exhibiting different spectral response characteristics, is characterized in that at least one of the elementary cells is Mechanically deformable, its flexibility being chosen sufficiently high to allow it to adhere directly to the other cell by simple interaction of van der Waals between the two surfaces facing the elementary cells.
  • the thickness of the interface separating the two facing surfaces is thin enough to form a tunnel junction electrically coupling the two elementary cells together, and the facing layers of the elementary cells are then layers of degenerate sem ⁇ conductive material p + and n + respectively .
  • the thickness of this interface is, on the other hand, high enough to prevent any coupling between the two elementary cells, and these cells are then each provided with pairs of clean electrodes. health at respective, separate terminals of the component.
  • At least one of the elementary cells comprises a layer of amorphous silicon deposited on a plastic film flexible.
  • at least one of the elementary cells may also comprise a thin layer of semiconductor material detached from the substrate on which it has been formed.
  • FIG. 1, cited above, shows the spectral characteristic of the solar light, excluding atmospheric absorption.
  • Figures 2a and 2b show, respectively at rest and under direct polarization, the band diagrams (valence band and conduction band) of a conventional tunnel homojunction.
  • Figures 3a and 3b are homologous to Figures 2a and 2b, for a conventional tunnel heterojunction between two epitaxial layers.
  • Figures 4a and 4b are homologous to Figures 2a and 2b, for a tunnel heterojunction between two layers simply joined together without any particular precautions.
  • FIGS. 5a and 5b schematically show the configuration according to the invention associating two cells of different types, shown as separate in FIG. 5a and joined in FIG. 5b.
  • FIGS. 6a and 6b show in more detail the structure of the upper cell, made of amorphous silicon, of the configuration according to the invention of FIG. 5, respectively for two different contact-making modes.
  • Figures 7a and 7b show two variants of the lower cell, on HI-V semiconductor, of the stack of Figure 5.
  • Figures 8a to 8c show successive stages of a variant embodiment using separation by chemical dissolution of the substrate and recovery thereof.
  • Figures 9a and 9b illustrate an alternative implementation of the method illustrated in Figures 8a to 8c. 0
  • FIGS. 2a and 2b there is shown, respectively at rest and under direct polarization, the band diagram of a conventional tunnel junction, consisting of a homojunction p + / n + between two degenerate semiconductors (c '' i.e., the very strong doping, places the Fermi level E F above the conduction band E c in the semiconductor n + , and below the valence band E v in the semiconductor p +.
  • the tunnel effect causes polarization in Direc- you, electron transfer (shown in Figure 2b) of the semiconductor degenerate n + to the free states of the valence band of semicon ⁇ ductor degenerate p +.
  • tunnel current is an exponential function of the width W of the space charge zone, the current decreasing very quickly when this width increases.
  • the tunnel junction can also be obtained with hetero-junctions, that is to say junctions between materials p + and n + having different bandwidths.
  • Figures 3a and 3b, homologous to Figures 2a and 2b, correspond to the latter case for an ideal p + / n + heterojunction, that is to say where the two materials p + and n + have the same parameter of crystal mesh and are in perfect epitaxy with each other.
  • a junction p + / n + is never perfectly abrupt because of the interdiffusion of the dopants p and n which reduces the doping of the materials in the vicinity of the interface; this interdiffusion covers an area up to a few tenths of nanometers to a few nanometers, thus further increasing the thickness e of the load region of space and thus reducing the effect tunnel.
  • the parent idea of the invention consists, instead of epitaxializing two materials p + / n + having different lattice parameters, of simply attaching these materials to each other. This idea, however, comes up against the practical difficulty due to the fact that the surfaces of semiconductors are generally slightly oxidized or contain adsorbed species. If this oxide or adsorbent layer is very thin, on the order of a few tenths of a nanometer to a few nanometers at most, the electrons will be able to pass through it by tunnel effect.
  • this tunnel heterojunction has a higher electrical resistance than a conventional tunnel junction between two epitaxial materials, since at the thickness W of the area of clean space said is added the thickness d separating the active surfaces p + and n + opposite.
  • Figures 4a and 4b homologous to Figures 3a and 3b, show the band diagram of a heterojunction operating by tunnel effect according to this principle.
  • the implementation of the invention therefore requires, in this case, to solve the problem consisting in making a joining of the two semiconductor materials by ensuring that the distance which separates them does not exceed a few tenths of nanometers at a few nanometers.
  • the invention proposes to choose for one of the semiconductor materials a mechanically deformable material, whose great flexibility will allow it to match the shape and surface roughness of the other semiconductor and thus ensure very close intimate of the two surfaces.
  • the two surfaces then adhere one to the other simply by van type Waals interaction due to their nature very smooth, without any gluing or other means of mechanical or chemical fixings tion.
  • Electrodes will then be provided on either side of each of the cells, these electrodes leading to separate terminals of the cell, in a manner comparable to the known stacked configurations - but with the notable difference that no transparent adhesive will be necessary to ensure the adhesion of the two cells, this being carried out purely and simply by interaction of van der Waals.
