EP0587411B1 - Latent image receiving sheet and microcapsules for use therein - Google Patents
Latent image receiving sheet and microcapsules for use therein Download PDFInfo
- Publication number
- EP0587411B1 EP0587411B1 EP93307060A EP93307060A EP0587411B1 EP 0587411 B1 EP0587411 B1 EP 0587411B1 EP 93307060 A EP93307060 A EP 93307060A EP 93307060 A EP93307060 A EP 93307060A EP 0587411 B1 EP0587411 B1 EP 0587411B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sheet
- latent image
- image receiving
- receiving sheet
- microcapsules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003094 microcapsule Substances 0.000 title claims abstract description 45
- 229920005989 resin Polymers 0.000 claims abstract description 19
- 239000011347 resin Substances 0.000 claims abstract description 19
- 238000012546 transfer Methods 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 229920000642 polymer Polymers 0.000 claims abstract description 8
- 238000003384 imaging method Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 239000011162 core material Substances 0.000 claims description 12
- 230000002209 hydrophobic effect Effects 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 229920000877 Melamine resin Polymers 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 8
- MBHRHUJRKGNOKX-UHFFFAOYSA-N [(4,6-diamino-1,3,5-triazin-2-yl)amino]methanol Chemical compound NC1=NC(N)=NC(NCO)=N1 MBHRHUJRKGNOKX-UHFFFAOYSA-N 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 239000000049 pigment Substances 0.000 claims description 5
- 238000006116 polymerization reaction Methods 0.000 claims description 5
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 4
- 238000001931 thermography Methods 0.000 claims description 3
- 239000003153 chemical reaction reagent Substances 0.000 claims description 2
- 230000000295 complement effect Effects 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000002775 capsule Substances 0.000 abstract description 48
- 239000000463 material Substances 0.000 abstract description 40
- 229920001187 thermosetting polymer Polymers 0.000 abstract description 4
- 229920003180 amino resin Polymers 0.000 abstract 1
- -1 polyethylenes Polymers 0.000 description 15
- 239000000975 dye Substances 0.000 description 14
- 239000000976 ink Substances 0.000 description 14
- 238000000576 coating method Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920001568 phenolic resin Polymers 0.000 description 6
- 229940096522 trimethylolpropane triacrylate Drugs 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- IVJISJACKSSFGE-UHFFFAOYSA-N formaldehyde;1,3,5-triazine-2,4,6-triamine Chemical compound O=C.NC1=NC(N)=NC(N)=N1 IVJISJACKSSFGE-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 3
- 229920003270 Cymel® Polymers 0.000 description 3
- 229920003261 Durez Polymers 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- FWQHNLCNFPYBCA-UHFFFAOYSA-N fluoran Chemical class C12=CC=CC=C2OC2=CC=CC=C2C11OC(=O)C2=CC=CC=C21 FWQHNLCNFPYBCA-UHFFFAOYSA-N 0.000 description 3
- UMGLBLXWFVODRF-UHFFFAOYSA-N formaldehyde;4-phenylphenol Chemical compound O=C.C1=CC(O)=CC=C1C1=CC=CC=C1 UMGLBLXWFVODRF-UHFFFAOYSA-N 0.000 description 3
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000002985 plastic film Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- WNZQDUSMALZDQF-UHFFFAOYSA-N 2-benzofuran-1(3H)-one Chemical compound C1=CC=C2C(=O)OCC2=C1 WNZQDUSMALZDQF-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- MHDVGSVTJDSBDK-UHFFFAOYSA-N dibenzyl ether Chemical compound C=1C=CC=CC=1COCC1=CC=CC=C1 MHDVGSVTJDSBDK-UHFFFAOYSA-N 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 150000003216 pyrazines Chemical class 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- LIZLYZVAYZQVPG-UHFFFAOYSA-N (3-bromo-2-fluorophenyl)methanol Chemical compound OCC1=CC=CC(Br)=C1F LIZLYZVAYZQVPG-UHFFFAOYSA-N 0.000 description 1
