EP0587238A1 - Hochdruckentladungslampe - Google Patents
Hochdruckentladungslampe Download PDFInfo
- Publication number
- EP0587238A1 EP0587238A1 EP93202553A EP93202553A EP0587238A1 EP 0587238 A1 EP0587238 A1 EP 0587238A1 EP 93202553 A EP93202553 A EP 93202553A EP 93202553 A EP93202553 A EP 93202553A EP 0587238 A1 EP0587238 A1 EP 0587238A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- halide
- current supply
- end zone
- supply conductor
- zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000004820 halides Chemical class 0.000 claims abstract description 101
- 239000004020 conductor Substances 0.000 claims abstract description 85
- 239000000919 ceramic Substances 0.000 claims abstract description 48
- 239000001257 hydrogen Substances 0.000 claims abstract description 26
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- 229910001507 metal halide Inorganic materials 0.000 claims abstract description 13
- 230000003190 augmentative effect Effects 0.000 claims abstract description 11
- 150000005309 metal halides Chemical class 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims description 33
- 238000007789 sealing Methods 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 25
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 23
- 229910052758 niobium Inorganic materials 0.000 claims description 19
- 239000010955 niobium Substances 0.000 claims description 19
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 18
- 239000010937 tungsten Substances 0.000 claims description 17
- 229910052721 tungsten Inorganic materials 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 150000002739 metals Chemical class 0.000 claims description 11
- 229910010293 ceramic material Inorganic materials 0.000 claims description 10
- 239000011195 cermet Substances 0.000 claims description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 9
- 238000004804 winding Methods 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 7
- 229910052741 iridium Inorganic materials 0.000 claims description 6
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 239000010948 rhodium Substances 0.000 claims description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 229910052702 rhenium Inorganic materials 0.000 claims description 3
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 229910021332 silicide Inorganic materials 0.000 claims description 2
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 2
- 238000010276 construction Methods 0.000 abstract description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 230000002349 favourable effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 229910001868 water Inorganic materials 0.000 description 8
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 5
- 239000000395 magnesium oxide Substances 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- NLQFUUYNQFMIJW-UHFFFAOYSA-N dysprosium(III) oxide Inorganic materials O=[Dy]O[Dy]=O NLQFUUYNQFMIJW-UHFFFAOYSA-N 0.000 description 3
- -1 for example Inorganic materials 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- GQKYKPLGNBXERW-UHFFFAOYSA-N 6-fluoro-1h-indazol-5-amine Chemical compound C1=C(F)C(N)=CC2=C1NN=C2 GQKYKPLGNBXERW-UHFFFAOYSA-N 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- PSNPEOOEWZZFPJ-UHFFFAOYSA-N alumane;yttrium Chemical compound [AlH3].[Y] PSNPEOOEWZZFPJ-UHFFFAOYSA-N 0.000 description 2
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 229910003440 dysprosium oxide Inorganic materials 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910021343 molybdenum disilicide Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Inorganic materials [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- KXCRAPCRWWGWIW-UHFFFAOYSA-K holmium(3+);triiodide Chemical compound I[Ho](I)I KXCRAPCRWWGWIW-UHFFFAOYSA-K 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- HUIHCQPFSRNMNM-UHFFFAOYSA-K scandium(3+);triiodide Chemical compound [Sc+3].[I-].[I-].[I-] HUIHCQPFSRNMNM-UHFFFAOYSA-K 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- CMJCEVKJYRZMIA-UHFFFAOYSA-M thallium(i) iodide Chemical compound [Tl]I CMJCEVKJYRZMIA-UHFFFAOYSA-M 0.000 description 1
- LZOMHYVAEHYDST-UHFFFAOYSA-K thulium(3+);triiodide Chemical compound I[Tm](I)I LZOMHYVAEHYDST-UHFFFAOYSA-K 0.000 description 1
- QPBYLOWPSRZOFX-UHFFFAOYSA-J tin(iv) iodide Chemical compound I[Sn](I)(I)I QPBYLOWPSRZOFX-UHFFFAOYSA-J 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229940105970 yttrium iodide Drugs 0.000 description 1
- LFWQXIMAKJCMJL-UHFFFAOYSA-K yttrium(3+);triiodide Chemical compound I[Y](I)I LFWQXIMAKJCMJL-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/36—Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
- H01J61/366—Seals for leading-in conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/36—Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
- H01J61/361—Seals between parts of vessel
- H01J61/363—End-disc seals or plug seals
Definitions
- the invention relates to a high-pressure discharge lamp comprising a ceramic discharge vessel which encloses a discharge space which is provided with a ionizable filling comprising metal halide and in which a first and a second electrode are arranged, which discharge vessel comprises, on either side of a central zone extending between the electrodes, a first and a second end zone which are connected to the central zone, which each surround with little clearance a current supply conductor connected to a respective electrode, and in which a seal of ceramic sealing compound is provided through which said current supply conductor issues to the exterior, in which lamp at least the first end zone has an external diameter smaller than the smallest external diameter of the central zone and the current supply conductor through the first end zone has a halide-resistant portion facing the discharge space and a portion which is permeable to hydrogen and oxygen remote from the discharge space.
- Such a lamp is known from US 4.409.517.
- ceramic discharge vessel in the present description and claims is understood to mean a discharge vessel of a refractory material such as monocrystalline metal oxide, for example sapphire, polycrystalline metal oxide, for example translucent gastight aluminium oxide (DGA), yttrium-aluminium garnet (YAG) or yttrium oxide (YOX), or polycrystalline non-oxidic material such as aluminium nitride (AlN).
- halide resistant means that no or substantially no corrosive attack by halides and free halogens takes place under the conditions prevailing in the discharge space during lamp operation.
- the term “little clearance” means that the space remaining between the end zone and the current supply conductor issuing through it is at least 5 ⁇ m and at most one fourth of the internal diameter of the end zone, but not more than approximately 200 ⁇ m. So the diameter of the current supply conductor therein is at least equal to half the internal diameter of the end zone.
- a metal bush forming a current supply conductor is passed through each of the end zones of the discharge vessel. The space remaining between the bush and the end zone is entirely filled with a ceramic sealing compound.
- Niobium or tantalum is used as the material for the current supply conductor because these metals have coefficients of expansion, averaged over the temperature range which the end zone experiences after the lamp has been switched on from an idle state, which correspond substantially to those of the ceramic materials from which the discharge vessel is manufactured.
- a disadvantage of the said metals is that they are not halide resistant. Accordingly, the current supply conductor issuing into the discharge vessel through the first end zone in the known lamp is provided with a cover of halide-resistant material such as molybdenum or tungsten at a portion situated inside the discharge space.
- the current supply conductor through the second end zone is entirely made of niobium or tantalum in the known lamp. This is because these metals are highly permeable to hydrogen and oxygen. These gases can leave the discharge vessel through this current supply conductor.
- the lamp is for this purpose characterized in that the halide-resistant portion of the current supply conductor extends inside the first end zone over a distance L1 which is at least the internal diameter D of the first end zone augmented by 2 mm, and in that the current supply conductor through the second end zone also has a halide-resistant portion which faces towards the discharge space.
- L1 which is at least the internal diameter D of the first end zone augmented by 2 mm
- the current supply conductor through the second end zone also has a halide-resistant portion which faces towards the discharge space.
- the distance L1 is preferably not greater than approximately 30 mm. Since the halide-resistant portion of the current supply conductor of the lamp according to the invention runs through the end zone over at least the distance L1 defined above and thereby transfers radiation heat to the surroundings, the permeable portion has a comparatively low temperature compared with the temperatures prevailing inside the discharge space. It is also assumed that the little clearance between the end zone and the halide-resistant portion running through it leads to a strong heat exchange between the gases originating from the discharge space and the halide-resistant portion, so that also the gases originating from the discharge space already have a comparatively low temperature as a result before reaching the permeable portion.
- US 4.780.646 discloses a high-pressure discharge lamp whose discharge vessel is provided with a filling comprising metal halides.
- the current supply conductor at an end zone of the discharge vessel has a halide-resistant portion.
- the end zone which has the same diameter as the central zone of the discharge vessel, has a complicated construction involving a niobium current conductor which is connected to a pin of an electrode via a disc which is also made of niobium, two ceramic discs, in recesses of which the niobium disc is accommodated, and a ceramic sleeve which surrounds the pin of the electrode.