  • the implementation of the invention requires solving another problem, namely obtaining a cell that is mechanically deformable enough to be adhered to the other cell by van de Waals interaction.
  • the present invention provides several non-limiting methods of implementation.
  • a first method consists in using amorphous silicon cells previously deposited on a flexible plastic film, such as for example the cells described by A. Takeoka, Technology Brightens Prospects for Solar Power, Journal of Electronic Engineering, July 1991, p .100.
  • Figures 5a and 5b schematically show, respectively before and after adhesion, a multispectral cell produced according to these teachings of the invention, associating an amorphous silicon cell (comprising an active layer 3 deposited on a flexible film
  • gallium arsenide cell comprising an active layer 5 deposited on a substrate 6.
  • the amorphous silicon cell 1, of known structure as such, is shown in more detail in Figures 6a and 6b.
  • the active layer generally designated by the reference 3, is deposited on the flexible plastic film 4, and successively comprises a layer 7 of amorphous silicon n, a layer 8 of amorphous silicon p, as well as a layer 9 of amorphous silicon p + if one wishes to achieve a coupling of the cells by tunnel junction.
  • the contact on the layer n 7 is ensured by an electrode 10 deposited at the bottom a well 11 etched into the thickness of the active layer (FIG. 6a) or by an electrode 12 deposited on the surface of a well 13 (FIG. 6b).
  • FIG. 6a the active layer
  • FIG. 7a describes a GaAs solar cell comprising, on a substrate 6, an active layer 5 with successively a layer 14 of GaAs p, a layer 15 of GaAs n, as well as a layer 16 of GaAs n + if l 'We wish to couple the two cells by tunnel effect (this last layer is intended to constitute the tunnel junction in association with the p + 9 doped layer of cell 1; we could also, conversely, have a n + doped layer 9 and a layer 16 p + doped).
  • FIG. 7a describes a GaAs solar cell comprising, on a substrate 6, an active layer 5 with successively a layer 14 of GaAs p, a layer 15 of GaAs n, as well as a layer 16 of GaAs n + if l 'We wish to couple the two cells by tunnel effect (this last layer is intended to constitute the tunnel junction in association with the p + 9 doped layer of cell 1; we could also, conversely, have a n
  • the active layer 5 itself comprises a heterojunction with, on the substrate 6, a layer 17 of AlGaAs p, a layer 18 of AlGaAs n, the layer 14 of GaAs p, the layer 15 of GaAs n and the n + layer of GaAs 16, an additional tunnel junction thus being formed at 19 between the GaAs and AlGaAs layers.
  • a multispector cell with three elementary cells is thus obtained, thereby further improving the conversion efficiency.
  • the choice of cell 2 is not limited to these two examples, and it could be made from other materials, as soon as the bandwidth of the material is prohibited, greater than that of silicon. , is compatible with multispectral operation.
  • the two cells 1 and 2 are not necessarily coupled by tunnel junction at their interface (at 20 in FIG. 5), but can be simply adhered to each other without direct electrical coupling, separate contact-making electrodes then coming take the photocurrents to supply electronic circuits different from the charging block. It is therefore sufficient to provide on the surface of cell 1 and / or of cell 2 a sufficiently thick oxide layer (greater than a few tens of nanometers) to prevent the appearance of any tunneling effect at the interface 20; in addition, the layers 9 and 16 of degenerate semiconductor are no longer necessary in the latter case.
  • An alternative implementation, applicable to one or other of the above cases (with or without coupling by tunnel junction) consists in eliminating the substrate of cell 2, as illustrated in FIGS. 8a to 8c. Indeed, not only does this substrate play no mechanical role - since the film 4 is sufficient to support the entire cell -, but it is also both heavy and expensive (GaAs and, a fortiori, InP); it is therefore particularly advantageous to remove and recover it.
  • the two cells are then joined as in the previous case (FIG. 8a).
  • These dissolution techniques are for example exposed by M. Konagai et al., High Efficiency GaAs Thin Film Solar Cells by Peeled Film Technology, Journal of Crystal Growth, n ° 45 (1978), p. 277, or in French patent applications 91-15139 and 91-15141 in the name of the
  • Electrodes 22 can then be deposited on the surface, which provide contact directly on the back of the active layer 5; the final structure obtained is illustrated in FIG. 8c.
  • FIGS. 9a and 9b Another variant, illustrated in FIGS. 9a and 9b, consists, instead of detach the substrate from cell 2, detach that from cell 1 (substrate 23 in Figure 9a, removed in Figure 9b). The separation of the substrate may in particular be carried out according to one of the techniques described in the aforementioned French patent applications 91-15139 and 91-15141. It is then the substrate 6 of the cell 2 which then performs the role of mechanical support for the final cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Ce composant, qui comprend un empilement d'au moins deux cellules élémentaires (1, 2) associées présentant des caractéristiques de réponse spectrale différentes, est caractérisé en ce que l'une au moins des cellules élémentaires est mécaniquement déformable, sa souplesse étant choisie suffisamment élevée pour lui permettre d'adhérer directement à l'autre cellule par simple interaction de van der Waals entre les deux surfaces en regard des cellules élémentaires. L'épaisseur de l'interface (20) séparant les deux surfaces en regard peut être soit suffisamment mince pour former une jonction tunnel couplant électriquement entre elles les deux cellules élémentaires, les couches en regard des cellules élémentaires étant alors des couches de matériau semiconducteur dégénéré p+ et n+, soit suffisamment élevée pour empêcher tout couplage entre les deux cellules élémentaires, ces cellules étant alors pourvues chacune de paires d'électrodes propres aboutissant à des bornes respectives, distinctes du composant.