- QTKIQLNGOKOPOE-UHFFFAOYSA-N 1,1'-biphenyl;propane Chemical group CCC.C1=CC=CC=C1C1=CC=CC=C1 QTKIQLNGOKOPOE-UHFFFAOYSA-N 0.000 description 1
- WFOQXUOOXMEVQB-UHFFFAOYSA-N 1-butan-2-yl-2-phenylbenzene Chemical group CCC(C)C1=CC=CC=C1C1=CC=CC=C1 WFOQXUOOXMEVQB-UHFFFAOYSA-N 0.000 description 1
- BUZMJVBOGDBMGI-UHFFFAOYSA-N 1-phenylpropylbenzene Chemical compound C=1C=CC=CC=1C(CC)C1=CC=CC=C1 BUZMJVBOGDBMGI-UHFFFAOYSA-N 0.000 description 1
- XAAILNNJDMIMON-UHFFFAOYSA-N 2'-anilino-6'-(dibutylamino)-3'-methylspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound C=1C(N(CCCC)CCCC)=CC=C(C2(C3=CC=CC=C3C(=O)O2)C2=C3)C=1OC2=CC(C)=C3NC1=CC=CC=C1 XAAILNNJDMIMON-UHFFFAOYSA-N 0.000 description 1
- KESQFSZFUCZCEI-UHFFFAOYSA-N 2-(5-nitropyridin-2-yl)oxyethanol Chemical compound OCCOC1=CC=C([N+]([O-])=O)C=N1 KESQFSZFUCZCEI-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KTALPKYXQZGAEG-UHFFFAOYSA-N 2-propan-2-ylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C(C)C)=CC=C3SC2=C1 KTALPKYXQZGAEG-UHFFFAOYSA-N 0.000 description 1
- RMZZBGUNXMGXCD-UHFFFAOYSA-N 3',6,6'-tris(dimethylamino)spiro[2-benzofuran-3,9'-fluorene]-1-one Chemical compound C12=CC=C(N(C)C)C=C2C2=CC(N(C)C)=CC=C2C21OC(=O)C1=CC(N(C)C)=CC=C21 RMZZBGUNXMGXCD-UHFFFAOYSA-N 0.000 description 1
- CONFUNYOPVYVDC-UHFFFAOYSA-N 3,3-bis(1-ethyl-2-methylindol-3-yl)-2-benzofuran-1-one Chemical compound C1=CC=C2C(C3(C4=CC=CC=C4C(=O)O3)C3=C(C)N(C4=CC=CC=C43)CC)=C(C)N(CC)C2=C1 CONFUNYOPVYVDC-UHFFFAOYSA-N 0.000 description 1
- NLCOOYIZLNQIQU-UHFFFAOYSA-N 7-[4-(diethylamino)-2-ethoxyphenyl]-7-(2-methyl-1-octylindol-3-yl)furo[3,4-b]pyridin-5-one Chemical compound C12=CC=CC=C2N(CCCCCCCC)C(C)=C1C1(C2=NC=CC=C2C(=O)O1)C1=CC=C(N(CC)CC)C=C1OCC NLCOOYIZLNQIQU-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 241000702449 African cassava mosaic virus Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- KYNSBQPICQTCGU-UHFFFAOYSA-N Benzopyrane Chemical compound C1=CC=C2C=CCOC2=C1 KYNSBQPICQTCGU-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- IPAJDLMMTVZVPP-UHFFFAOYSA-N Crystal violet lactone Chemical compound C1=CC(N(C)C)=CC=C1C1(C=2C=CC(=CC=2)N(C)C)C2=CC=C(N(C)C)C=C2C(=O)O1 IPAJDLMMTVZVPP-UHFFFAOYSA-N 0.000 description 1
- XZMCDFZZKTWFGF-UHFFFAOYSA-N Cyanamide Chemical compound NC#N XZMCDFZZKTWFGF-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 241000404236 Zizina otis Species 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000006103 coloring component Substances 0.000 description 1
- 150000001983 dialkylethers Chemical class 0.000 description 1
- 150000001987 diarylethers Chemical class 0.000 description 1
- DROMNWUQASBTFM-UHFFFAOYSA-N dinonyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCC DROMNWUQASBTFM-UHFFFAOYSA-N 0.000 description 1
- YCZJVRCZIPDYHH-UHFFFAOYSA-N ditridecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCCC YCZJVRCZIPDYHH-UHFFFAOYSA-N 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- FZUGPQWGEGAKET-UHFFFAOYSA-N parbenate Chemical compound CCOC(=O)C1=CC=C(N(C)C)C=C1 FZUGPQWGEGAKET-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- BOTNYLSAWDQNEX-UHFFFAOYSA-N phenoxymethylbenzene Chemical compound C=1C=CC=CC=1COC1=CC=CC=C1 BOTNYLSAWDQNEX-UHFFFAOYSA-N 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000005420 sulfonamido group Chemical group S(=O)(=O)(N*)* 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 150000004897 thiazines Chemical class 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 125000001834 xanthenyl group Chemical class C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/382—Contact thermal transfer or sublimation processes