- a high-pressure discharge lamp is known from Netherlands Patent Application 8005026 laid open to public inspection in which the discharge vessel has a cylindrical end zone on either side of a central zone, the diameter of the end zone being comparatively small in relation to that of the central zone.
- a current conductor of niobium, permeable to hydrogen and oxygen, is passed through each of the end zones into the discharge space, and is connected to an electrode pin of halide-resistant tungsten.
- the electrode pin which has a diameter smaller than half the internal diameter of the end zone, does not extend to inside the end zone.
- the permeable portion of the current supply conductor is made, for example, of titanium, zirconium, hafnium, vanadium, niobium, or tantalum, or an alloy of these elements.
- niobium and/or tantalum is preferred because their average coefficients of expansion differ only slightly from those of the frequently used DGA. There is also only a slight difference with the average coefficients of expansion of yttrium oxide and yttrium-aluminium garnet.
- aluminium nitride is used as the ceramic material, zirconium will be a favourable choice in this respect.
- At least the surface of the halide-resistant portion of the current supply conductor is preferably manufactured from a material which comprises at least one of the metals from the group formed by tungsten, molybdenum, platinum, iridium, rhenium and rhodium, and/or an electrically conducting silicide, carbide or nitride of at least one of these metals, for example, molybdenum disilicide.
- the surface of the halide-resistant portion preferably has a radiation absorption coefficient in excess of 0.2.
- a comparatively high absorption coefficient promotes the transfer of radiation heat to the surroundings so that the permeable portion has a comparatively low temperature, all other circumstances remaining equal.
- An absorption coefficient in excess of 0.2 is realised in a simple manner, for example, in that the surface of the halide-resistant portion is rendered rough and/or dull.
- the surface of the halide-resistant portion may be provided, for example, with a layer of a material having a high absorption coefficient.
- the permeable portion enters the first end zone to beyond the seal of ceramic sealing compound and adjoins the halide-resistant portion at some distance from the seal.
- an end of the permeable portion of the current supply conductor facing towards the halide-resistant portion is in contact with the discharge space via the space between the end zone and the halide-resistant portion which passes through this zone, so that hydrogen and oxygen can leave the discharge space through the said end.
- the second end zone of a lamp according to the invention may be comparatively short and may be provided with a tungsten or molybdenum rod which forms both the current supply conductor and the electrode.
- the second end zone may have a construction which corresponds to that of the first end zone.
- the halide-resistant portion of the current supply conductor extends to inside the seal of ceramic sealing compound.
- the permeable portion of the current supply conductor is completely screened off from the filling comprising the metal halide in the finished lamp. Given the same external dimensions of the first end zone, higher temperatures thereof can be permitted compared with the construction in which an end of the permeable portion is in contact with the discharge space. Although in this construction the permeable portion of the current supply conductor is entirely covered with ceramic sealing compound in the first end zone, it is nevertheless possible to remove water, hydrogen and oxygen from the discharge vessel during lamp manufacture.
- an assembly comprising an electrode and a current supply conductor having a permeable portion and a halide-resistant portion is inserted in the first end zone and so fixed with ceramic sealing compound that an end of the permeable portion of the current supply conductor adjoining the halide-resistant portion is still uncovered.
- the lamp is operated for a few minutes, whereby water vapour dissociates in the discharge arc and hydrogen and oxygen leave the discharge vessel through the said end.
- the lamp may be, for example, heated in a furnace as an alternative. The water vapour generated thereby then dissociates at the surface of the permeable portion.
- This process also takes place with the metals titanium, zirconium, hafnium, vanadium, and tantalum. After water, hydrogen and oxygen have been removed from the discharge vessel to a sufficient extent, the ceramic sealing compound is re-melted until it extends over the entire permeable portion.
- US 3.363.133 discloses a high-pressure discharge lamp with a discharge vessel provided with a filling comprising metal halide.
- the discharge vessel has end zones of the same external diameter as the central zone, current supply conductors being passed through said end zones and comprising a niobium conductor and an electrode pin of halide-resistant material connected to this conductor.
- the halide-resistant electrode pin extends to inside a seal of ceramic sealing compound.
- the construction hampers the removal of hydrogen and oxygen from the discharge vessel.
- the seal of ceramic sealing compound prevents transport of hydrogen and oxygen to the permeable portion of the assembly in the finished lamp. Since it is practically impossible to provide the seals of ceramic sealing compound at the inside of the discharge vessel after the discharge vessel has been closed, it is also very difficult to remove hydrogen and oxygen from the discharge vessel during the manufacture of this lamp without a concomitant loss of desired filling ingredients.
- the permeable portion extends preferably within the first end zone over a distance L2 which is at least three times the internal diameter D of the first end zone.
- the halide-resistant portion is a solid rod of halide-resistant material.
- the current supply conductor may be manufactured by techniques which are known for connecting, for example, a niobium current supply conductor to a tungsten electrode.
- the electrode and the halide-resistant portion of the current supply conductor may be jointly formed, for example, by a tungsten rod.
- the halide-resistant portion of the current supply conductor is surrounded by a sleeve which comprises platinum, rhodium, and/or iridium.
- the current supply conductor with the sleeve can be enclosed in the first end zone with close fit also when the halide-resistant portion extends to inside the seal of ceramic sealing compound and/or when a comparatively great difference between the average coefficients of expansion of the material of the discharge vessel and that of the halide-resistant portion exists, because platinum, rhodium and iridium are elastic materials.
- a close fit i.e.
- the halide-resistant portion of the current supply conductor has a comparatively narrow end adjoining the permeable portion and a comparatively wide end facing the central zone of the discharge vessel.
- a practical implementation of this modification is characterized in that the ceramic sealing compound extends up to the comparatively wide end.
- the surface of the ceramic sealing compound facing the discharge space is substantially covered by the comparatively wide portion as a result, so that a still better screening thereof is obtained.
- the halide-resistant portion is a hollow rod.
- a rod can be enclosed with close fit in the first end zone also when a material is used whose average coefficient of expansion differs comparatively strongly from that of the ceramic sealing compound and that of the first end zone.
- This embodiment has the additional advantage that the rod, compared with a solid rod of the same dimensions, has the same surface area available for heat radiation, but conducts less heat towards the permeable portion. As a result, this construction renders possible a lower temperature of the permeable portion without an increase in the length of the end zone.
- a favourable embodiment of the lamp according to the invention is characterized in that the current supply conductor comprises a rod of permeable material, while the halide-resistant portion is formed by a narrowed portion of the rod and a cover of halide-resistant material which is passed over the narrowed portion.
- This embodiment has the advantage that the permeable portion and the halide-resistant portion of the current supply conductor can be readily interconnected.
- the current supply conductor comprises a rod of permeable material, while the halide-resistant portion is formed by a portion of the rod which is provided with a layer of halide-resistant material.
- the current supply conductor is formed, for example, from a niobium rod, and an end portion thereof is provided with a tungsten layer of a thickness of, for example, a few up to a few tens of micrometers.
- a hat treatment is preferably carried out by which the material of the layer penetrates somewhat into the niobium and a very good adhesion of the tungsten layer to the niobium rod is obtained.
- the heat treatment comprises, for example, heating of the rod for a few hours at a temperature of 2200 K.
- the halide-resistant portion of the current supply conductor is a porous body.
- Mechanical stresses in the first end zone remain limited also when the porous body is made of a material having an average coefficient of expansion which deviates strongly from that of the first end zone and when this body is passed through the first end zone with close fit.
- the porous body has a rough surface, which promotes the radiation of heat to the surroundings.
- cross-sections of the body have a comparatively small surface area compared with that of a solid rod of the same external dimensions. Both factors render possible a comparatively low temperature of the permeable portion given certain defined external dimensions.
- a further attractive embodiment of the lamp according to the invention is characterized in that the halide-resistant portion is manufactured from a cermet of preferably at least 10% by volume of a halide-resistant ceramic material such as MgO, Al2O3, Sc2O2, Y2O3 with one or several halide-resistant conductive materials, for example, with tungsten or with molybdenum disilicide.
- a halide-resistant ceramic material such as MgO, Al2O3, Sc2O2, Y2O3
- one or several halide-resistant conductive materials for example, with tungsten or with molybdenum disilicide.