Description

Composant photovoltaïque multispectral
L'invention concerne, de façon générale, la conversion de l'éner¬ gie lumineuse, notamment de l'énergie solaire, en énergie électrique par l'effet photovoltaïque produit dans les semiconducteurs.
Les composants mettant en œuvre cet effet, généralement appe¬ lés « cellules solaires » n'utilisent le plus souvent qu'une seule es- pèce de matériau semiconducteur, généralement le silicium ou l'ar- séniure de gallium GaAs.
On sait cependant que, dans ce cas, on ne peut transformer au mieux en énergie électrique l'énergie lumineuse du rayonnement solaire en raison de l'étalement de son spectre. En effet, un matériau semiconducteur donné possède une largeur de bande interdite déter¬ minée, de sorte que les photons d'énergie inférieure à cette largeur de bande ne sont jamais absorbés et ne peuvent donc générer les paires électron-trou nécessaires à la production du photocourant. On a représenté figure 1 la caractéristique spectrale de la lumière solai- re (considérée hors absorption atmosphérique), avec l'irradiance en fonction de la longueur d'onde ou (ce qui est équivalent) de l'énergie des photons. Dans le cas où l'on utilise comme matériau l'arséniure de gallium, la largeur de la bande interdite est de 1,43 eV, corres¬ pondant à une longueur d'onde λ0 de 867 nm. Les photons d'énergie inférieure à 1,43 éV (c'est-à-dire de longueur d'onde supérieure à
867 nm) ne produiront aucun effet photovoltaïque, de sorte que l'é¬ nergie lumineuse correspondant à l'aire référencée I ne sera en au¬ cune façon transformée en énergie électrique. Cette perte d'énergie lumineuse « par transparence » représente pour GaAs 40% de l'éner- gie totale disponible.
Les photons d'énergie supérieure à celle de la bande interdite (c'est-à-dire de longueur d'onde inférieure à λ0) vont, quant à eux, créer des paires électron-trou, mais avec un excès d'énergie par rap¬ port à celle de la bande interdite, excès qui sera converti en chaleur et non en énergie électrique. Ces pertes par excès d'énergie, corres¬ pondant à l'aire II de la figure 1, peuvent atteindre 20% de l'énergie totale. L'utilisation d'une seule espèce de semiconducteur dans la cellule solaire ne permet donc pas d'exploiter au mieux la totalité du spectre solaire la limite intrinsèque du rendement de conversion est ainsi pour GaAs de l'ordre de 40% (aire III de la figure- 1), alors que s'il est éclairé sous une lumière monochromatique d'énergie (1,43+0,1) eV, le rendement intrinsèque de ce matériau est voisin de 95%.
Pour améliorer la conversion de l'énergie solaire, plusieurs solu- fions ont été proposées, qui associent plusieurs semiconducteurs dif¬ férents ayant des largeurs de bande interdite différentes. Ces com¬ posants sont appelés « cellules solaires multispectrales » et se répar¬ tissent en trois familles correspondant à trois configurations de base différentes. Dans une première configuration, dite « dichroïque », le spectre solaire incident est fractionné au moyen d'un système optique sépa¬ rateur à miroirs dichroïques en plusieurs portions correspondant à des sous-bandes du spectre. Chacune de ces portions est envoyée sur une cellule solaire de type différent, optimisée pour une énergie de photon donnée. Cette configuration est efficace, mais implique de mettre en œu¬ vre un système optique complexe, encombrant, fragile et coûteux.
Une seconde configuration, dite « monolithique », consiste à pré¬ voir un empilement de cellules solaires constitué par des couches successives épitaxiées sur un même substrat, les différentes cellules étant couplées électriquement entre elles, en série, par des jonctions tunnel. La première cellule capte les photons les plus énergétiques du flux incident, laisse passer les autres qui sont absorbés par la cel¬ lule du niveau inférieur, et ainsi de suite. Cette seconde configuration, du fait de son caractère monolithi¬ que, est extrêmement compacte et robuste, mais présente cependant plusieurs inconvénients.
Un premier inconvénient tient au fait que l'on ne peut pas asso¬ cier des cellules silicium, dont les avantages et la facilité de réalisa- tion sont bien connus, à des cellules GaAs, car l'on ne sait pas jusqu'à présent réaliser de jonction tunnel entre silicium et arsé- niure de gallium.
Un second inconvénient tient au fait que, bien que l'on sache réa¬ liser des jonctions tunnel entre semiconducteurs III-V par épitaxie dès lors que ces matériaux ont des paramètres de maille cristalline compatibles (c'est-à-dire identiques ou très voisins), on ne peut en pratique choisir que deux séries de matériaux, l'une ayant le para¬ mètre de maille de GaAs, l'autre celui de InP.
Or les matériaux que l'on peut épitaxier sur GaAs, tel AlGaAs, ont des largeurs de bande interdite supérieures à celles de GaAs, de sorte que les pertes « par transparence », d'environ 40% de l'énergie totale, ne seront pas réduites par rapport à une cellule GaAs seule. Inversement, les matériaux que l'on peut épitaxier sur InP sont limités à de faibles largeurs de bande interdite, et introduisent ainsi d'importantes pertes par excès d'énergie.
En outre, on ne sait pas jusqu'à présent réaliser de jonction tun¬ nel entre GaAs et InP en raison de la grande différence de para¬ mètre de maille cristalline de ces deux matériaux. Il n'est donc pas possible, avec des cellules monolithiques épitaxiées, d'optimiser le rendement de conversion en associant ces deux familles de maté- riaux pour obtenir une conversion sur un large spectre d'énergie.