- B41M5/38271—Contact thermal transfer or sublimation processes using microcapsules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/055—Thermographic processes for producing printing formes, e.g. with a thermal print head
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1041—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by modification of the lithographic properties without removal or addition of material, e.g. by the mere generation of a lithographic pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/124—Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
- B41M5/165—Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components characterised by the use of microcapsules; Special solvents for incorporating the ingredients
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
- B41M5/28—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating
- B41M5/287—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used using thermochromic compounds or layers containing liquid crystals, microcapsules, bleachable dyes or heat- decomposable compounds, e.g. gas- liberating using microcapsules or microspheres only
Definitions
- This invention relates to record material in the form of a latent image receiving sheet.
- U.S. Patent No. 4,529,681 discloses a light- and heat-sensitive record material relying on use of permeable capsules relying on heat to effect coloring component permeation through the thermoplastic capsule wall.
- US-A-4873168 discloses heat treatment of an imaging sheet carrying a coating of microcapsules containing a radiation curable composition and an associated image-forming agent. Imaging is accomplished not by heating but by subjecting the microcapsules to a uniform rupturing force after they have been image-wise exposed to actinic radiation.
- US-A-4682194 discloses a heat-sensitive recording material incorporating microcapsules having a glass transition point of from 60 to 200°C.
- a latent image receiving sheet comprising a substrate carrying microcapsules containing a core material, characterized in that:
- the invention also extends to the use of the latent image receiving sheet in a thermal imaging process, and to the latent imaging process itself.
- the latent image receiving sheet can take the form of a variety of useful products including:
- the latent image receiving sheet of the invention comprises a substrate bearing microcapsules having walls selected from non-meltable or thermoset resin.
- the walls of the microcapsules are selected to have an elongation not more than 1%.
- the non-meltable walls of the microcapsules rupture upon application thereto of a point source energy input comprising a ⁇ T of at least 115°C per one millisecond.
- the latent image receiving sheet has adhered microcapsules having walls of thermosetting or non-meltable resin with critically an elongation of not more than 1%.
- the thermosetting resin is selected from methylated methylol melamine, or selected from combinations of melamine and formaldehyde, or methylol melamine polymerized at a temperature of at least 65°C, preferably about 75°C.
- the microcapsule walls are non-meltable.
- the microcapsules can contain any core material conventionally used in microencapsulation. These can include various combinations of a solvent, a hydrophobic or hydrophillic material, liquid preferably hydrophobic liquid, gas, developer or chromogen, inks, dyes, toners, or pigments.
- the novel sheet with microcapsules of the invention has a variety of new uses. Upon exposure of the sheet with microcapsules to a point source energy input comprising a ⁇ T ("change in temperature") of at least 115°C per one millisecond, the microcapsules rupture.