- the cermet has a comparatively low heat conductivity because of the presence of the ceramic material therein. This renders it possible to realise a comparatively low temperature of the permeable portion with a comparatively small length of the halide-resistant portion.
- a concentration below 80% by volume of the ceramic material randomly distributed particles of the electrically conducting material in the cermet will form together an electrically conducting path.
- the concentration of the ceramic material in the cermet is smaller than 50 vol%. The cermet then has a sufficiently low electrical resistance under all circumstances.
- a yet further attractive embodiment of the high-pressure discharge lamp according to the invention is characterized In that the halide-resistant portion is surrounded by a winding of a wire which comprises at least one of the metals tungsten, molybdenum, platinum, iridium, rhenium and rhodium.
- This embodiment has the advantage that the space left open in the end zone can be small without this leading to mechanical stresses with temperature fluctuations.
- a small open Space has the advantage that it can hold few fill ingredients. The reproducibility of the lamp behaviour is increased by this.
- the winding is manufactured from a wire having a diameter of between one fourth and half the diameter of the halide-resistant portion surrounded thereby.
- the wire is then on the one hand thick enough for readily avoiding its fracture during manufacture, and on the other hand not so thick that special measures are necessary for coiling it around the halide-resistant portion.
- the first end zone is sintered directly, for example, into a end of the central zone.
- a favourable embodiment is characterized in that an end of a tube forming the first end zone facing towards the central zone is fixed in a ceramic ring which is fastened in a respective end of the tube forming the central zone.
- This embodiment has the advantage that little heat is necessary for forming the seal of ceramic sealing compound during manufacture. Special measures for preventing filling ingredients from evaporating during this are then unnecessary.
- a similar construction may be used, for example, at the second end zone.
- the high-pressure discharge lamp shown in Fig. 1 comprises a ceramic discharge vessel 10 made of DGA material which encloses a discharge space 11 and is provided with an ionizable filling comprising metal halides.
- the filling comprises 1 mg mercury and 3 mg of the metal halides sodium iodide, thallium iodide and dysprosium iodide in a weight ratio of 69:10:21.
- the filling also comprises argon and a starting gas.
- the spectrum of the lamp shows lines at 589 nm and 535 nm which result from the respective first two metal halide components, and in addition exhibits a multitude of lines generated by the third metal halide component.
- dysprosium iodide for example, a halide of a different rare earth such as scandium iodide, yttrium iodide, holmium iodide or thulium iodide may be used.
- the filling may comprise, for example, halides which radiate a continuous spectrum during operation, such as tin iodide.
- a first and a second electrode 40a, 40b are arranged in the discharge vessel 10.
- the electrodes 40a, 40b are each formed by a tungsten rod with a length of 3 mm and a diameter of 300 ⁇ m, while having a single winding of tungsten wire of 170 ⁇ m diameter at a free end over a distance of 800 ⁇ m.
- the discharge vessel 10 has a central zone 20 which extends between the electrodes 40a, 40b and further has on either side of this zone a first and a second cylindrical end zone 30a, 30b connected to the central zone 20 and each surrounding a current supply conductor 50a, 50b with little clearance, which current supply conductors are connected to respective electrodes 40a, 40b, while a seal 32a, 32b of ceramic sealing compound is provided in each end zone, through which seal the relevant current supply conductor 50a, 50b issues to the exterior.
- the central zone 20 has an internal length of 10 mm, an external diameter of 7.6 mm and a wall thickness of 0.8 mm.
- Ends 31a, 31b of tubes 30a', 30b' facing towards the central zone 20 and forming the end zones 30a, 30b are in this case fixed each in a ring 22a, 22b.
- the rings 22a, 22b of 2 mm thickness are each fastened in an end 23a, 23b of a tube 20' which forms the central zone 20.
- Ends 31a, 31b, rings 22a, 22b, and ends 20a, 20b here form transition zones interconnecting the end zones 30a, 30b and the central zone.
- the end zones 30a, 30b have an external diameter which is small in relation to that of the central zone 10. Here the external diameter of the former is 2.6 mm.
- the end zones 30a, 30b have an internal diameter D of approximately 0.76 mm.
- the current supply conductors 50a, 50b each comprise a portion 51a, 51b facing towards the discharge space 11 and formed by a halide-resistant molybdenum rod of 0.70 mm diameter and a portion 52a, 52b facing away from the discharge space and formed by a 0.72 mm thick rod of niobium which is permeable to hydrogen and oxygen.
- the average clearance between the end zone 30a, 30b and the halide-resistant portion 51, 51b passed through it, accordingly, is approximately 0.03 mm.
- the halide-resistant portion 51a, 51b extends over a distance L1 of 7 mm inside the end zone 30a, 30b.
- the distance L1 is greater than the internal diameter D of the end zone augmented by 2 mm, i.e. 2.76 mm.
- the halide-resistant portion 51, 51b has an absorption coefficient greater than 0.2 owing to its rough and dull surface. In this case the absorption coefficient is approximately 0.22.
- the permeable portion 52a, 52b extends over a distance L2 of 5 mm inside the end zone 30a, 30b, which is more than three times the internal diameter D of the end zone (2.3 mm).
- the seal 32a, 32b of ceramic sealing compound leaves an end 54a, 54b with a length L3 of approximately 2 mm of the permeable portion 52a, 52b exposed.
- the lamp consumes a power of 70 W during nominal operation.
- the lamp was subjected to an endurance test of 5000 hours. After the endurance test, substantially no corrosion of the permeable portion 52a, 52b of the current supply conductor 50a, 50b was found. The ratio of re-ignition voltage to lamp voltage was smaller than 2 during the endurance test.
- a comparison lamp was manufactured whose components had dimensions corresponding to those of the embodiment described above, but in which the current supply conductor was entirely made of niobium. After 1000 hours of operation of the lamp, a severe corrosion of the current supply conductor was already found in a region at a distance of 1.5 to 2 mm from the electrode.
- FIG. 2 shows a modification of the previous embodiment in which the halide-resistant portion 151a of the current supply conductor 150a is surrounded by a sleeve 153a with an internal and an external diameter of 0.50 mm and 0.70 mm, respectively, and made of the elastic material platinum. Alternatively, for example, rhodium or iridium may be used.
- This lamp of which the end zone is shown, consumes a power of 70 W during nominal operation.
- the end zone also has an internal diameter D of 0.76 mm.
- the average clearance left open by the halide-resistant portion 151a in the end zone 130a accordingly, is approximately 0.03 mm.
- the halide-resistant portion 151a of the current supply conductor 150a extends over a distance L1 of 8.5 mm inside the first end zone 130a, up to a distance L3 of 2 mm in the ceramic seal therein.
- the distance L1 accordingly, is greater than the internal diameter D of the end zone 130a augmented by 2 mm (2.76 mm).
- the permeable portion 152a has a diameter of 0.72 mm.
- the distance L2 over which the permeable portion extends inside the first end zone 130a is more than three times the internal diameter D of the end zone (2.3 mm). In this case the distance L2 is 3.5 mm.
- the seal 132a made of a ceramic sealing compound has a portion 133a which faces towards the discharge space 111 and has a composition of 30% Al2O3 by weight, 40% SiO2 by weight and 30% Dy2O3 by weight, and a portion 134a facing way from the discharge space 111 and having a composition of 13% Al2O3 by weight, 37% SiO2 by weight, and 50% MgO by weight.
- the manufacture of the lamp may take place as follows, for example.
- the second end zone of the discharge vessel (not shown) is provided with an assembly of a current supply conductor and an electrode.
- Current supply conductor and electrode are jointly formed, for example, by a tungsten rod of 0.3 mm diameter, the electrode portion being provided with a single winding, also of tungsten.
- the discharge space 111 is provided with a filling, after which a second assembly of an electrode 140a and a current supply conductor 150a having a halide-resistant portion 151a and a permeable portion 152a is provided in the opposite first end zone 130.
- the end 135a of the first end zone 130a facing away from the central zone 120 is subsequently provided with a ring of a ceramic sealing compound comprising dysprosium oxide and heated until this ceramic sealing compound extends approximately 2 mm inside the first end zone 130a, while the permeable portion 152a of the current supply conductor 150a remains exposed over a distance of approximately 1.5 mm. Then the lamp is heated to a temperature of approximately 80° C for a few minutes, and after that to a temperature of 600 to 1100° C for 10 minutes, during which hydrogen and oxygen can leave the discharge vessel. Then a ring of a ceramic sealing compound comprising magnesium oxide is placed on the end 135a of the first end zone 130a facing away from the central zone 120.
