EP0579083B1 - Procédé pour l'étirage de fils chauffés, fils de polyester obtenus et leurs utilisations - Google Patents

Procédé pour l'étirage de fils chauffés, fils de polyester obtenus et leurs utilisations Download PDF

Info

Publication number
EP0579083B1
EP0579083B1 EP93110712A EP93110712A EP0579083B1 EP 0579083 B1 EP0579083 B1 EP 0579083B1 EP 93110712 A EP93110712 A EP 93110712A EP 93110712 A EP93110712 A EP 93110712A EP 0579083 B1 EP0579083 B1 EP 0579083B1
Authority
EP
European Patent Office
Prior art keywords
yarn
heat transfer
transfer gas
heating
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93110712A
Other languages
German (de)
English (en)
Other versions
EP0579083A1 (fr
Inventor
Ingolf Dr. Jacob
Josef Geirhos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invista Technologies SARL Switzerland
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0579083A1 publication Critical patent/EP0579083A1/fr
Application granted granted Critical
Publication of EP0579083B1 publication Critical patent/EP0579083B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/224Selection or control of the temperature during stretching
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/001Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass in a tube or vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament
    • Y10T428/2967Synthetic resin or polymer
    • Y10T428/2969Polyamide, polyimide or polyester

Definitions

  • the present invention relates to a method using the same high-speed yarns quickly, gently and evenly across the cross-section a desired elevated temperature can be heated, polyester multifilaments higher Strength, high modulus and low shrinkage, which after the Process according to the invention can be produced, and the use these fibers as reinforcing materials or for the production of textiles Fabrics.
  • Heating processes play a major role; there are therefore already a large number of Heating methods and heating devices are known (see for example DE-A-1 660 314).
  • the speed of heat transfer depends essentially on Temperature differences between the heat supplier and the object to be heated. Around To achieve the fastest possible heat transfer is usually chosen as far as possible high excess temperatures of the heating medium. An excessively high temperature however leads to overheating of parts of the yarn bundle, such as those hanging out Single filaments or loops. The demands for faster and gentle treatment is therefore in the opposite direction.
  • DE-A-3,431,831 describes a process for drawing polyester yarns known in which is stretched on a strip mill. The procedure is at reduced speeds. Details on how to heat the This document does not show running yarns.
  • a heating chamber for running yarns in which the threads are treated with saturated water vapor of more than 2 bar.
  • the Heating chamber is through a special way of sealing the yarn entry and exit characterized with a good sealing effect, which is a simple Threading allowed and with a quick adjustment of the operating state threading is possible.
  • the heat transfer takes place especially through condensation of the saturated steam on the yarn in the heating chamber, whereby a high uniformity of the treatment temperature is achieved.
  • the Yarn emerging from the heating chamber generally contains condensed yarn Water that evaporates again in the following steps.
  • the treatment temperature in this heating chamber cannot easily be varied, since it corresponds to the temperature of the saturated steam.
  • a heating device for a crimping machine is known from EP-A-193,891.
  • This device has a thread guide tube heated on its outer circumference on, which is arranged vertically or obliquely.
  • To improve the Heat transfer to the running yarn is on the yarn inlet side of the Thread guide tube set an air nozzle through which fresh air into the Thread running ear is blown. With this device, the heat treatment be made more effective. The actual heating of the fresh air takes place only in the heating device itself. With this heating device no one can Heat treatment can be carried out at constant temperatures since the Air in the thread guide tube has an undefined temperature.
  • DE-A-2,927,032 discloses a device for texturing yarns, in which these are heated directly in thread channels through which warm air flows.
  • the thread channels are fed with the warm air and are equipped with a suction pipe connected.
  • the device is through a special arrangement of the feed and Discharges for the hot air and the heater for the hot air featured; Furthermore, inlet and outlet nozzles are on the thread channels for the supply and removal of the yarns provided.
  • precise temperature control and a large temperature equality within the Device can be achieved.
  • the yarns are from an even flow of hot air directly surrounding, which means an even heating of the yarns at constant Temperature and air speed results.
  • the device requires suction the used warm air via a separate suction pipe.
  • From DE utility model 83 12 985 is a device for texturing Yarns known in which a heating device is provided, in which Warm air heats a running yarn in a thread channel.
  • the device is through the special type of air flow in the thread channel, each one Flow line between at least two return lines for the hot air having. With the device, the lowest possible temperature drop in Thread channel can be achieved between its input and output.
  • the yarn will similar to an injector nozzle hit at one point by the hot air and then yarn and air move together or opposite, whereby the Air loses temperature.
  • GB-A-1,216,519 describes a method for heating a thermoplastic Yarn known, using a device designed as a contact heater becomes.
  • a continuously moving yarn is passed through a thread channel configured as a capillary.
  • the inner diameter of the Thread channel is chosen so that fluids do not exist within this channel can move freely, but due to the capillary nature of the thread channel results in a sealing effect.
  • a pressure is placed in this thread channel standing heating fluid, for example air, superheated steam or saturated steam, initiated so that this along the direction of yarn together with the The yarn can move through the heating channel and the yarn is plasticized by contact.