- a point source energy input comprising a ⁇ T ("change in temperature") of at least 115°C per one millisecond
- microcapsule and sheet material characteristics are described in terms of a point source energy input such as a thermal print head, it is readily apparent and understood that such record material or image receiving sheet can be imaged with a larger input device such as a rapidly heating block or multiplicity of thermal print heads assembled as a larger unit.
- Point sources for purposes of the invention can take the form of a thermal print head, laser, focussed hot jets, heated stylus and the like.
- the ability to effect a change in temperature of at least 115°C per one millisecond at the receiving sheet's surface is needed to effect the unusual shattering of the non-meltable capsules of the invention. Shattering is believed attributable to induced or produced thermal stresses though the invention disclosed herein should not be construed as limited to this one underlying theory, as other mechanisms may also be operating.
- a latent image is recorded on the sheet by virtue of rupture of the microcapsules, which one can think of in terms of an assembly of sealed bottles, some of which, however, are selectively shattered so that they have open tops, thus becoming open containers.
- An appropriate developer material can be applied across the surface of the sheet by conventional applicator means such as sponging, spraying, cotton swab or other applicator to develop the image.
- a hydrophobic material is placed in the capsule, a hydrophobic ink or dye applied across the surface of the sheet will, preferentially, adhere to the hydrophobic material resulting in an image.
- the capsules of the latent image receiving sheet unlike the prior art, do not melt or become porous, but rather fracture from the rapid change in temperature or energy input.
- microcapsules are constructed such as to encapsulate a hydrophobic material, then after recording a latent image on the receiving sheet with a thermal print head, a hydrophobic ink can be applied across the surface of the sheet, and it will preferentially occupy the capsules with shattered tops exposing hydrophobic material when the freely applied hydrophobic ink is squeegeed or wiped away from the surface of the sheet.
- hydrophillic materials can be encapsulated for use with hydrophillic inks. The result is a low-cost gravure type of print plate or transfer sheet.
- ink or dye can be encapsulated in the capsules to also create a similar transfer sheet.
- the substrate is typically selected of more rigid stock or even synthetic material for better durability.
- the latent image receiving sheet can be used as optical recording medium, such as for recording of digitized information by laser or thermal print head.
- the latent image receiving sheet also finds use for transfer of information in latent form. Being created by a thermal print head, transmission of cryptic messages is made possible.
- the latent image can be subsequently developed as herein earlier described.
- the capsules of the receiving sheet unlike the prior art, do not melt or become porous upon energy input, but rather fracture from the rapid change in temperature or energy input such as an energy pulse. Exposure of the receiving sheet to an energy input, such as with a thermal print head, or other source capable of generating the appropriate ⁇ T shatters the microcapsules and encodes the latent image.
- the capsules of the latent image receiving sheet unlike the prior art, do not melt upon energy input, but rather appear to rupture from rapid change in temperature or energy input. Significantly this gives rise to a novel material which is heat resistant.
- the latent image receiving sheet of the invention can be placed in a hot oven (150°C) for substantial time periods such as one minute and the capsules do not become permeable. Conventional thermal paper by contrast images in an oven almost instantaneously.
- the insulating characteristics of the wall material and the absence of heat dissipation via phase change appears to lead to a high concentration of energy at the contact area between the point source and the capsule.
- the elongation value for the wall material of the microcapsules can be taken from tables for various resins. The published values correlated well with the observed phenomena and provide a convenient means to select appropriate resins. Resins having elongation values of not more than 1% selected to be used as wall material result in microcapsules with nonmeltable polymeric shells or wall material displaying the unusual characteristics of shattering attributable to induced thermal stresses.
- Table 1 summarizes elongation values for a variety of resin materials.
- Resin Elongation (%) acetal 60-75 acrylic 20-50 cellulose 5-100 fluorcarb 80-400 ionomers 100-600 polyamides 25-300 polycarbonates 60-100 polyethylenes 5-900 polypropylenes 3-700 polystyrenes 1-140 vinyls 2-400 epoxies 1-70 phenolics 1-2 phenol formaldehyde 0.4-2 melamine formaldehyde 0.6-1.0 polyester 40-300 polyester alkyd 0.5-2 silicone 100 urea formaldehyde 0.5 urethane 300-1000 nylon 300
- the elongation of the polymeric shells or wall is determined for purposes of the invention, from the elongation (%) value of the bulk resins when polymerized and using standards tests such as ASTM test method D638.