Un troisième inconvénient de la configuration monolithique est lié au fait que les différentes cellules sont couplées en série et pro¬ duisent donc, ensemble, un photocourant nécessairement limité par le plus faible photocourant généré par l'une des cellules. Même si les photocourants des différents cellules sont ajustés pour être proches les uns des autres, ils varient de façon importante et très différente en fonction des conditions atmosphériques, de la direction d'inci¬ dence du rayonnement, etc. Dans une troisième configuration proposée de cellule multispec- trale, dite « empilée », on réalise au préalable, chacune sur son propre substrat, deux (ou plus) cellules différentes que l'on super¬ pose ensuite en les fixant par une colle transparente. Cette colle peut être soit conductrice, ce qui permet de relier en série les deux cellules (mais dans ce cas, le photocourant produit par le dispositif est, comme dans le cas de la configuration monolithique, limité par le plus faible photocourant généré), soit isolante, chacune des cel¬ lules étant alors pourvue d'électrodes propres reliées séparément à des circuits distincts de l'électronique du bloc de charge (qui devra avoir été conçu en conséquence).
Cette configuration présente, elle aussi, un certain nombre d'in¬ convénients, notamment le fait que, comme l'on doit réaliser séparé¬ ment deux cellules, le composant final comprendra deux épaisseurs de substrat, ajoutant au poids et au coût de la structure, tout parti- culièrement dans une structure où l'on empile une cellule GaAs (ou, à plus forte raison InP) sur une cellule sificium : le substrat GaAs, qui est le plus lourd et le plus cher, ne sert aucunement de support mécanique et ne joue aucun rôle actif.
Le but de l'invention est de remédier aux inconvénients respec- tifs de ces différentes configurations connues, en proposant une nou¬ velle configuration, intermédiaire entre les configurations monolithi¬ que et empilée connues, qui réunisse les avantages respectifs de ces structures sans en présenter les inconvénients.
Par rapport aux configurations monolithiques connues, on verra en particulier que l'invention propose, dans une première forme de mise en œuvre, de réaliser des cellules solaires présentant un empi¬ lement de couches de semiconducteurs de paramètres de maille dif¬ férents grâce à un procédé nouveau de réalisation de jonction tun¬ nel, permettant ainsi d'élargir le spectre énergétique des photons absorbés et d'améliorer notablement le rendement de conversion tout en gardant les avantages de compacité et de simplicité de la configuration monolithique.
Par rapport aux configurations empilées connues, on verra que l'invention propose, dans une seconde forme de mise en œuvre, de simplifier la fabrication d'une cellule empilée en s'affranchissant du collage, et également d'en réduire le coût et le poids par élimination et récupération de celui des substrats qui ne joue aucun rôle actif ni de support mécanique, notamment dans le cas d'un substrat GaAs ou InP. A cet effet, la cellule multispectrale de l'invention, qui comprend un empilement d'au moins deux cellules élémentaires associées pré¬ sentant des caractéristiques de réponse spectrale différentes, est ca¬ ractérisée en ce que l'une au moins des cellules élémentaires est mé¬ caniquement déformable, sa souplesse étant choisie suffisamment élevée pour lui permettre d'adhérer directement à l'autre cellule par simple interaction de van der Waals entre les deux surfaces en regard des cellules élémentaires.
Dans la première forme de mise en œuvre précitée, l'épaisseur de l'interface séparant les deux surfaces en regard est suffisamment mince pour former une jonction tunnel couplant électriquement entre elles les deux cellules élémentaires, et les couches en regard des cellules élémentaires sont alors des couches de matériau semi¬ conducteur dégénéré respectivement p+ et n+.
Dans la seconde forme de mise en œuvre précitée, l'épaisseur de cette interface est, à l'opposé, suffisamment élevée pour empêcher tout couplage entre les deux cellules élémentaires, et ces cellules sont alors pourvues chacune de paires d'électrodes propres aboutis¬ sant à des bornes respectives, distinctes, du composant.
Avantageusement, l'une au moins des cellules élémentaires com- porte une couche de silicium amorphe déposée sur un film plastique souple. En variante ou en complément, l'une au moins des cellules élémentaires peut également comporter une couche mince de maté¬ riau semiconducteur détachée du substrat sur lequel elle a été for¬ mée.
On va maintenant décrire des exemples de mise en œuvre de l'in¬ vention, en référence aux dessins annexés sur lesquels les mêmes références numériques désignent toujours des éléments semblables.
La figure 1, précitée, montre la caractéristique spectrale de la lu¬ mière solaire, hors absorption atmosphérique.
Les figures 2a et 2b montrent, respectivement au repos et sous polarisation directe, les diagrammes de bande (bande de valence et bande de conduction) d'une homojonction tunnel classique.
Les figures 3a et 3b sont homologues des figures 2a et 2b, pour une hétérojonction tunnel classique entre deux couches épitaxiées.
Les figures 4a et 4b sont homologues des figures 2a et 2b, pour une hétérojonction tunnel entre deux couches simplement accolées sans précaution particulière.
Les figures 5a et 5b montrent schématiquement la configuration selon l'invention associant deux cellules de types différents, repré¬ sentées disjointes sur la figure 5a et accolées sur la figure 5b.
Les figures 6a et 6b montrent plus en détail la structure de la cellule supérieure, au silicium amorphe, de la configuration selon l'invention de la figure 5, respectivement pour deux modes de prise de contact différents.
Les figures 7a et 7b montrent deux variantes de la cellule infé¬ rieure, sur semiconducteur HI-V, de l'empilement de la figure 5. Les figures 8a à 8c montrent des étapes successives d'une vari¬ ante de réalisation mettant en œuvre une séparation par dissolution chimique du substrat et récupération de celui-ci.