  • DE-PS-967,805 describes a method and a device for fixing known yarns when generating false twist.
  • the procedure involves the contactless movement of a surface-moistened and twisted yarn by a heater that contains hot air.
  • the fixation the false twist takes place using a high relative movement between the hot air and the moving yarn.
  • it will Process designed so that there is a high temperature gradient between the Hot air and the yarn trains; the surface is then moistened the purpose of protecting the yarn from thermal damage.
  • DE-AS-1,908,594 describes a device for the heat treatment of relaxed synthetic yarn known in which a yarn through a hollow Heating cylinder is passed. At the yarn inlet, one with a primary gas flow is off Fuel gas operated injector is provided, which is designed as an annular nozzle, and a additional inlet for a secondary gas flow. The device is thereby characterized in that the additional inlet for the secondary gas stream so is arranged that this current seen in the direction of movement of the yarn behind the injector orifice in the heating cylinder meets the primary gas flow.
  • the device is intended to avoid the formation of eddies in the heating cylinder and the quality of the treated yarns should be improved. The danger of Vortex formation occurs because the primary gas flow is relatively high Speed enters the heating cylinder and slows down there.
  • DE-A-2,347,139 describes a method for texturing thermoplastic Yarn known that fixation of the twisted yarn by means of hot steam includes the speed of sound through the heater is passed through.
  • the heating medium is also supplied here at the yarn entry point of the heating device by means of an annular nozzle.
  • the procedure is characterized by high productivity.
  • the yarn is heated by contact with a comparatively small mass of turbulent, fast flowing steam, this steam being a compared to desired end temperature of the running yarn has increased temperature.
  • DE-A-3,344,215 is a yarn heater with a heated yarn path known.
  • This heater is characterized in that it contains means by which a heated medium in the area of the yarn inlet on a lengthways this Moving yarn strikes.
  • the supply of the heating medium is also done here by means of an annular nozzle. With the heater, the heating output should be increased so that shorter heaters can be used than usual.
  • This publication provides details on the temperature profile in the thread channel not to be removed.
  • the object of the present invention was to provide a simple method for To provide stretching of heated free-running yarn in the said Yarns should be warmed as gently and evenly as possible.
  • Heating device high-speed yarns which are moving at a speed of more than 300 m / min based on the speed of the yarn when leaving the heating device, move in a gentle manner in a can heat and stretch the desired elevated temperature.
  • the yarn is blown over a certain length with a uniformly heated heat transfer gas, so that the heat transfer process takes place more by movement of the heat transfer gas (convection) than by heat transfer by means of a temperature gradient.
  • the adhering air boundary layer which counteracts the heat transfer due to its insulating effect, is blown away over a longer yarn path and the heated heat transfer gas can release its heat quickly and evenly to the yarn.
  • the temperature of the heat transfer gas only needs to be a little above the yarn temperature, because most of the heat is transported by convective air movement and only a small part by temperature differences.
  • the term “yarn” is understood to mean all endless threads, that is to say both multifilament yarns and staple fiber yarns or monofilaments. Depending on the area of application, yarn titres of 50 to 2500 dtex are customary, preferably yarn titres of 50 to 300 dtex (for textile applications) and 200 to 2000 dtex (for technical applications).
  • the term "fiber” is understood in the context of this invention as a generic term in its broadest meaning, for example as yarn or as staple fiber. With regard to the fiber-forming material, the method according to the invention is not subject to any restrictions.
  • Both yarns made from inorganic material for example glass, carbon or metal yarns, and yarns made from organic material, e.g. yarns based on aliphatic or aromatic polyamide, polyester, in particular polyethylene terephthalate, or polyacrylonitrile, can be used.
  • high-speed is customary Speeds of more than 300 m / min, preferably 400 to 6000 m / min, to understand in particular 400 to 3000 m / min; this information relates to the speed of exiting the heater.
  • any gases can be used as the heat transfer gas the yarn to be heated is inert under the respective treatment conditions are.
  • gases are nitrogen, argon or, in particular, air.
  • the Gases can also contain additives, for example a certain content of Humidity; however, the moisture content must not be so high that in the Heating device a significant condensation takes place on the yarn.
  • the heat transfer gas can be preheated in any conventional manner will; for example by contact with a heat exchanger, passing through by heated pipes or by direct heating via heating spirals.
  • the temperature of the preheated heat transfer gas is higher than that in the individual case desired yarn temperature; the heat transfer gas is preferably heated to temperatures up to 20 ° C above and ensures that between the Preheating and the actual heating of the yarn is not worth mentioning Temperature drop occurs.
  • the heated heat transfer gas can be placed anywhere in the thread run channel be introduced.
  • the heat transfer gas is preferably conducted to the Thread run channel in such a way that this along the entire thread run channel can come into contact with the yarn.
  • the length is preferably the blowing zone to more than 6 cm, in particular to 6 to 200 cm. In the case, the length is that the heating device is integrated in a drawing step the blowing zone preferably to 6 to 20 cm. In the event that Heating device is integrated in a fixing step, the length of the Blow zone preferably to 6 to 120 cm, in particular 6 to 60 cm.