- the first end zone 130a is then heated once again until the ceramic sealing compound comprising dysprosium oxide extends to approximately 2 mm beyond the permeable portion 152a of the current supply conductor 150a and a continuous seal is thus obtained comprising the seal 133a thus formed and the seal 134a comprising the ceramic sealing compound with magnesium oxide.
- the ceramic sealing compound comprising magnesium oxide at the end 135a facing away from the central zone 120 has an average coefficient of expansion which differs only slightly from that of DGA and thus contributes considerably to the mechanical strength of the entire seal 132a.
- the halide-resistant portion 251a of the current supply conductor 250a is a hollow pin with an internal diameter of 0.50 mm and an external diameter of 0.70 mm.
- the halide-resistant portion 251a has a length of 9.5 mm and extends over a distance L1 of 8.5 mm inside the end zone 230a which has an internal diameter D of 0.76 mm.
- a clearance of 0.03 mm is left open inside the end zone 230a by the halide-resistant portion 251.
- the distance L1 is more than the internal diameter D of the end zone augmented by 2 mm (2.76 mm).
- the permeable portion 252a is a solid rod of niobium with a diameter of 0.72 mm.
- the distance L2 over which the permeable portion 252a of the current supply conductor 250a extends inside the end zone is more than three times the internal diameter D of the end zone (2.3 mm) and in this case is approximately 3.5 mm.
- the halide-resistant portion 251a extends over a distance L3 of approximately 2 mm inside the ceramic seal 232a. The lamp consumes a power of 70 W during nominal operation.
- the halide-resistant portion 351a of the current supply conductor 350a is formed by a narrowed portion 355a of a rod forming the permeable portion 352a of the current supply conductor 350a and by a cover 356a of a halide-resistant material which has been passed over the narrowed portion 355a.
- the discharge vessel narrows approximately conically towards the first end zone 330a at an end 323a of the central zone 320, and narrows further in a transition zone 324a so that the end zone 330a has an external diameter smaller than the smallest external diameter of the discharge vessel.
- the internal diameter D of the end zone is 0.62 mm.
- the narrowed portion 355a of the rod provided with the cover 356a extends over a distance L1 of 7.5 mm inside the end zone 330a, which is more than the internal diameter augmented by 2 mm (2.62 mm).
- the internal diameter of the cover 356a is 0.45 mm.
- the external diameter of the cover 356a is 0.56 mm, as is the diameter of the permeable portion 352a.
- the halide-resistant portion 351a accordingly leaves open a clearance of 0.03 inside the end zone 330a.
- the permeable portion extends over a distance L2 inside the end zone which is greater than three times the internal diameter D of the end zone (1.9 mm). In this case the distance L2 is 3 mm.
- the ceramic seal 332a extends over a distance of 5 mm inside the end zone 330a, to a distance L3 of approximately 2 mm beyond the permeable portion 352a.
- Fig. 5 shows a further embodiment.
- the current supply conductor 450a is a rod of 0.50 mm diameter made of tantalum, which is a material permeable to hydrogen and oxygen.
- a portion 451a of the rod is resistant to halides in that it is provided with a layer 457a of molybdenum having a thickness of 20 ⁇ m.
- An end 431a of a tube 430a' forming the first end zone 430a of the discharge vessel 410 is fixed through sintering in an end 423a of a tube 420' forming the central zone 420.
- the internal diameter D of the first end zone 430a is 0.58 mm.
- a clearance of 0.02 mm is left open between the first end zone 430a and the halide-resistant portion 451a passing through it.
- the halide-resistant portion 451a and the permeable portion 452a extend over a distance L1 of 5.5 mm and a distance L2 of 2.5 mm, respectively, inside the end zone 430a.
- the distance L1 is greater than the internal diameter D of the end zone 430a augmented by 2 mm, i.e. 2.58 mm.
- the distance L2 is greater than three times the internal diameter D (1.74 mm).
- the ceramic seal 432a covers the halide-resistant portion 451a over a distance L3 of 2 mm.
- the lamp consumes a power of 20 W during nominal operation.
- Fig. 6 in which components corresponding to those of Fig. 1 have reference numerals which are 500 higher, shows an embodiment in which the halide-resistant tungsten portion 551a of the current supply conductor 550a has a comparatively narrow end 558a with a length of 6 mm and a diameter of 0.67 mm adjoining the permeable niobium portion 552a of the current supply conductor 550a, and an adjoining comparatively wide end 559a which faces the central zone 520 and has a length of 4.5 mm and a diameter of 0.92 mm.
- the halide-resistant portion 551a extends over a distance L1 of 8 mm inside the end zone 530a.
- the end zone 530a has an internal diameter D of 1.00 mm.
- the distance L1 accordingly is greater than the internal diameter D of the end zone 530a augmented by 2 mm, i.e. 3.0 mm.
- the ceramic seal 532a extends up to the comparatively wide end 559a, i.e. over a distance L3 of 6 mm beyond the permeable portion 552a.
- the permeable portion 552a is enclosed in the end zone 530a over a distance L2 of 7.5 mm, greater than three times the internal diameter D (3.0 mm).
- the lamp dissipates a power of 150 W during nominal operation.
- the end zone 630a has an internal diameter D of 1.00 mm.
- the halide-resistant portion 651a of the current supply conductor 650a is a porous body made of tungsten with a length L1 of 11 mm and a diameter of 0.92 mm which extends entirely within the end zone 630a.
- the distance L1 is greater than the internal diameter D of the end zone augmented by 2 mm (3.0 mm).
- the permeable portion 652a of the current supply conductor 650a is a niobium rod with a diameter also of 0.92 mm which extends over a distance of more than three times the internal diameter (3.0 mm), In this case over a distance L2 of 4.5 mm inside the end zone 630a. A clearance of 0.03 mm is left open in the end zone 630a by the halide-resistant portion 651a.
- the ceramic sealing compound 632a extends over a distance L3 of approximately 2 mm beyond the permeable portion 652a.
- the power consumed by the lamp during nominal operation is 150 W.
- the halide-resistant portion 651a is a body made of a cermet of tungsten and aluminium oxide in a volume ratio of 60:40.
- the halide-resistant portion 751a is a molybdenum rod surrounded by a winding 760a made from a wire, also of molybdenum.
- the rod has a diameter of 406 ⁇ m and the winding 760a is made from wire of 129 ⁇ m, 139 ⁇ m and 145 ⁇ m diameter.
- the end zone 730a here has an internal diameter D of 760 ⁇ m. The space remaining between the inner surface of the end zone 730a and the wire surface facing this zone in these implementations is 48 ⁇ m, 38 ⁇ m and 32 ⁇ m, respectively.
- the halide-resistant portion 751a has a length of 8.5 mm and extends over a distance L1 of the same length inside the end zone 730a.
- the distance L1 accordingly is more than the internal diameter D of the end zone 730a augmented by 2 mm (2.76 mm).
- the halide-resistant portion 751a is enclosed in the seal 732a of melting ceramic over a length L3 of 1 mm.
- the permeable portion 752a is a solid niobium rod. The latter extends over a distance L2 of 2 mm into the end zone 730a.
- the lamp consumes a power of 70W during operation.
- the halide-resistant portion 751a has a diameter of, for example, 335 ⁇ m
- the internal diameter of the end zone 730a is 660 ⁇ m
- the wire from which the winding 760a is manufactured has a diameter of, for example, 111 or 129 ⁇ m.