Les figures 9a et 9b illustrent une variante de mise en œuvre du procédé illustré figures 8a à 8c. 0
Sur les figures 2a et 2b, on a représenté, respectivement au repos et sous polarisation directe, le schéma de bande d'une jonction tun- nel classique, constituée d'une homojonction p+/n+ entre deux semi¬ conducteurs dégénérés (c'est-à-dire dont le dopage, très fort, place le niveau de Fermi EF au-dessus de la bande de conduction Ec dans le semiconducteur n+, et au-dessous de la bande de valence Ev dans le semiconducteur p+. L'effet tunnel provoque, sous polarisation direc- te, un transfert d'électrons (illustré figure 2b) du semiconducteur dégénéré n+ vers les états libres de la bande de valence du semicon¬ ducteur dégénéré p+.
On sait que le courant tunnel est une fonction exponentielle de la largeur W de la zone de charge d'espace, le courant décroissant très rapidement lorsque cette largeur augmente.
La jonction tunnel peut être également obtenue avec des hétéro- jonctions, c'est-à-dire des jonctions entre des matériaux p+ et n+ pré¬ sentant des largeurs de bande interdite différentes. Les figures 3a et 3b, homologues des figures 2a et 2b, correspondent à ce dernier cas pour une hétérojonction p+/n+ idéale, c'est-à-dire où les deux maté¬ riaux p+ et n+ ont le même paramètre de maille cristalline et sont en parfait épitaxie l'un avec l'autre.
En pratique, lorsque les deux matériaux n'ont pas le même para¬ mètre de maille, leur épitaxie crée à leur interface une grande den- site de dislocations, produisant la création de nombreux défauts cris- tallographiques et électriques (pièges profonds) qui déforment com¬ plètement le schéma de bande et perturbent de façon notable l'effet tunnel. La jonction présente alors une grande résistance électrique qui détériore irrémédiablement les performances du composant. En outre, en pratique, une jonction p+/n+ n'est jamais parfaite¬ ment abrupte à cause de l'interdiffusion des dopants p et n qui vient réduire le dopage des matériaux au voisinage de l'interface ; cette interdiffusion s'étend sur une zone atteignant quelques dixièmes de nanomètres à quelques nanomètres, augmentant ainsi encore l'é- paisseur de la région de charge d'espace et réduisant d'autant l'effet tunnel.
L'idée-mère de l'invention consiste, au lieu d' épitaxier deux ma¬ tériaux p+/n+ présentant des paramètres de maille différents, d'acco¬ ler simplement l'un à l'autre ces matériaux. Cette idée se heurte cependant à la difficulté pratique tenant au fait que les surfaces des semiconducteurs sont en général légère¬ ment oxydées ou contiennent des espèces adsorbées. Si cette couche d'oxyde ou d'adsorbant est très mince, de l'ordre de quelques dixi¬ èmes de nanomètres à quelques nanomètres au plus, les électrons pourront la traverser par effet tunnel. Toutefois, sur le plan du com¬ portement, cette hétérojonction tunnel présente une résistance élec¬ trique plus élevée qu'une jonction tunnel classique entre deux maté¬ riaux épitaxiés, puisqu'à l'épaisseur W de la zone d'espace propre¬ ment dite s'ajoute l'épaisseur d séparant les surfaces actives p+ et n+ en regard. Les figures 4a et 4b, homologues des figures 3a et 3b, montrent le schéma de bande d'une hétérojonction fonctionnant par effet tunnel selon ce principe.
Or, dans l'état de l'art actuel de la technologie des semiconduc¬ teurs, la planéité des surfaces produites ne peut être garantie qu'à 1 μm près, et I on ne peut donc se contenter d'accoler purement et simplement deux tranches de matériau semiconducteur si l'on sou¬ haite qu'un effet tunnel puisse apparaître.
La mise en œuvre de l'invention impose donc, dans ce cas, de ré¬ soudre le problème consistant à réaliser un accolement des deux ma- tériaux semiconducteurs en s'assurant que la distance qui les sépare ne dépasse pas quelques dixièmes de nanomètres à quelques nano¬ mètres.
Pour cela, l'invention propose de choisir pour l'un des matériaux semiconducteurs un matériau mécaniquement déformable, dont la grande souplesse lui permettra d'épouser la forme et la rugosité de surface de l'autre semiconducteur et d'assurer ainsi un accolement très intime des deux surfaces. Les deux surfaces adhéreront alors l'une à l'autre par simple interaction de type van de Waals grâce à leur caractère très lisse, sans aucun collage ni autre moyen de fixa- tion mécanique ou chimique. En variante, au lieu de coupler électriquement les deux cellules par effet tunnel, on peut préférer les isoler complètement du point de vue électrique (Il suffit pour cela de prévoir une épaisseur suffi¬ sante de couche d'oxyde entre les deux cellules). On prévoira alors des électrodes de part et d'autre de chacune des cellules, ces élec¬ trodes aboutissant à des bornes distinctes de la cellule, de façon comparable aux configurations empilées connues — mais à la diffé¬ rence notable qu'aucune colle transparente ne sera nécessaire pour assurer l'adhésion des deux cellules, celle-ci étant réalisée purement et simplement par interaction de van der Waals.
Toutefois, dans l'un ou l'autre cas, la mise en œuvre de l'inven¬ tion impose de résoudre un autre problème, à savoir l'obtention d'une cellule mécaniquement assez déformable pour être adhérée à l'autre cellule par interaction de van de Waals. Pour ce faire, la présente invention propose plusieurs procédés, non limitatifs, de mise en œuvre.
Un premier procédé consiste à utiliser des cellules en silicium amorphe préalablement déposées sur un film plastique souple, com¬ me par exemple les cellules décrites par A. Takeoka, Technology Brightens Prospects for Solar Power, Journal of Electronic Enginee¬ ring, juillet 1991, p.100.