  • the heat transfer gas is preferably passed in perpendicular to the direction of the yarn the thread run channel, the heat transfer gas on the one hand from the current Yarn is entrained and the heating device through the yarn outlet leaves together with the running yarn, and on the other hand against the direction of the yarn moves and the heater over the yarn inlet leaves.
  • the heat transfer gas is in the middle Part of the thread channel over a length of about 1/4 to 1/2 of the channel length blown small openings perpendicular to the yarn and escapes in and against the thread running direction from the thread run channel.
  • this embodiment is carried out with a cross-blowing Extraction on the opposite side.
  • the temperature of the heat transfer gas in the heater changes are only insignificant under the operating conditions; i.e. this gas does not experience any noteworthy when passing through the heating device Temperature change. This is due to suitable insulation of the gas-carrying parts of the To achieve device.
  • a particular advantage is that the regulation described above the temperature loss of heat between the heater and yarn can be disregarded because the heating device after the Temperature is controlled near the yarn. This can make the elaborate Avoid wall heating in the air duct between the heater and yarn will. Even fluctuations in the insulation effect from place to place can be regulated by this type of regulation.
  • a particular advantage of the stretching process according to the invention is considered fibers with increased strength and high Dimensional stability can be generated.
  • the upper limit of the temperature of the Heat transfer gas is less critical in the method according to the invention because the compact yarn because of its heat content of the hot gas temperature not follows immediately.
  • temperatures of Heat transfer gas can be worked that is higher than the melting temperature of the yarn material.
  • Preferred X L values for a specific yarn material and heat transfer material are in the range of the values calculated by the above formula up to four times this value.
  • a common X L value is 2.2 Nm 3 / h.
  • the method according to the invention can be in the production of high-strength multifilament yarns, preferably based on polyester, especially based on polyethylene terephthalate.
  • the temperature of the heat transfer gas controlled drawing / fixing temperature usually in the range from 160 to 250 ° C., preferably from 210 to 240 ° C.
  • the Drawing tension is usually 1.5 to 3.0 cN / dtex, preferably 2.3 to 2.8 cN / dtex, based on the final titer.
  • polyester multifilament yarns stretched and fixed surprisingly have about 5 to 10 cN / tex higher strength than Polyester multifilament yarns using conventional heat sources have been stretched.
  • polyester fibers show that according to the invention Processes have been stretched in one step (e.g. stretching between delivery and Discharge godets with an intermediate heater), a very high one Degree of fixation and a very high degree of crystallization have low Residual shrinkage values and thus high dimensional stability. These fibers are After the single-stage stretching, technically usable as low-shrink fibers and have a shrinkage of less than 8% at 180 ° C.
  • polyester fibers In order to produce low-shrinkage polyester fibers by conventional methods a second stage of the process is necessary, in which part of the shrinkage at high Temperature is let out. Because of the decline in thread orientation when shrinking, these threads are susceptible to post-expansion in Finishing process. In contrast, the manufactured according to the invention Polyester fibers already have low shrinkage values with maximum orientation Molecules on. Subsequent expansion is then practically no longer possible.
  • the on Fibers obtainable in this way can be determined by strength index Fl and molecular Orientation MO or through compliance NG and memory module index SP be marked.
  • the tenacity F and the maximum tensile elongation D are according to DIN 53834 determined.
  • the shrink S is made by heat treatment in a forced air oven at 200 ° C and a dwell time of 5 minutes and then with a load that corresponds to the Weight of 500 meters of the original yarn is measured.
  • the speed of sound SG is with a load of 1 cN / dtex Dynamic Modulus Tester PPM-5 from Morgan & Co./Massachusetts USA measured.
  • the degree of crystallization KG is determined from the density according to the two-phase model, 1.331 g / cm 3 being assumed for the density of the amorphous phase and 1.455 g / cm 3 for the density of the crystalline phase.
  • the density is measured using the gradient method in zinc chloride / water.
  • the azimuthal intensity distribution of the (-1,0,5) reflex of polyethylene terephthalate is measured and from it calculated according to the formula f c given above.
  • the X-ray examinations were carried out using the X-ray diffractometer D 500 (Siemens) according to the method of Biangardi, publication series "Kunststoff-Forschung" 1, TU Berlin.
  • polyester multifilaments according to the invention can advantageously be used on all of them Use areas in which high-strength, high-modulus and low-shrink fibers Find use.
  • polyester multifilaments according to the invention are preferably used as Reinforcement materials for plastics or for the production of textiles Fabrics such as woven, knitted or crocheted.
  • a preferred area of use of the polyester multifilaments according to the invention relates to Use as reinforcing materials for elastomers, especially for Manufacture of vehicle tires or conveyor belts.
  • polyester multifilaments according to the invention relates to the manufacture of dimensionally stable textile fabrics, such as tarpaulins.
  • Viscosity data in the following examples refer to the intrinsic viscosity. measured by solutions of the Polyester in o-chlorophenol at 25 ° C.
  • PET Polyethylene terephthalate
  • Examples 1 to 6 describe embodiments in which the heating device according to the invention is used, while example 7 relates to a commercially available high-strength and high-modulus PET thread which has been produced without the heating device according to the invention.
  • Tables Ia, Ib and Ic show the process conditions and the properties of the threads obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)