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19930202553 EP0587238B1 (de) | 1992-09-08 | 1993-09-01 | Hochdruckentladungslampe |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP92202712 | 1992-09-08 | ||
EP92202712 | 1992-09-08 | ||
EP19930202553 EP0587238B1 (de) | 1992-09-08 | 1993-09-01 | Hochdruckentladungslampe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0587238A1 true EP0587238A1 (de) | 1994-03-16 |
EP0587238B1 EP0587238B1 (de) | 2000-07-19 |
Family
ID=26131682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19930202553 Expired - Lifetime EP0587238B1 (de) | 1992-09-08 | 1993-09-01 | Hochdruckentladungslampe |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP0587238B1 (de) |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0652586A1 (de) * | 1993-11-10 | 1995-05-10 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidentladungslampe mit keramischem Entladungsgefäss und Herstellverfahren für eine derartige Lampe |
WO1995028732A1 (en) * | 1994-04-13 | 1995-10-26 | Philips Electronics N.V. | High-pressure metal halide lamp |
WO1996028839A1 (en) * | 1995-03-09 | 1996-09-19 | Philips Electronics N.V. | High-pressure discharge lamp |
EP0751549A1 (de) * | 1995-01-13 | 1997-01-02 | Ngk Insulators, Ltd. | Hochdruckentladungslampe und ihr herstellungsverfahren |
EP0786797A2 (de) | 1996-01-29 | 1997-07-30 | General Electric Company | Bogenröhre für Hochdruck-Entladungslampe |
EP0827177A2 (de) * | 1996-08-30 | 1998-03-04 | Ngk Insulators, Ltd. | Herstellungsverfahren von keramischen Röhren für Metallhalogenidlampen |
EP0869540A1 (de) * | 1997-04-04 | 1998-10-07 | General Electric Company | Metallhalogenidentladungslampe mit keramischem Entladungsgefäss und Herstellungsverfahren |
EP0887841A2 (de) * | 1997-06-27 | 1998-12-30 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidlampe mit keramischem Entladungsgefäss |
WO1999031708A1 (en) * | 1997-12-16 | 1999-06-24 | Koninklijke Philips Electronics N.V. | High-pressure discharge lamp |
EP0926703A2 (de) * | 1997-12-26 | 1999-06-30 | Matsushita Electronics Corporation | Metalldampfentladungslampe |
EP0935278A1 (de) * | 1997-07-25 | 1999-08-11 | Toshiba Lighting & Technology Corporation | Hochspannungs-entladungslampe, hochspannungsentladungslampen vorrichtung, und leuchtvorrichtung |
WO1999053522A1 (en) * | 1998-04-08 | 1999-10-21 | Koninklijke Philips Electronics N.V. | Metal-halide lamp |
WO1999053523A1 (en) * | 1998-04-08 | 1999-10-21 | Koninklijke Philips Electronics N.V. | High-pressure metal-halide lamp |
EP0954010A1 (de) * | 1998-04-28 | 1999-11-03 | General Electric Company | Keramic Entladungsgefäss für eine Entladungslampe |
US5994839A (en) * | 1996-10-03 | 1999-11-30 | Matsushita Electronics Corporation | High-pressure metal vapor discharge lamp |
EP1006560A2 (de) * | 1998-12-04 | 2000-06-07 | Toshiba Lighting & Technology Corporation | Durchführung für eine Hochdruckentladungslampe, Beleuchtungssystem mit Spannungsversorgung für eine solche Lampe |
WO2000034980A1 (en) * | 1998-12-08 | 2000-06-15 | Koninklijke Philips Electronics N.V. | Electric lamp |
EP1011126A2 (de) * | 1998-12-14 | 2000-06-21 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidlampe |
EP1014423A1 (de) * | 1998-12-25 | 2000-06-28 | Matsushita Electronics Corporation | Metalldampfentladungslampe |
EP1032022A1 (de) * | 1999-02-26 | 2000-08-30 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidlampe mit keramischem Entladungsgefäss |
EP1032010A1 (de) * | 1998-09-16 | 2000-08-30 | Matsushita Electric Industrial Co., Ltd. | Wasserfreie silberhalogenidlampe |
US6126887A (en) * | 1999-07-30 | 2000-10-03 | General Electric Company | Method of manufacture of ceramic ARC tubes |
US6137229A (en) * | 1997-09-26 | 2000-10-24 | Matsushita Electronics Corporation | Metal halide lamp with specific dimension of the discharge tube |
US6294871B1 (en) | 1999-01-22 | 2001-09-25 | General Electric Company | Ultraviolet and visible filter for ceramic arc tube body |
US6346495B1 (en) | 1999-12-30 | 2002-02-12 | General Electric Company | Die pressing arctube bodies |
GB2366908A (en) * | 2000-05-31 | 2002-03-20 | Patent Teuhand Ges Fuer Elek S | Metal halide lamp with ceramic discharge vessel |
EP1193734A1 (de) * | 2000-03-08 | 2002-04-03 | Japan Storage Battery Co., Ltd. | Elektrische entladungslampe |
WO2002071442A1 (en) * | 2000-11-06 | 2002-09-12 | General Electric Company | Ceramic discharge chamber for a discharge lamp and methods of making it |
WO2002091431A2 (en) * | 2001-05-08 | 2002-11-14 | Koninklijke Philips Electronics N.V. | Ceramic metal halide lamp |
CN1102798C (zh) * | 1996-11-07 | 2003-03-05 | 电灯专利信托有限公司 | 陶瓷放电灯壳 |
US6586881B1 (en) | 1998-05-27 | 2003-07-01 | Ngk Insulators, Ltd. | Light emitting container for high-pressure discharge lamp and manufacturing method thereof |
US6592808B1 (en) | 1999-12-30 | 2003-07-15 | General Electric Company | Cermet sintering of ceramic discharge chambers |
US6653801B1 (en) | 1979-11-06 | 2003-11-25 | Matsushita Electric Industrial Co., Ltd. | Mercury-free metal-halide lamp |
US6657388B2 (en) | 2000-04-19 | 2003-12-02 | Koninklijke Philips Electronics N.V. | High-pressure discharge lamp |
DE10234758A1 (de) * | 2002-07-30 | 2004-02-12 | Sli Lichtsysteme Gmbh | Metall-Halogendampflampe niedriger Leistung |
EP1494263A2 (de) | 2003-06-18 | 2005-01-05 | General Electric Company | Lichtquellen zur Verbesserung des Wahrnehmungsvermögens unter mesopichen Beleuchtungsbedingungen |
WO2005083744A2 (de) | 2004-02-23 | 2005-09-09 | Patent-Treuhand- Gesellschaft Für Elektrische Glühlampen Mbh | Elektrodensystem für eine hochdruckentladungslampe |
WO2005124823A1 (en) * | 2004-06-14 | 2005-12-29 | Koninklijke Philips Electronics N.V. | Ceramic metal halide discharge lamp |
US6995514B2 (en) | 2002-06-14 | 2006-02-07 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Electrode system for a metal halide lamp, and associated lamp |
WO2006077516A2 (en) * | 2005-01-19 | 2006-07-27 | Koninklijke Philips Electronics N.V. | High-pressure discharge lamp |
US7190118B2 (en) | 2002-07-17 | 2007-03-13 | Koninklijke Philips Electronics, N.V. | Metal halide lamp having ionizable iodide salt |
US7211954B2 (en) | 2005-03-09 | 2007-05-01 | General Electric Company | Discharge tubes |
US7247591B2 (en) | 2005-05-26 | 2007-07-24 | Osram Sylvania Inc. | Translucent PCA ceramic, ceramic discharge vessel, and method of making |
US7279838B2 (en) | 2005-03-09 | 2007-10-09 | General Electric Company | Discharge tubes |
US7297037B2 (en) | 1998-04-28 | 2007-11-20 | General Electric Company | Ceramic discharge chamber for a discharge lamp |
WO2008020406A2 (en) | 2006-08-18 | 2008-02-21 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
WO2008068666A2 (en) | 2006-12-01 | 2008-06-12 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
US7388333B2 (en) | 2003-10-10 | 2008-06-17 | Koninklijke Philips Electronics, N.V. | High pressure discharge lamp having emission matching an absorption spectrum of green plant |
DE202008000746U1 (de) | 2008-01-18 | 2008-06-26 | Flowil International Lighting (Holding) B.V. | Elektrodeneinheit in Hochdruck-Gasentladungslampe |
DE202007007774U1 (de) | 2007-06-01 | 2008-07-03 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