- the wall of the capsules of the invention appears to rupture. Failure of the capsule wall appears attributed to a high temperature gradient and nonsteady state of heat transfer. Such conditions create localized thermal stresses. The magnitude of the stress depends on the properties of the material. A brittle wall can sustain less strain and thus ruptures.
- Elongation properties appear to correlate well with wall brittleness and facilitate selection of resin.
- the capsules of the invention surprisingly fracture upon application of a point source energy input comprising a change in temperature ( ⁇ T) of at least 115°C per one millisecond.
- ⁇ T is T-To in the above formula.
- S which is stress ranges for melamine formaldehyde polymers from 5x10 3 psi to 13x10 3 psi and for phenol formaldehyde polymers ranges from about 5x10 3 psi to about 9x10 3 psi.
- S is taken as (5x10 3 ) psi.
- the modulus of elasticity ranges from about (11x10 5 ) to (14x10 5 ) psi.
- E is taken as 11x10 5 .
- the coefficient of linear thermal expansion is (4x10 -5 )°C.
- the calculated threshold ⁇ T is about 115°C.
- Example 1 demonstrates that the temperature at the record system surface when using a conventional fax such as a Canon Fax 230 is greater than 170°C. This is the temperature that the surface of the paper or media sees. The temperature of the thermal print head is higher, but the temperature observed at the surface of the media is alone relevant as regards the thermal stresses to which the capsules on the surface of the paper are subjected.
- capsules are nonmeltable or thermoset in character, there is no latent heat capacity and substantially no phase change.
- the latent image receiving sheet when subjected to a thermal print head resulted in ruptured capsules observed with a scanning electon microscope.
- the capsule core material can include inks, dyes, toners, chromogens, solvents, gases, liquids, and pigments.
- the capsule core material is relatively independently selected.
- the core can be any material which is substantially water insoluble. Extensive lists of other core materials are listed in U.S. Patent 4,001,140.
- the core material can be any material dispersible in water and wrappable by the wall material. This can include air.
- an imaging material such as chromogen, dye, toner, or pigment and the like can be prepositioned in the microcapsules as the core material.
- the core can be selected to be colorless electron donating compounds, dye precursor or chromogens which form color by reacting with a developer material.
- Such compounds include substantially colorless compounds having a lactone, a lactam, a sulfone, a spiropyran, an ester or an amido structure in their partial skeleton such as triarylmethane compounds, bisphenylmethane compounds, xanthene compounds, fluorans, thiazine compounds, spiropyran compounds and the like.
- Eligible electron donating dye precursors which are chromogenic compounds, such as the phthalide, leucauramine and fluoran compounds, for use in the color-forming system are well known.
- the chromogens include Crystal Violet Lactone (3,3-bis(4-dimethylaminophenyl)-6-dimethylaminophthalide.
- U.S. Patent No. Re. 23,024 phenyl-, indol-, pyrrol-, and carbazol-substituted phthalides (for example, in U.S. Patent Nos.
- Patent 4,510,513 also known as 3-dibutylamino-6-methyl-7-anilino-fluoran; 3-dibutylamino-7-(2-chloroanilino) fluoran; 3-(N-ethyl-N-tetrahydrofurfurylamino)-6-methyl-7-3-5'6-tris(di-methylamino)spiro[9H-fluorene-9'1(3'H)-isobenzofuran]-3'-one; 7-(1-ethyl-2-methylindol-3-yl)-7-(4-diethylamino-2-ethoxyphenyl)-5,7-dihydrofuro[3,4-b]pyridin-5-one(U.S.