Claims (20)

  1. Procédé pour l'étirage et le réchauffage de filés rapides, qui sont débités sans contact dans un dispositif de réchauffage avec une vitesse supérieure à 300 m/min, par rapport à la vitesse du filé à la sortie du dispositif de réchauffage, comprenant les étapes suivantes :
    i) préchauffage d'un gaz caloporteur à une température supérieure à la température voulue du filé,
    ii) apport du gaz caloporteur préchauffé dans le canal guide-fil de sorte que celui-ci entre en s'écoulant essentiellement verticalement sur le filé débité sur une longueur telle, que le filé se réchauffe dans le dispositif de réchauffage à la température élevée voulue, en choisissant la longueur de la zone de soufflage de façon telle que, suite à l'arrachage permanent de la couche limite à cause de l'écoulement du gaz caloporteur, le filé entre en contact directe avec celui-ci, ce qui produit un réchauffage très rapide du filé, et
    iii) mise sous tension du filé débité sans contact dans le dispositif de réchauffage de façon telle que celui-ci subisse un étirage au cours du passage par ledit dispositif de réchauffage.
  2. Procédé selon la revendication 1, caractérisé en ce que, en plus, le canal guide-fil est chauffé.
  3. Procédé selon la revendication 1, caractérisé en ce que l'on utilise comme gaz caloporteur de l'azote, de l'argon ou en particulier de l'air.
  4. Procédé selon la revendication 1, caractérisé en ce que l'on applique le gaz caloporteur sur ce filé essentiellement sur la longueur totale de la marche du filé dans le dispositif de réchauffage.
  5. Procédé selon la revendication 1, caractérisé en ce que le gaz caloporteur s'écoule radialement de l'extérieur vers l'intérieur sur le filé débité.
  6. Procédé selon la revendication 1, caractérisé en ce que l'on souffle le gaz caloporteur dans la partie centrale du canal guide-fil, sur une longueur d'environ 1/4 à 1/2 de la longueur du canal, par de petits orifices, verticalement sur le filé et il s'échappe dans le sens de la marche et dans le sens opposé à la marche du filé.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que la puissance du chauffage est réglée par le contrôle de points isolés ou contrôle groupé de façon telle, qu'il règne sur le fil une température prédéterminée, en réglant la puissance du chauffage à l'aide d'un ou plusieurs capteurs à la proximité du filé au moyen d'une boucle de réglage.
  8. Procédé selon la revendication 1, caractérisé en ce que le débit du gaz caloporteur par le dispositif de réchauffage est au moins XL en Nm3/h, XL étant calculé selon la formule XL = 1,5*10-5* (v*fd*cpf)/(qL*cpl) dans cette formule
    v = vitesse du filé en m/min, fd = titre du filé en dtex, cpf = pouvoir calorifique de la matière de filé en kJ/(kg*K), qL = masse volumique du gaz caloporteur en kg/m3 et cpl = pouvoir calorifique du gaz caloporteur en kJ/(kg*K).
  9. Procédé selon la revendication 8, caractérisé en ce que l'on choisit le débit du gaz caloporteur par le dispositif de réchauffage entre XL et 4*XL.
  10. Procédé selon la revendication 1, caractérisé en ce qu'il s'agit, dans le cas du filé d'un filé multifilament à base de polyester, en particulier à base de poly(téréphtalate d'éthylène), en ce que le gaz caloporteur est préchauffé à une température de 160 à 250 °C et on établit une tension d'étirage de 1,5 à 3,0 cN/dtex, de préférence de 2,3 à 2,8 cN/dtex, par rapport au titre final.