DE202008007162U1 (de) | 2008-05-28 | 2008-08-07 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
DE202007013119U1 (de) | 2007-09-19 | 2008-10-23 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
US7503825B2 (en) | 2004-05-21 | 2009-03-17 | Osram Sylvania Inc. | Aluminum nitride arc discharge vessel having high total transmittance and method of making same |
DE102007044629A1 (de) | 2007-09-19 | 2009-04-02 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
EP2081214A1 (de) | 2008-01-18 | 2009-07-22 | Flowil International Lighting (HOLDING) B.V. | Elektrodeneinheit für eine Hochdruck-Entladungslampe |
WO2010015988A1 (en) * | 2008-08-06 | 2010-02-11 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
US7671537B2 (en) | 2004-03-08 | 2010-03-02 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
DE202009016712U1 (de) | 2009-12-09 | 2010-04-08 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe mit keramischem Entladungsgefäß |
WO2010091980A1 (de) | 2009-02-12 | 2010-08-19 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
US7799269B2 (en) | 2007-09-25 | 2010-09-21 | Osram Sylvania Inc. | Method of sintering AIN under a methane-containing nitrogen atmosphere |
US7897098B2 (en) | 2005-03-16 | 2011-03-01 | Osram Sylvania Inc. | High total transmittance alumina discharge vessels having submicron grain size |
WO2011030278A2 (en) | 2009-09-10 | 2011-03-17 | Koninklijke Philips Electronics N.V. | High intensity discharge lamp |
US7952282B2 (en) | 2008-04-29 | 2011-05-31 | Osram Sylvania Inc. | Brazing alloy and ceramic discharge lamp employing same |
WO2011069764A1 (de) | 2009-12-09 | 2011-06-16 | Osram Gesellschaft mit beschränkter Haftung | Entladungsgefäss aus keramik für eine hochdruckentladungslampe |
WO2011121492A2 (en) | 2010-04-02 | 2011-10-06 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
WO2011153797A1 (zh) * | 2010-06-07 | 2011-12-15 | 潮州市灿源电光源有限公司 | 一种陶瓷投影灯 |
US8093815B2 (en) | 2006-12-18 | 2012-01-10 | Koninklijke Philips Electronics N.V. | High-pressure discharge lamp having a ceramic discharge vessel directly sealed to a rod |
US8106590B2 (en) | 2004-03-08 | 2012-01-31 | Koninklijke Philips Electronics N.V. | Vehicle headlamp |
EP2988318A1 (de) | 2014-08-19 | 2016-02-24 | Flowil International Lighting (HOLDING) B.V. | Metallhalogenidlampe mit hoher farbwiedergabe |
WO2019234455A1 (en) * | 2018-06-08 | 2019-12-12 | Ceravision Limited | A plasma light source with low metal halide dose |
WO2019234454A3 (en) * | 2018-06-08 | 2020-01-23 | Ceravision Limited | A plasma light source with low metal halide dose |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6873108B2 (en) | 2001-09-14 | 2005-03-29 | Osram Sylvania Inc. | Monolithic seal for a sapphire metal halide lamp |
US7420331B2 (en) | 2005-06-24 | 2008-09-02 | Osram Sylvania Inc. | Doped dysprosia discharge vessel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0041296A1 (de) * | 1980-06-03 | 1981-12-09 | Koninklijke Philips Electronics N.V. | Hochdruckentladungslampe |
GB2083281A (en) * | 1980-09-05 | 1982-03-17 | Philips Nv | High-pressure discharge lamp |
EP0136505A2 (de) * | 1983-09-06 | 1985-04-10 | GTE Laboratories Incorporated | Direkte Versiegelung zwischen Niobium und Keramik |
EP0472100A2 (de) * | 1990-08-24 | 1992-02-26 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Hochdruckentladungslampe |
-
1993
- 1993-09-01 EP EP19930202553 patent/EP0587238B1/de not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0041296A1 (de) * | 1980-06-03 | 1981-12-09 | Koninklijke Philips Electronics N.V. | Hochdruckentladungslampe |
GB2083281A (en) * | 1980-09-05 | 1982-03-17 | Philips Nv | High-pressure discharge lamp |
EP0136505A2 (de) * | 1983-09-06 | 1985-04-10 | GTE Laboratories Incorporated | Direkte Versiegelung zwischen Niobium und Keramik |
EP0472100A2 (de) * | 1990-08-24 | 1992-02-26 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Hochdruckentladungslampe |
Cited By (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6653801B1 (en) | 1979-11-06 | 2003-11-25 | Matsushita Electric Industrial Co., Ltd. | Mercury-free metal-halide lamp |
US5532552A (en) * | 1993-11-10 | 1996-07-02 | Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh | Metal-halide discharge lamp with ceramic discharge vessel, and method of its manufacture |
EP0652586A1 (de) * | 1993-11-10 | 1995-05-10 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidentladungslampe mit keramischem Entladungsgefäss und Herstellverfahren für eine derartige Lampe |
US5751111A (en) * | 1994-04-13 | 1998-05-12 | U.S. Philips Corporation | High-pressure metal halide lamp |
WO1995028732A1 (en) * | 1994-04-13 | 1995-10-26 | Philips Electronics N.V. | High-pressure metal halide lamp |
CN1069148C (zh) * | 1994-04-13 | 2001-08-01 | 皇家菲利浦电子有限公司 | 高压金属卤化物灯 |
AU687174B2 (en) * | 1994-04-13 | 1998-02-19 | Koninklijke Philips Electronics N.V. | High-pressure metal halide lamp |
EP0751549A1 (de) * | 1995-01-13 | 1997-01-02 | Ngk Insulators, Ltd. | Hochdruckentladungslampe und ihr herstellungsverfahren |
US6139386A (en) * | 1995-01-13 | 2000-10-31 | Ngk Insulators, Ltd. | High pressure discharge lamp with an improved sealing system and method of producing the same |
EP0751549A4 (de) * | 1995-01-13 | 1998-08-12 | Ngk Insulators Ltd | Hochdruckentladungslampe und ihr herstellungsverfahren |
WO1996028839A1 (en) * | 1995-03-09 | 1996-09-19 | Philips Electronics N.V. | High-pressure discharge lamp |
CN1094648C (zh) * | 1995-03-09 | 2002-11-20 | 皇家菲利浦电子有限公司 | 高压放电灯 |
US5742124A (en) * | 1995-03-09 | 1998-04-21 | U.S. Phillips Corporation | High-pressure discharge lamp |
EP0786797A2 (de) | 1996-01-29 | 1997-07-30 | General Electric Company | Bogenröhre für Hochdruck-Entladungslampe |
US5866982A (en) * | 1996-01-29 | 1999-02-02 | General Electric Company | Arctube for high pressure discharge lamp |
EP0786797A3 (de) * | 1996-01-29 | 1997-11-12 | General Electric Company | Bogenröhre für Hochdruck-Entladungslampe |
CN1095188C (zh) * | 1996-08-30 | 2002-11-27 | 日本碍子株式会社 | 金属卤素灯的陶瓷管的制造方法 |
EP0827177A3 (de) * | 1996-08-30 | 1998-05-20 | Ngk Insulators, Ltd. | Herstellungsverfahren von keramischen Röhren für Metallhalogenidlampen |
EP0827177A2 (de) * | 1996-08-30 | 1998-03-04 | Ngk Insulators, Ltd. | Herstellungsverfahren von keramischen Röhren für Metallhalogenidlampen |
US6027389A (en) * | 1996-08-30 | 2000-02-22 | Ngk Insulators, Ltd. | Production of ceramic tubes for metal halide lamps |
US5994839A (en) * | 1996-10-03 | 1999-11-30 | Matsushita Electronics Corporation | High-pressure metal vapor discharge lamp |
CN1102798C (zh) * | 1996-11-07 | 2003-03-05 | 电灯专利信托有限公司 | 陶瓷放电灯壳 |
EP0869540A1 (de) * | 1997-04-04 | 1998-10-07 | General Electric Company | Metallhalogenidentladungslampe mit keramischem Entladungsgefäss und Herstellungsverfahren |
US6075314A (en) * | 1997-06-27 | 2000-06-13 | Patent-Truehand-Gesellschaft Fuer Electriche Gluelampen Mbh | Metal-halide lamp with specific lead through structure |
EP0887841A2 (de) * | 1997-06-27 | 1998-12-30 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidlampe mit keramischem Entladungsgefäss |
EP0887841A3 (de) * | 1997-06-27 | 1999-10-06 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidlampe mit keramischem Entladungsgefäss |