- Patent No. 4,246,318 3-diethylamino-7-(2-chloroanilino)fluoran (U.S. Patent No. 3,920,510); 3-(N-methylcyclohexylamino)-6-methyl-7-anilino-fluoran (U.S. Patent No.
- Solvents such as the following can optionally be included in the microcapsules:
- the solvent if included, can be selected to facilitate dissolving the dye mixture, if included.
- the latent image of the receiving sheet can be made visible by various conventional acidic developer materials preferably as dispersions or solutions applied to the latent image receiving sheet following application of the latent image. Other variations can include prepositioning the acidic developer material in substantially contiguous relationship to the chromogen material. Developer can be positioned in the capsules and chromogen applied following rupture, or alternatively, chromogen can be positioned in the capsules.
- eligible acidic developer material examples include: clays, treated clays (U.S. Patent Nos. 3,622,364 and 3,753,761); aromatic carboxylic acids such as salicylic acid; derivatives of aromatic carboxylic acids and metal salts thereof (U.S. Patent No, 4,022,936); phenolic developers (U.S. Patent Nos. 3,244,550 and 4,573,063); acidic polymeric material such as phenol-formaldehyde polymers, etc. (U.S. Patent Nos. 3,455,721 and 3,672,935); and metal-modified phenolic resins (U.S. Patent Nos. 3,732,120; 3,737,410; 4,165,102; 4,165,103; 4,166,644 and 4,188,456).
- U.S. Patent No. 4,100,103 describes a method for capsule formation involving reaction between melamine and formaldehyde; British Patent No. 2,062,750 describing a process for producing microcapsules having walls produced by polymerization of melamine and formaldehyde in the presence of a styrenesulfonic acid.
- British Patent No. 2,062,750 describing a process for producing microcapsules having walls produced by polymerization of melamine and formaldehyde in the presence of a styrenesulfonic acid.
- the process of U.S. Patent No 4,552,811 is preferred. Reference can be made to these patents for further details.
- the latent image receiving sheet includes a substrate or support material which is in sheet form.
- sheets can be referred to as support members and are understood to also mean webs, rolls, ribbons, tapes, belts, films, cards and the like. Sheets denote articles having two large surface dimensions and a comparatively small thickness dimension.
- the substrate or support material can be opaque, transparent or translucent and could, itself, be colored or not.
- the material can be fibrous including, for example, paper and filamentous synthetic materials. It can be a film including, for example, cellophane and synthetic polymeric sheets cast, extruded or otherwise formed.
- Binder material can be included to assist adherence of the capsules to the substrate and can include materials such as polyvinyl alcohol, hydroxy ethylcellulose, methylcellulose, methyl-hydroxypropylcellulose, starch, modified starches, gelatin and the like. Latex such as polyacrylate, styrene-butadiene, rubber latex, polyvinylacetate and polystyrene can also be advantageously used.
- Coatings of color former dispersion were prepared on a thin translucent paper substrate. Segments of the coatings were taped to a sheet of bond paper and used as the copy sheet in a Canon Fax-230. Melting was readily evident as clear (amorphous) characters on a relatively opaque background. Using this technique, the temperature at the surface of the media or sample was determined to be at least above 170°C with a Canon Fax-230. Color Former Melting Temp. + Melt in Fax? diButyl N102 ⁇ 170°C Yes PSD-150 ⁇ 200°C No Green 118 ⁇ 230°C No + As determined using the grinds on Kofler Hot Bar
- TMPTA Trimethylolpropane triacrylate
- Photo Initiator 2 g Ethyl-4-Dimethylamino benzoate
- Photo Initiator 24 g 2,2-Dimethoxy-2-phenyl acetophenone Photo Initiator
- This mixture is applied to paper or other desired substrate using, for example, a fixed gap applicator set at 2.54 x 10 -5 m (0.001 inch).
- the resultant dried coating can be used to make a latent copy in a thermal printer such as a commercial facsimile machine.
- the latent image copy can be developed by contacting with or applying on an appropriate developer for the N102 color former.
- a typical example would be a 20% solution of Durez #27691 (p-phenylphenol formaldehyde resin) in xylene.