  11. Procédé selon la revendication 1, caractérisé en ce que l'étirage du filé est réalisé en une seule étape.
  12. Multifilaments polyester ayant un titre de filé de 50 à 2500 dtex, obtenus par le procédé selon au moins une des revendications 1 à 11, avec un indice de solidité rapporté à la finesse F supérieur ou égal à 50 et une orientation moléculaire OM supérieure ou égale à 20, où IS = a1*F - a2*D - a2*R, et OM = a3*VS - a2 * D - a2*R, où a1 = 1*(tex/cN), a2 =1*(1/%), a3 = 10*(sec/km), F est la solidité rapportée à la finesse en cN/tex, D est l'allongement à la rupture limite en %, R est le rétrécissement en % à 200 °C mesuré dans un four à recirculation d'air et VS est la vitesse du son en km/sec mesurée à 25 °C.
  13. Multifilaments polyester selon la revendication 12 ayant une souplesse SO inférieure ou égale à 12 et un indice de module d'accumulation IMA supérieur ou égal à 100, où SO = a2*D + a2*R - a4*OAC, et IMA = a1*F - 4 * (a2*D + a2*R) + A4*OAC + a3*VS - a2*DC où a1 = 1*(tex/cN), a2 = 1*(1/%), a3 = 10*(sec/km) et a4 = 10*(1/%), F est la solidité rapporté à la finesse en cN/tex, D est l'allongement à la rupture limite en %, R est le rétrécissement en % à 200 °C mesuré dans un four à recirculation d'air, VS est la vitesse du son en km/sec mesurée à 25 °C, OAC est l'orientation de l'axe des cristallites exprimée en % à l'aide de la "fonction d'orientation de Hermann" et DC est le degré de cristallisation en % mesuré selon la méthode de colonne à gradient de densité.
  14. Multifilaments polyester selon la revendication 12 et 13 ayant un indice de solidité rapporté à la finesse IS supérieur ou égal à 50, une orientation moléculaire OM supérieure ou égale à 20, une souplesse SO inférieure ou égale à 12 et un indice du module d'accumulation supérieur ou égal à 100, IS, OM, SO et VS ayant les définitions données dans les revendications 12 et 13.
  15. Multifilaments polyester selon l'une des revendications 12 à 14, caractérisés en ce que IS va de 58 à 65, OM de 25 à 35, SO de 2 à 8 et IMA de 115 à 150.
  16. Multifilaments polyester selon l'une des revendications 12 à 15, caractérisées en ce que le polyester est le poly(téréphtalate d'éthylène).
  17. Utilisation des multifilaments polyester selon l'une des revendications 12 à 16 comme matières de renfort pour matières plastiques ou pour la préparation de produits textiles bidimensionnels.
  18. Utilisation des multifilaments polyester selon l'une des revendications 12 à 16 comme matières de renfort pour élastomères.
  19. Utilisation des multifilaments de polyester selon l'une des revendications 12 à 16 pour la fabrication de pneumatiques de véhicules ou de bandes transporteuses.
  20. Utilisation de multifilaments de polyester selon l'une des revendications 12 à 16 pour la fabrication d'articles textiles bidimensionnels ayant une stabilité dimensionnelle, notamment des bâches.
EP93110712A 1992-07-10 1993-07-05 Procédé pour l'étirage de fils chauffés, fils de polyester obtenus et leurs utilisations Expired - Lifetime EP0579083B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4222720 1992-07-10
DE4222720 1992-07-10