EP0935278A1 (de) * | 1997-07-25 | 1999-08-11 | Toshiba Lighting & Technology Corporation | Hochspannungs-entladungslampe, hochspannungsentladungslampen vorrichtung, und leuchtvorrichtung |
EP0935278A4 (de) * | 1997-07-25 | 2002-10-09 | Toshiba Lighting & Technology | Hochspannungs-entladungslampe, hochspannungsentladungslampen vorrichtung, und leuchtvorrichtung |
US6137229A (en) * | 1997-09-26 | 2000-10-24 | Matsushita Electronics Corporation | Metal halide lamp with specific dimension of the discharge tube |
WO1999031708A1 (en) * | 1997-12-16 | 1999-06-24 | Koninklijke Philips Electronics N.V. | High-pressure discharge lamp |
EP0926703A2 (de) * | 1997-12-26 | 1999-06-30 | Matsushita Electronics Corporation | Metalldampfentladungslampe |
EP0926703A3 (de) * | 1997-12-26 | 1999-09-08 | Matsushita Electronics Corporation | Metalldampfentladungslampe |
US6208070B1 (en) | 1997-12-26 | 2001-03-27 | Matsushita Electronics Corporation | Metal vapor discharged lamp with specific angle between electrodes and tapered envelope wall |
US6356016B1 (en) | 1998-04-08 | 2002-03-12 | U.S. Philips Corporation | High-pressure metal-halide lamp that includes a ceramic-carrier oxygen dispenser |
WO1999053522A1 (en) * | 1998-04-08 | 1999-10-21 | Koninklijke Philips Electronics N.V. | Metal-halide lamp |
WO1999053523A1 (en) * | 1998-04-08 | 1999-10-21 | Koninklijke Philips Electronics N.V. | High-pressure metal-halide lamp |
EP0954010A1 (de) * | 1998-04-28 | 1999-11-03 | General Electric Company | Keramic Entladungsgefäss für eine Entladungslampe |
US7297037B2 (en) | 1998-04-28 | 2007-11-20 | General Electric Company | Ceramic discharge chamber for a discharge lamp |
US6583563B1 (en) | 1998-04-28 | 2003-06-24 | General Electric Company | Ceramic discharge chamber for a discharge lamp |
US6791266B2 (en) | 1998-04-28 | 2004-09-14 | General Electric Company | Ceramic discharge chamber for a discharge lamp |
US7041240B2 (en) | 1998-05-27 | 2006-05-09 | Ngk Insulators, Ltd. | Method of manufacturing a high pressure discharge lamp vessel |
US6586881B1 (en) | 1998-05-27 | 2003-07-01 | Ngk Insulators, Ltd. | Light emitting container for high-pressure discharge lamp and manufacturing method thereof |
EP1032010A1 (de) * | 1998-09-16 | 2000-08-30 | Matsushita Electric Industrial Co., Ltd. | Wasserfreie silberhalogenidlampe |
EP1032010A4 (de) * | 1998-09-16 | 2001-11-28 | Matsushita Electric Ind Co Ltd | Wasserfreie silberhalogenidlampe |
EP1006560A3 (de) * | 1998-12-04 | 2001-12-12 | Toshiba Lighting & Technology Corporation | Durchführung für eine Hochdruckentladungslampe, Beleuchtungssystem mit Spannungsversorgung für eine solche Lampe |
EP1006560A2 (de) * | 1998-12-04 | 2000-06-07 | Toshiba Lighting & Technology Corporation | Durchführung für eine Hochdruckentladungslampe, Beleuchtungssystem mit Spannungsversorgung für eine solche Lampe |
WO2000034980A1 (en) * | 1998-12-08 | 2000-06-15 | Koninklijke Philips Electronics N.V. | Electric lamp |
EP1011126A2 (de) * | 1998-12-14 | 2000-06-21 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidlampe |
EP1011126A3 (de) * | 1998-12-14 | 2006-08-23 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidlampe |
EP1014423A1 (de) * | 1998-12-25 | 2000-06-28 | Matsushita Electronics Corporation | Metalldampfentladungslampe |
US6294871B1 (en) | 1999-01-22 | 2001-09-25 | General Electric Company | Ultraviolet and visible filter for ceramic arc tube body |
EP1032022A1 (de) * | 1999-02-26 | 2000-08-30 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Metallhalogenidlampe mit keramischem Entladungsgefäss |
US6404130B1 (en) | 1999-02-26 | 2002-06-11 | Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh | Metal halide lamp with fill-efficient two-part lead-through |
US6126887A (en) * | 1999-07-30 | 2000-10-03 | General Electric Company | Method of manufacture of ceramic ARC tubes |
US6679961B2 (en) | 1999-12-30 | 2004-01-20 | General Electric Company | Die pressing arctube bodies |
US6592808B1 (en) | 1999-12-30 | 2003-07-15 | General Electric Company | Cermet sintering of ceramic discharge chambers |
US6346495B1 (en) | 1999-12-30 | 2002-02-12 | General Electric Company | Die pressing arctube bodies |
EP1193734A1 (de) * | 2000-03-08 | 2002-04-03 | Japan Storage Battery Co., Ltd. | Elektrische entladungslampe |
EP1193734A4 (de) * | 2000-03-08 | 2006-06-28 | Gs Yuasa Corp | Elektrische entladungslampe |
US6657388B2 (en) | 2000-04-19 | 2003-12-02 | Koninklijke Philips Electronics N.V. | High-pressure discharge lamp |
GB2366908B (en) * | 2000-05-31 | 2004-11-03 | Patent Teuhand Ges Fuer Elek S | Metal haldie lamp with ceramic discharge vessel |
US6617790B2 (en) | 2000-05-31 | 2003-09-09 | Patent-Treuhand-Gesellschaft F. Elektrische Gluehlampen Mbh | Metal halide lamp with ceramic discharge vessel |
GB2366908A (en) * | 2000-05-31 | 2002-03-20 | Patent Teuhand Ges Fuer Elek S | Metal halide lamp with ceramic discharge vessel |
US7063586B2 (en) | 2000-11-06 | 2006-06-20 | General Electric Company | Ceramic discharge chamber for a discharge lamp |
WO2002071442A1 (en) * | 2000-11-06 | 2002-09-12 | General Electric Company | Ceramic discharge chamber for a discharge lamp and methods of making it |
WO2002091431A3 (en) * | 2001-05-08 | 2003-04-17 | Koninkl Philips Electronics Nv | Ceramic metal halide lamp |
WO2002091431A2 (en) * | 2001-05-08 | 2002-11-14 | Koninklijke Philips Electronics N.V. | Ceramic metal halide lamp |
US6995514B2 (en) | 2002-06-14 | 2006-02-07 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Electrode system for a metal halide lamp, and associated lamp |
US7190118B2 (en) | 2002-07-17 | 2007-03-13 | Koninklijke Philips Electronics, N.V. | Metal halide lamp having ionizable iodide salt |
DE10234758A1 (de) * | 2002-07-30 | 2004-02-12 | Sli Lichtsysteme Gmbh | Metall-Halogendampflampe niedriger Leistung |
DE10234758B4 (de) * | 2002-07-30 | 2006-02-16 | Sli Lichtsysteme Gmbh | Metall-Halogendampflampe niedriger Leistung |
EP1494263A2 (de) | 2003-06-18 | 2005-01-05 | General Electric Company | Lichtquellen zur Verbesserung des Wahrnehmungsvermögens unter mesopichen Beleuchtungsbedingungen |
US7388333B2 (en) | 2003-10-10 | 2008-06-17 | Koninklijke Philips Electronics, N.V. | High pressure discharge lamp having emission matching an absorption spectrum of green plant |
WO2005083744A3 (de) * | 2004-02-23 | 2006-02-16 | Lampen Mbh Patent Treuhand Ges | Elektrodensystem für eine hochdruckentladungslampe |
WO2005083744A2 (de) | 2004-02-23 | 2005-09-09 | Patent-Treuhand- Gesellschaft Für Elektrische Glühlampen Mbh | Elektrodensystem für eine hochdruckentladungslampe |
US7671537B2 (en) | 2004-03-08 | 2010-03-02 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
US8106590B2 (en) | 2004-03-08 | 2012-01-31 | Koninklijke Philips Electronics N.V. | Vehicle headlamp |
US7503825B2 (en) | 2004-05-21 | 2009-03-17 | Osram Sylvania Inc. | Aluminum nitride arc discharge vessel having high total transmittance and method of making same |
WO2005124823A1 (en) * | 2004-06-14 | 2005-12-29 | Koninklijke Philips Electronics N.V. | Ceramic metal halide discharge lamp |
WO2006077516A3 (en) * | 2005-01-19 | 2007-10-11 | Koninkl Philips Electronics Nv | High-pressure discharge lamp |
US7952284B2 (en) | 2005-01-19 | 2011-05-31 | Koninklijke Philips Electronics N.V. | High-pressure discharge lamp |