Les figures 5a et 5b montrent schématiquement, respectivement avant et après adhésion, une cellule multispectrale réalisée selon ces enseignements de l'invention, associant une cellule en silicium amorphe (comportant une couche active 3 déposée sur un film souple
4) et une cellule en arséniure de gallium, comprenant une couche active 5 déposée sur un substrat 6.
La cellule en silicium amorphe 1, de structure connue en tant que telle, est représentée plus en détail sur les figures 6a et 6b. La couche active, désignée globalement par la référence 3, est dé¬ posée sur le film plastique souple 4, et comporte successivement une couche 7 de silicium amorphe n, une couche 8 de silicium amorphe p, ainsi qu'une couche 9 de silicium amorphe p+ si l'on souhaite réali¬ ser un couplage des cellules par jonction tunnel. La prise de contact sur la couche n 7 est assurée par une électrode 10 déposée au fond d'un puits 11 gravé dans l'épaisseur de la couche active (figure 6a) ou par une électrode 12 déposée en surface d'un caisson n 13 (figure 6b). Sur les figures qui suivent, l'ensemble de cette structure n'a pas été représentée en détail ; elle est simplement désignée par la réfé- rence 3, qui renvoie de façon générale à la couche active.
En variante, au lieu d'utiliser pour le support 4 un plastique sou¬ ple, on peut utiliser une cellule où le silicium amorphe 1 a été dé¬ posé sur un plastique rigide, celui-ci étant rendu souple ensuite par un traitement thermique ou chimique approprié, connu en tant que tel.
La cellule en arséniure de gallium 2 associée à la cellule silicium amorphe peut prendre une très grande variété de formes et de choix de matériaux. Elle peut par exemple avoir la structure représentée figure 7a ou 7b. La figure 7a décrit une cellule solaire sur GaAs com- portant, sur une substrat 6, une couche active 5 avec successivement une couche 14 de GaAs p, une couche 15 de GaAs n, ainsi qu'une couche 16 de GaAs n+ si l'on souhaite coupler les deux cellules par effet tunnel (cette dernière couche est destinée à constituer la jonc¬ tion tunnel en association avec la couche dopée p+ 9 de la cellule 1 ; on pourrait également avoir, inversement, une couche 9 dopée n+ et une couche 16 dopée p+). Dans l'exemple de la figure 7b, la couche active 5 comporte elle-même une hétérojonction avec, sur le substrat 6, une couche 17 de AlGaAs p, une couche 18 de AlGaAs n, la couche 14 de GaAs p, la couche 15 de GaAs n et la couche n+ de GaAs 16, une jonction tunnel supplémentaire étant ainsi constituée en 19 entre les couches GaAs et AlGaAs. En associant cette dernière cel¬ lule à la cellule silicium 1, on obtient ainsi d'une cellule multispec- trale à trois cellules élémentaires, permettant ainsi d'améliorer en¬ core le rendement de conversion. Bien entendu le choix de la cellule 2 n'est pas limité à ces deux exemples, et elle pourrait être constituée à partir d'autres maté¬ riaux, dès lors que la largeur de bande interdite du matériau, supé¬ rieure à celle du silicium, est compatible avec un fonctionnement multispectral. Par ailleurs, comme on l'a indiqué plus haut, les deux cellules 1 et 2 ne sont pas nécessairement couplées par jonction tunnel à leur interface (en 20 sur la figure 5), mais peuvent être simplement adhé- rées l'une à l'autre sans couplage électrique direct, des électrodes de prise de contact distinctes venant alors prélever les photocourants pour alimenter des circuits électroniques différents du bloc de char¬ ge. Il suffit dès lors de prévoir en surface de la cellule 1 et/ou de la cellule 2 une couche d'oxyde suffisamment épaisse (supérieure à quelques dizaines de nanomètres) pour empêcher l'apparition de tout effet tunnel à l'interface 20 ; de plus, les couches 9 et 16 de semiconducteur dégénéré ne sont plus nécessaires dans ce dernier cas.
Une variante de mise en œuvre, applicable à l'un ou l'autre cas précité (avec ou sans couplage par jonction tunnel) consiste à élimi¬ ner le substrat de la cellule 2, comme illustré figures 8a à 8c. En effet, non seulement ce substrat ne joue aucun rôle mécanique — puisque le film 4 suffit à supporter l'ensemble de la cellule — , mais il est en outre à la fois lourd et cher (GaAs et, a fortiori, InP) ; il est donc particulièrement avantageux de le retirer et de le récupérer. A cet effet, on peut prévoir, entre le substrat GaAs 6 et la couche active GaAs 5 de la cellule 2, une couche intercalaire supplémen¬ taire 21 , soluble, par exemple une couche de AlGaAs dont la teneur en aluminium (fraction molaire) est d'au moins 0,4.
Les deux cellules sont alors accolées comme dans le cas précé¬ dent (figure 8a). On procède ensuite à la dissolution chimique ou électrochimique de la couche intercalaire 21 , ce qui permet de déta¬ cher et récupérer le substrat, qui pourra être réutilisé. Ces techni¬ ques de dissolution sont par exemple exposées par M. Konagai et al., High Efficiency GaAs Thin Film Solar Cells by Peeled Film Techno¬ logy, Journal of Crystal Growth, n° 45 (1978), p. 277, ou encore dans les demandes de brevet français 91-15139 et 91-15141 au nom de la
Demanderesse. On aboutit ainsi à la structure de la figure 8b. On peut alors déposer en surface des électrodes 22, qui assurent une prise de contact directement au dos de la couche active 5 ; la struc¬ ture finale obtenue est illustrée figure 8c. Une autre variante, illustrée figures 9a et 9b, consiste, au lieu de détacher le substrat de la cellule 2, de détacher celui de la cellule 1 (substrat 23 de la figure 9a, retiré à la figure 9b). La séparation du substrat pourra notamment être effectuée selon l'une des techniques décrites dans les demandes de brevet français précitées 91-15139 et 91-15141. C'est alors le substrat 6 de la cellule 2 qui assure alors le rôle de support mécanique de la cellule finale.