Publications (2)

Publication Number Publication Date
EP0579083A1 EP0579083A1 (fr) 1994-01-19
EP0579083B1 true EP0579083B1 (fr) 1998-06-03

Family

ID=6462934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93110712A Expired - Lifetime EP0579083B1 (fr) 1992-07-10 1993-07-05 Procédé pour l'étirage de fils chauffés, fils de polyester obtenus et leurs utilisations

Country Status (8)

Country Link
US (1) US5538792A (fr)
EP (1) EP0579083B1 (fr)
JP (1) JPH06158413A (fr)
BR (1) BR9302819A (fr)
CA (1) CA2100205A1 (fr)
CZ (1) CZ136593A3 (fr)
DE (1) DE59308629D1 (fr)
TW (1) TW268978B (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408354B (de) * 1998-03-13 2001-11-26 Sml Maschinengmbh Einrichtung zum herstellen multifiler fäden
DE102009052935A1 (de) * 2009-11-12 2011-05-19 Teijin Monofilament Germany Gmbh Spinngefärbte HMLS-Monofilamente, deren Herstellung und Anwendung

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE967805C (de) * 1948-11-10 1957-12-12 Zwirnerei & Naehfadenfab Verfahren und Vorrichtung zur Fixierung von laufenden kuenstlichen Faeden beim Kraeuseln derselben mittels falschen Dralles
US3110547A (en) * 1961-07-26 1963-11-12 Du Pont Polymerization process
US3694872A (en) * 1965-05-13 1972-10-03 Monsanto Co Apparatus for drawing thermo-plastic filaments in a high temperature gas vortex
NL6711046A (fr) * 1966-09-23 1968-03-25
NL6706049A (fr) * 1967-04-28 1967-12-27
FR2002251A1 (fr) * 1968-02-20 1969-10-17 Toyo Boseki
US3724038A (en) * 1970-07-04 1973-04-03 Mitsubishi Rayon Co Continuous process for relaxing heat treatment and apparatus therefor
DE7125354U (de) * 1970-07-04 1975-03-20 Mitsubishi Rayon Co Ltd Vorrichtung zur kontinuierlichen Wärmerelaxationsbehandlung von Fäden mit Selbstkräuselungsvermögen
NL7018370A (en) * 1970-12-16 1971-12-27 Filament mat heater - with distributor plate having transverse splits for heating gas
US3824778A (en) * 1972-09-25 1974-07-23 Burlington Industries Inc Heating procedure in a false twist texturizing process
US4255377A (en) * 1975-04-14 1981-03-10 Fiber Industries, Inc. Process for producing low tensile factor polyester yarn
US4183895A (en) * 1975-04-29 1980-01-15 E. I. Du Pont De Nemours And Company Process for treating anisotropic melt-forming polymeric products
DE2927032C2 (de) * 1979-07-04 1983-10-06 Gotthard 5800 Hagen Schewior Vorrichtung zum Texturieren von Kunststoffäden
US4378325A (en) * 1980-05-13 1983-03-29 Fiber Industries, Inc. Process for quenching melt-spun filaments
US4415521A (en) * 1982-03-15 1983-11-15 Celanese Corporation Process for achieving higher orientation in partially oriented yarns
EP0095712B2 (fr) * 1982-05-28 1993-06-23 Asahi Kasei Kogyo Kabushiki Kaisha Fibres en téréphtalate de polyéthylène pouvant être aisément teintes, et procédé pour leur fabrication
US4549361A (en) * 1982-12-10 1985-10-29 Rieter-Scragg Limited Yarn heater
DE3372793D1 (en) * 1982-12-18 1987-09-03 Barmag Barmer Maschf Heating chamber for continuous filaments
DE8312985U1 (de) * 1983-05-03 1983-11-17 Schewior, Gotthard, 5800 Hagen Vorrichtung zum texturieren von kunststoffaeden
US4731217A (en) * 1984-08-09 1988-03-15 Barmag Ag Method for melt spinning thermoplastic filament yarn
DE3431831A1 (de) * 1984-08-30 1986-03-13 Hoechst Ag, 6230 Frankfurt Hochfestes polyestergarn und verfahren zu seiner herstellung
EP0193891A3 (fr) * 1985-03-05 1989-10-11 B a r m a g AG Dispositif de chauffage pour machine à friser
US4687610A (en) * 1986-04-30 1987-08-18 E. I. Du Pont De Neumours And Company Low crystallinity polyester yarn produced at ultra high spinning speeds
RU2041981C1 (ru) * 1989-11-11 1995-08-20 Бармаг АГ Фильера для текстурирования синтетической нити
US5141693A (en) * 1991-01-09 1992-08-25 E. I. Du Pont De Nemours And Company Process for improving the strength of fibers from anisotropic-melt-forming polyesters