- the resin can also be applied in aqueous dispersion or emulsion form and then heated to promote the development of the black copy.
- the resultant copy may be "fixed” or deactivated to thermal and/or pressure response by exposing to U.V. to polymerize the components. Approximately 5 second exposure to 15 Watt GE Bulbs (F15T8-BLB) is sufficient to "fix” the copy. After fixing, the sheet is resistant to scuff or abrasive induced markings.
- the coating can suffer handling damage. This damage can be reduced by applying an overcoat that does not interfere with the thermal imaging nor with the subsequent fixing exposure.
- a typical overcoat would be the application of a 10% aqueous solution of Airvol* 540 using a #3 wire wound rod.
- the photoinitiators can be omitted in the capsules of the latent image receiving sheet. Chromogen can be optionally included or excluded as desired. *Airvol is a trade mark of Air Products and Chemicals, Inc. and is a polyvinyl alcohol.
- Example 2 With heating, dissolve the resin in the TMPTA, then add the photoinitiator and dissolve.
- This IP was encapsulated as in Example 2 and resultant capsule dispersion coated and top coated.
- the coated media was run through a commercial facsimile to produce an image.
- This image was developed by application of a commercial toner such as Minolta MT Toner II.
- the black toner particles selectively adhere to the image-wise broken capsules.
- Toner in the background was removed by gentle brushing, etc.
- the toner is fused by heating in an oven or on a heated drum or the like.
- Multicolor images can be obtained using repetition of the process.
- TMPTA trimethylolpropanetriacrylate
- This IP was encapsulated as in Example 1 and resultant capsule dispersion applied to suitable substrate using a #12 wire wound rod.
- the coating was dried and top coated with a 10% aqueous solution of Airvol 540 using a #3 wire wound rod.
- the coated media was run through a commercial facsimile to produce a master image.
- the master image was heated in contact with a developer sheet, a copy was obtained due to sublimation of the spiran from the image-wise broken capsules.
- the imaged master could be used multiple times to make additional copies. Imaged copies are obtained on a commercially available carbonless CF sheet such as comprised of a p-phenylphenol formaldehyde type resin.
Landscapes
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Color Printing (AREA)
- Heat Sensitive Colour Forming Recording (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Printing Methods (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Toys (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94308992A | 1992-09-10 | 1992-09-10 | |
US943089 | 1992-09-10 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0587411A2 EP0587411A2 (en) | 1994-03-16 |
EP0587411A3 EP0587411A3 (en) | 1996-04-10 |
EP0587411B1 true EP0587411B1 (en) | 1997-11-12 |
Family
ID=25479086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93307060A Expired - Lifetime EP0587411B1 (en) | 1992-09-10 | 1993-09-07 | Latent image receiving sheet and microcapsules for use therein |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0587411B1 (es) |
JP (1) | JPH06210156A (es) |
AT (1) | ATE160113T1 (es) |
CA (1) | CA2092232C (es) |
DE (1) | DE69315150T2 (es) |
ES (1) | ES2108831T3 (es) |
FI (1) | FI109190B (es) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001023081A1 (fr) * | 1999-09-29 | 2001-04-05 | Matsumoto Yushi-Seiyaku Co., Ltd. | Procede de fabrication de microcapsules thermoexpansibles |
DE102011000311A1 (de) | 2011-01-05 | 2012-07-05 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Einlegekörper zum Einlegen in eine Lagervorrichtung |
AU2012379930A1 (en) * | 2012-05-18 | 2014-12-04 | Claudio Selva | Method and apparatus for providing a support for the transfer of an univocal design, and support thereby obtained |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5991438A (ja) * | 1982-11-17 | 1984-05-26 | Fuji Photo Film Co Ltd | 感光感熱記録材料 |
JPS60242094A (ja) * | 1984-05-17 | 1985-12-02 | Fuji Photo Film Co Ltd | 感熱記録材料 |
US4873168A (en) * | 1988-03-07 | 1989-10-10 | The Mead Corporation | Imaging system utilizing heat treatment |
-
1993
- 1993-03-23 CA CA002092232A patent/CA2092232C/en not_active Expired - Lifetime