Claims

REVENDICATIONS
1. Un composant photovoltaïque multispectral, comprenant LUI empilement d'au moins deux cellules élémentaires (1, 2) associées présentant des caractéristiques de réponse spectrale différentes, caractérisé en ce que l'une au moins des cellules élémentaires est mécaniquement déformable, sa souplesse étant choisie suffisam¬ ment élevée pour lui permettre d'adhérer directement à l'autre cel¬ lule par simple interaction de van der Waals entre les deux surfaces en regard des cellules élémentaires.
2. Le composant de la revendication 1 , dans lequel l'épaisseur de l'interface (20) séparant les deux surfaces en regard est suffisam¬ ment mince pour former une jonction tunnel couplant électrique- ment entre elles les deux cellules élémentaires, et les couches en re¬ gard (9, 16) des cellules élémentaires sont des couches de matériau semiconducteur dégénéré respectivement p+ et n+.
3. Le composant de la revendication 1, dans lequel l'épaisseur de l'interface (20) séparant les deux surfaces en regard est suffisam¬ ment élevée pour empêcher tout couplage entre les deux cellules élé¬ mentaires, ces cellules étant pourvues chacune de paires d'élec¬ trodes propres aboutissant à des bornes respectives, distinctes, du composant.
4. Le composant de la revendication 1 , dans lequel l'une au moins des cellules élémentaires comporte une couche de silicium amorphe (3) déposée sur un film plastique (4) souple.
5. Le composant de la revendication 1 , dans lequel l'une au moins des cellules élémentaires comporte une couche mince de matériau semiconducteur (5) détachée du substrat (6) sur lequel elle a été for¬ mée.
EP93909023A 1992-04-15 1993-04-15 Composant photovoltaique multispectral Withdrawn EP0591499A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9204634A FR2690279B1 (fr) 1992-04-15 1992-04-15 Composant photovoltauique multispectral.
FR9204634 1992-04-15
PCT/FR1993/000374 WO1993021661A1 (fr) 1992-04-15 1993-04-15 Composant photovoltaique multispectral

Publications (1)

Publication Number Publication Date
EP0591499A1 true EP0591499A1 (fr) 1994-04-13

Family

ID=9428903

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93909023A Withdrawn EP0591499A1 (fr) 1992-04-15 1993-04-15 Composant photovoltaique multispectral

Country Status (5)

Country Link
US (1) US5479043A (fr)
EP (1) EP0591499A1 (fr)
JP (1) JPH06511356A (fr)
FR (1) FR2690279B1 (fr)
WO (1) WO1993021661A1 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6121541A (en) * 1997-07-28 2000-09-19 Bp Solarex Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
FR2777116A1 (fr) * 1998-04-03 1999-10-01 Picogiga Sa Structure a semiconducteurs de composant photovoltaique
FR2894990B1 (fr) 2005-12-21 2008-02-22 Soitec Silicon On Insulator Procede de fabrication de substrats, notamment pour l'optique,l'electronique ou l'optoelectronique et substrat obtenu selon ledit procede
FR2837625B1 (fr) * 2002-03-19 2004-09-17 Commissariat Energie Atomique Dispositif photovoltaique multi-jonctions a cellules independantes sans effet d'ombrage et procede de realisation d'un tel dispositif
US20070227587A1 (en) * 2006-03-31 2007-10-04 Walsh Kevin M Photoelectric Cells Utilizing Accumulation Barriers For Charge Transport
US20080135083A1 (en) * 2006-12-08 2008-06-12 Higher Way Electronic Co., Ltd. Cascade solar cell with amorphous silicon-based solar cell
TWI349371B (en) * 2007-02-13 2011-09-21 Epistar Corp An optoelectronical semiconductor device having a bonding structure
US20090229667A1 (en) * 2008-03-14 2009-09-17 Solarmer Energy, Inc. Translucent solar cell
EP2281301A2 (fr) 2008-05-30 2011-02-09 Alta Devices, Inc. Empilements et procédés de retraits épitaxiaux
WO2009144944A1 (fr) * 2008-05-30 2009-12-03 三菱電機株式会社 Convertisseur photoélectrique
US20090325367A1 (en) 2008-05-30 2009-12-31 Alta Devices, Inc. Methods and apparatus for a chemical vapor deposition reactor
US8367798B2 (en) * 2008-09-29 2013-02-05 The Regents Of The University Of California Active materials for photoelectric devices and devices that use the materials
CA2739327A1 (fr) * 2008-10-10 2010-04-15 Alta Devices, Inc. Procede de mesa gravure et composition pour retrait epitaxial
TW201034055A (en) * 2008-10-10 2010-09-16 Alta Devices Inc Continuous feed chemical vapor deposition
KR20110099029A (ko) * 2008-12-08 2011-09-05 알타 디바이씨즈, 인크. 에피택셜 리프트 오프를 위한 다중 스택 증착
KR20110114577A (ko) * 2008-12-17 2011-10-19 알타 디바이씨즈, 인크. 테이프-기반 에피택셜 리프트 오프 장치 및 방법
KR20110125655A (ko) * 2009-02-27 2011-11-21 알타 디바이씨즈, 인크. 증착 및 액피텍셜 리프트 오프 공정을 통한 타일형 기판
US20100276071A1 (en) * 2009-04-29 2010-11-04 Solarmer Energy, Inc. Tandem solar cell
US8440496B2 (en) * 2009-07-08 2013-05-14 Solarmer Energy, Inc. Solar cell with conductive material embedded substrate
US8372945B2 (en) 2009-07-24 2013-02-12 Solarmer Energy, Inc. Conjugated polymers with carbonyl substituted thieno[3,4-B]thiophene units for polymer solar cell active layer materials
US11393683B2 (en) 2009-10-14 2022-07-19 Utica Leaseco, Llc Methods for high growth rate deposition for forming different cells on a wafer
US9834860B2 (en) * 2009-10-14 2017-12-05 Alta Devices, Inc. Method of high growth rate deposition for group III/V materials
US8399889B2 (en) 2009-11-09 2013-03-19 Solarmer Energy, Inc. Organic light emitting diode and organic solar cell stack
TWI408823B (zh) * 2010-06-11 2013-09-11 An Ching New Energy Machinery & Equipment Co Ltd The solar cell structure of Sanhuan semiconductor and its manufacturing method
TW201145546A (en) * 2010-06-15 2011-12-16 An Ching New Energy Machinery & Equipment Co Ltd Solar cell structure with high electro-optic conversion efficiency and manufacturing method thereof
FR2981195A1 (fr) 2011-10-11 2013-04-12 Soitec Silicon On Insulator Multi-jonctions dans un dispositif semi-conducteur forme par differentes techniques de depot
US10543662B2 (en) 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
US9340443B2 (en) 2012-12-13 2016-05-17 Corning Incorporated Bulk annealing of glass sheets
US10014177B2 (en) 2012-12-13 2018-07-03 Corning Incorporated Methods for processing electronic devices
US10086584B2 (en) 2012-12-13 2018-10-02 Corning Incorporated Glass articles and methods for controlled bonding of glass sheets with carriers
TWI617437B (zh) 2012-12-13 2018-03-11 康寧公司 促進控制薄片與載體間接合之處理
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
JP6770432B2 (ja) 2014-01-27 2020-10-14 コーニング インコーポレイテッド 薄いシートの担体との制御された結合のための物品および方法
SG11201608442TA (en) 2014-04-09 2016-11-29 Corning Inc Device modified substrate article and methods for making
EP3297824A1 (fr) 2015-05-19 2018-03-28 Corning Incorporated Articles et procédés pour lier des feuilles minces à des supports
JP7106276B2 (ja) 2015-06-26 2022-07-26 コーニング インコーポレイテッド シート及び担体を有する物品及び方法
TW201825623A (zh) 2016-08-30 2018-07-16 美商康寧公司 用於片材接合的矽氧烷電漿聚合物
TWI810161B (zh) 2016-08-31 2023-08-01 美商康寧公司 具以可控制式黏結的薄片之製品及製作其之方法
JP7260523B2 (ja) 2017-08-18 2023-04-18 コーニング インコーポレイテッド ポリカチオン性高分子を使用した一時的結合
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180069A (ja) * 1982-04-15 1983-10-21 Agency Of Ind Science & Technol 半導体装置
JPS60101979A (ja) * 1983-11-07 1985-06-06 Daihen Corp 光起電力素子
US4846931A (en) * 1988-03-29 1989-07-11 Bell Communications Research, Inc. Method for lifting-off epitaxial films
NL8900388A (nl) * 1989-02-17 1990-09-17 Philips Nv Werkwijze voor het verbinden van twee voorwerpen.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9321661A1 *