Also Published As

Publication number Publication date
CA2100205A1 (fr) 1994-01-11
CZ136593A3 (en) 1994-03-16
EP0579083A1 (fr) 1994-01-19
TW268978B (fr) 1996-01-21
BR9302819A (pt) 1994-02-22
JPH06158413A (ja) 1994-06-07
DE59308629D1 (de) 1998-07-09
US5538792A (en) 1996-07-23

Similar Documents

Publication Publication Date Title
EP0579082B1 (fr) Méthode pour le traitement thermique de fils en mouvement et dispositif pour effectuer ce traitement
DE2846720C3 (de) Verfahren zur Herstellung von bauschfähigem Polyester-Filamentgarn
DE19653451C2 (de) Verfahren zur Herstellung eines Polyester-Multifilamentgarnes
DE69117341T2 (de) Vorrichtung zum Schmelzspinnen von synthetischen Polymeren
EP1543184B1 (fr) Procede de production de fibres de polypropylene a haute tenacite
DE19506369A1 (de) Verfahren und Vorrichtung zum Heizen eines synthetischen Fadens
EP1520065A1 (fr) Procede et installation de filage par fusion et de decoupage d'un cable de filaments
EP0961844A1 (fr) Dispositif d'etirage et procede pour la fabrication de filaments synthetiques etires
EP0579083B1 (fr) Procédé pour l'étirage de fils chauffés, fils de polyester obtenus et leurs utilisations
EP0586951B1 (fr) Fil à deux composants bouclé de titre fin et à haute résistance, procédé de sa production et l'utilisation comme fil à coudre et fil à broder
EP0443390B1 (fr) Procédé pour la fabrication d'un fil texturé par jet d'air
EP1221499A1 (fr) Procédé de filage par étirage pour la fabrication de fils par le filage au fondu
DE69126914T2 (de) Verfahren zum Spinnen von synthetischen Fasern mit hoher Festigkeit, hohem Modul und niedrigem Schrumpf
EP0843749B1 (fr) Procede et dispositif pour la production de fils de polyester
EP0491012B1 (fr) Procede et dispositif de production de fils ou fibres en matiere plastique a partir de polymeres, notamment a partir de polyamide, polyester ou polypropylene
DE4401513A1 (de) Zweikomponenten-Schlingengarne, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
DE2741193A1 (de) Verfahren und vorrichtung zur herstellung von thermoplastischen faeden
DE69128046T2 (de) Schnellspinnverfahren
EP0846197A1 (fr) Procede de fabrication d'un fil continu en polyamide 66 a haute resistance et a retrait eleve
DE2514874B2 (de) Verfahren zum Schnellspinnen von Polyamiden
DE3917338C2 (fr)
DE2712784A1 (de) Verfahren und vorrichtung zum bilden eines polymer-fadenmaterials
DE3719050C2 (fr)
DE4004721C2 (de) Verfahren zur Herstellung eines lufttexturierten Fadens
DE1785659C3 (de) Verfahren zur Kräuselung von Garnen o.dgl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19940120

17Q First examination report despatched

Effective date: 19951013

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI NL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59308629

Country of ref document: DE

Date of ref document: 19980709

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980807

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HOECHST AKTIENGESELLSCHAFT TRANSFER- ARTEVA TECHNO

NLS Nl: assignments of ep-patents

Owner name: ARTEVA TECHNOLOGIES S.A.R.L.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000703

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000704

Year of fee payment: 8

Ref country code: FR

Payment date: 20000704

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000706

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020329

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20020201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040715

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201