- 1993-09-06 JP JP5245916A patent/JPH06210156A/ja active Pending
- 1993-09-07 ES ES93307060T patent/ES2108831T3/es not_active Expired - Lifetime
- 1993-09-07 EP EP93307060A patent/EP0587411B1/en not_active Expired - Lifetime
- 1993-09-07 AT AT93307060T patent/ATE160113T1/de not_active IP Right Cessation
- 1993-09-07 DE DE69315150T patent/DE69315150T2/de not_active Expired - Fee Related
- 1993-09-08 FI FI933936A patent/FI109190B/fi active
Also Published As
Publication number | Publication date |
---|---|
FI109190B (fi) | 2002-06-14 |
ES2108831T3 (es) | 1998-01-01 |
ATE160113T1 (de) | 1997-11-15 |
CA2092232A1 (en) | 1994-03-11 |
EP0587411A2 (en) | 1994-03-16 |
CA2092232C (en) | 2003-12-09 |
DE69315150D1 (de) | 1997-12-18 |
FI933936A0 (fi) | 1993-09-08 |
FI933936A (fi) | 1994-03-11 |
EP0587411A3 (en) | 1996-04-10 |
DE69315150T2 (de) | 1998-03-05 |
JPH06210156A (ja) | 1994-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0279104B1 (en) | Image producing material | |
US4501809A (en) | Photosetting microcapsules and photo- and pressure-sensitive recording sheet | |
US3624107A (en) | Nitro- and amino-substituted fluorans | |
US3681390A (en) | Dialkylamino fluoran chromogenic compounds | |
US4682194A (en) | Heat-sensitive recording material | |
MXPA02011850A (es) | Medios de formacion de imagenes que contienen microcapsulas fotosensibles revelables por calor. | |
US5612168A (en) | Image transfer sheet comprising an intermediate layer and an imaging layer wherein the polymer in the intermediate layer and the imaging layer have a common monomer | |
US5427886A (en) | Imaging process | |
US4087284A (en) | Color-developer coating for use in copy systems | |
EP0587411B1 (en) | Latent image receiving sheet and microcapsules for use therein | |
US4981834A (en) | Multi-color transfer printing medium | |
US4873219A (en) | Desensitizable self-contained record material useful for security documents and the like | |
JPS60244594A (ja) | 感熱記録材料 | |
US3730755A (en) | Pressure-sensitive record materials | |
JPS6257518B2 (es) | ||
JPH0151820B2 (es) | ||
EP0343780A2 (en) | Carbonless copying system and method of producing multiple colored copy images therewith | |
US3895168A (en) | Pressure-sensitive record sheets employing amido and sulfonamido-substituted fluorans | |
JPH1086511A (ja) | 改ざん防止用感圧複写シート | |
JPS6352599B2 (es) | ||
JPH04247987A (ja) | 感熱記録材料 | |
JPH06227182A (ja) | 改ざん防止用感圧複写シート | |
JPH06106858A (ja) | 透明感熱記録材料 | |
JPH0995046A (ja) | 改ざん防止用感圧複写シート | |
JPH0956698A (ja) | 型取り用シート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930913 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE ES FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE ES FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19960524 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE ES FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 160113 Country of ref document: AT Date of ref document: 19971115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: JACOBACCI & PERANI S.A. Ref country code: CH Ref legal event code: EP |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69315150 Country of ref document: DE Date of ref document: 19971218 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2108831 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20050811 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050815 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050817 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20050818 Year of fee payment: 13 Ref country code: DE Payment date: 20050818 Year of fee payment: 13 Ref country code: CH Payment date: 20050818 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20050824 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20050905 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20050909 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060907 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070403 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060907 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20070401 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060907 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20060908 |
|
BERE | Be: lapsed |
Owner name: *APPLETON PAPERS INC. Effective date: 20060930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080814 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090907 |