CN101288147B (zh) * | 2005-01-19 | 2010-12-29 | 皇家飞利浦电子股份有限公司 | 高压放电灯 |
WO2006077516A2 (en) * | 2005-01-19 | 2006-07-27 | Koninklijke Philips Electronics N.V. | High-pressure discharge lamp |
US7211954B2 (en) | 2005-03-09 | 2007-05-01 | General Electric Company | Discharge tubes |
US7327085B2 (en) | 2005-03-09 | 2008-02-05 | General Electric Company | Discharge tubes |
US7279838B2 (en) | 2005-03-09 | 2007-10-09 | General Electric Company | Discharge tubes |
US7897098B2 (en) | 2005-03-16 | 2011-03-01 | Osram Sylvania Inc. | High total transmittance alumina discharge vessels having submicron grain size |
US7247591B2 (en) | 2005-05-26 | 2007-07-24 | Osram Sylvania Inc. | Translucent PCA ceramic, ceramic discharge vessel, and method of making |
US8274224B2 (en) | 2006-08-18 | 2012-09-25 | Koninklijke Philips Electronics N.V. | Metal halide lamp including ceramic sealing material |
WO2008020406A2 (en) | 2006-08-18 | 2008-02-21 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
US7952285B2 (en) | 2006-08-18 | 2011-05-31 | Koninklijke Philips Electronics N.V. | Metal halide lamp with cerium oxide seal |
US8564200B2 (en) | 2006-12-01 | 2013-10-22 | Koninklijke Philips N.V. | Metal halide lamp |
WO2008068666A2 (en) | 2006-12-01 | 2008-06-12 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
US8093815B2 (en) | 2006-12-18 | 2012-01-10 | Koninklijke Philips Electronics N.V. | High-pressure discharge lamp having a ceramic discharge vessel directly sealed to a rod |
DE202007007774U1 (de) | 2007-06-01 | 2008-07-03 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
WO2008145665A1 (de) * | 2007-06-01 | 2008-12-04 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
DE202007013119U1 (de) | 2007-09-19 | 2008-10-23 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
DE102007044629A1 (de) | 2007-09-19 | 2009-04-02 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
US7799269B2 (en) | 2007-09-25 | 2010-09-21 | Osram Sylvania Inc. | Method of sintering AIN under a methane-containing nitrogen atmosphere |
EP2081214A1 (de) | 2008-01-18 | 2009-07-22 | Flowil International Lighting (HOLDING) B.V. | Elektrodeneinheit für eine Hochdruck-Entladungslampe |
DE202008000746U1 (de) | 2008-01-18 | 2008-06-26 | Flowil International Lighting (Holding) B.V. | Elektrodeneinheit in Hochdruck-Gasentladungslampe |
US7952282B2 (en) | 2008-04-29 | 2011-05-31 | Osram Sylvania Inc. | Brazing alloy and ceramic discharge lamp employing same |
DE202008007162U1 (de) | 2008-05-28 | 2008-08-07 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
US8427052B2 (en) | 2008-08-06 | 2013-04-23 | Koninklijke Philips Electronics N.V. | Metal halide lamp with oversaturated red |
WO2010015988A1 (en) * | 2008-08-06 | 2010-02-11 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
WO2010091980A1 (de) | 2009-02-12 | 2010-08-19 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
US8390195B2 (en) | 2009-02-12 | 2013-03-05 | Osram Ag | High pressure discharge lamp |
DE102009008636A1 (de) | 2009-02-12 | 2010-08-19 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe |
DE202010018034U9 (de) | 2009-09-10 | 2014-01-23 | Koninklijke Philips N.V. | Hochdruckentladungslampe |
WO2011030278A2 (en) | 2009-09-10 | 2011-03-17 | Koninklijke Philips Electronics N.V. | High intensity discharge lamp |
DE202010018034U1 (de) | 2009-09-10 | 2013-08-27 | Koninklijke Philips N.V. | Hochdruckentladungslampe |
US8729800B2 (en) | 2009-09-10 | 2014-05-20 | Koninklijke Philips N.V. | High intensity discharge lamp with external antenna |
DE202009016712U1 (de) | 2009-12-09 | 2010-04-08 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe mit keramischem Entladungsgefäß |
DE102009047753A1 (de) | 2009-12-09 | 2011-06-16 | Osram Gesellschaft mit beschränkter Haftung | Entladungsgefäß aus Keramik für eine Hochdruckentladungslampe |
WO2011069764A1 (de) | 2009-12-09 | 2011-06-16 | Osram Gesellschaft mit beschränkter Haftung | Entladungsgefäss aus keramik für eine hochdruckentladungslampe |
WO2011121492A2 (en) | 2010-04-02 | 2011-10-06 | Koninklijke Philips Electronics N.V. | Metal halide lamp |
WO2011153797A1 (zh) * | 2010-06-07 | 2011-12-15 | 潮州市灿源电光源有限公司 | 一种陶瓷投影灯 |
EP2988318A1 (de) | 2014-08-19 | 2016-02-24 | Flowil International Lighting (HOLDING) B.V. | Metallhalogenidlampe mit hoher farbwiedergabe |
WO2019234455A1 (en) * | 2018-06-08 | 2019-12-12 | Ceravision Limited | A plasma light source with low metal halide dose |
WO2019234454A3 (en) * | 2018-06-08 | 2020-01-23 | Ceravision Limited | A plasma light source with low metal halide dose |
Also Published As
Publication number | Publication date |
---|---|
EP0587238B1 (de) | 2000-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0587238B1 (de) | Hochdruckentladungslampe | |
US5424609A (en) | High-pressure discharge lamp | |
EP0697137B1 (de) | Keramisches entladungsgefäss und verfahren zu dessen herstellung | |
EP0722183B1 (de) | Entladungslampen | |
US6208070B1 (en) | Metal vapor discharged lamp with specific angle between electrodes and tapered envelope wall | |
JPH0594945U (ja) | 高圧放電ランプ | |
US5455480A (en) | High-pressure discharge lamp with ceramic discharge vessel and ceramic sealing means having lead-through comprising thin wires having a thermal coefficient of expansion substantially less than that of the ceramic sealing means | |
KR100825132B1 (ko) | 고압 방전 램프 | |
EP0186348B1 (de) | Keramische Kolben für Hochdruckentladungslampe | |
EP0160445B1 (de) | Entladungsröhrenanordnung für Hochdruckentladungslampe | |
EP0181223B1 (de) | Keramisches Gefäss für Hochdruckentladungslampe | |
US6590342B1 (en) | Metal halide lamp having halide resistant current conductors | |
US6570328B1 (en) | Electric lamp with feedthrough comprising a gauze | |
EP0262979B1 (de) | Entladungsröhrenaufbau für Hochdruckentladungslampe | |
EP2476133B1 (de) | Entladungslampe mit hoher intensität | |
US20090072743A1 (en) | Electric discharge lamp | |
US20080297051A1 (en) | Electric Discharge Lamp | |
US20090153054A1 (en) | Electric discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN |
|
17P | Request for examination filed |
Effective date: 19940825 |
|
17Q | First examination report despatched |
Effective date: 19951214 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V. |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 69329046 Country of ref document: DE Date of ref document: 20000824 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2150433 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120920 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20121025 Year of fee payment: 20 Ref country code: FR Payment date: 20121017 Year of fee payment: 20 Ref country code: DE Payment date: 20121130 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121001 Year of fee payment: 20 Ref country code: ES Payment date: 20121030 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120925 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69329046 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69329046 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20130901 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20130831 |
|
BE20 | Be: patent expired |
Owner name: KONINKLIJKE *PHILIPS ELECTRONICS N.V. Effective date: 20130901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20130902 |