Also Published As

Publication number Publication date
WO1993021661A1 (fr) 1993-10-28
US5479043A (en) 1995-12-26
FR2690279B1 (fr) 1997-10-03
JPH06511356A (ja) 1994-12-15
FR2690279A1 (fr) 1993-10-22

Similar Documents

Publication Publication Date Title
WO1993021661A1 (fr) Composant photovoltaique multispectral
FR2690278A1 (fr) Composant photovoltaïque multispectral à empilement de cellules, et procédé de réalisation.
EP0617839B1 (fr) Procédé de réalisation de composants semi-conducteurs, notamment sur GaAs ou InP, avec récupération du substrat par voie chimique
FR2581797A1 (fr) Dispositif semi-conducteur pour la conversion de la lumiere en electricite
FR2784795A1 (fr) Structure comportant une couche mince de materiau composee de zones conductrices et de zones isolantes et procede de fabrication d'une telle structure
FR2967813A1 (fr) Procédé de réalisation d'une structure a couche métallique enterrée
EP3012876B1 (fr) Procede de fabrication d'une photodiode a faible bruit
EP3503222B1 (fr) Procédé de fabrication d'un dispositif optoélectronique par report d'une structure de conversion sur une structure d'émission
FR2964498A1 (fr) Empilement de led de couleur
WO2017051004A1 (fr) Procédé de fabrication de structures pour cellule photovoltaïque
EP0913002B1 (fr) Detecteur infrarouge bicolore a coherence spatio-temporelle planaire
EP2432033A2 (fr) Détecteur bispectral multicouche à photodiodes
FR2837625A1 (fr) Dispositif photovoltaique multi-jonctions a cellules independantes sans effet d'ombrage et procede de realisation d'un tel dispositif
EP3353818A1 (fr) Photodétecteur comprenant un empilement de couches superposées
WO1999052155A1 (fr) Structure a semiconducteurs de composant photovoltaique
FR3004002A1 (fr) Procede d'assemblage avance de cellule photovoltaique concentree
FR3076078A1 (fr) Dispositif optoelectronique a matrice de diodes tridimensionnelles
FR3060852A1 (fr) Dispositif photovoltaique et procede de fabrication associe
EP3563426B1 (fr) Procede de realisation d'un dispositif optoelectronique comportant une etape de gravure de la face arriere du substrat de croissance
EP3384535B1 (fr) Cellule photovoltaïque
EP0617841B1 (fr) Procédé de réalisation de composants semi-conducteurs avec récupération du substrat par voie électrochimique
WO2024120963A1 (fr) Procede de fabrication d'un dispositif optoelectronique comprenant une led et une photodiode
EP3671843A1 (fr) Procede de fabrication d'une pluralite de diodes a partir d'un substrat de lecture
EP3853882A1 (fr) Procédé de fabrication d'un dispositif électronique
FR2742581A1 (fr) Detecteur infrarouge bicolore a coherence spatio-temporelle planaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19940425

17Q First examination report despatched

Effective date: 19951012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19971111