EP0576450A1 - Methylencyclobutanderivate - Google Patents
MethylencyclobutanderivateInfo
- Publication number
- EP0576450A1 EP0576450A1 EP92905642A EP92905642A EP0576450A1 EP 0576450 A1 EP0576450 A1 EP 0576450A1 EP 92905642 A EP92905642 A EP 92905642A EP 92905642 A EP92905642 A EP 92905642A EP 0576450 A1 EP0576450 A1 EP 0576450A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- formula
- alkyl
- cbu
- cyc
- compounds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3066—Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
- C09K19/3068—Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C22/00—Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C22/00—Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
- C07C22/02—Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
- C07C22/04—Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C25/00—Compounds containing at least one halogen atom bound to a six-membered aromatic ring
- C07C25/18—Polycyclic aromatic halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
- C07C45/455—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation with carboxylic acids or their derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/65—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by splitting-off hydrogen atoms or functional groups; by hydrogenolysis of functional groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/587—Unsaturated compounds containing a keto groups being part of a ring
- C07C49/657—Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/587—Unsaturated compounds containing a keto groups being part of a ring
- C07C49/687—Unsaturated compounds containing a keto groups being part of a ring containing halogen
- C07C49/697—Unsaturated compounds containing a keto groups being part of a ring containing halogen containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/74—Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/04—Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
- C09K19/06—Non-steroidal liquid crystal compounds
- C09K19/08—Non-steroidal liquid crystal compounds containing at least two non-condensed rings
- C09K19/30—Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
- C09K19/3001—Cyclohexane rings
- C09K19/3003—Compounds containing at least two rings in which the different rings are directly linked (covalent bond)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/04—Systems containing only non-condensed rings with a four-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the invention relates to methylene cyclobutane derivatives of formula I
- R 1 is halogen, CN, CF 3 , -OCF 3 , -OCF 2 H or an unsubstituted or an alkyl or alkenyl or substituted simply by CN, halogen or CF 3
- Perfluoroalkyl radical with up to 15 carbon atoms, one or more CH 2 groups in these radicals each being independent of one another by -S-, - ⁇ > - / - ⁇ ⁇ ⁇ ⁇ , -0-, -CO-, -CO -0-, -O-CO- or -0-CO-O- can be replaced so that S and / or 0 atoms are not directly linked,
- Ai and A 2 each independently (a) trans-1,4-cyclohexylene radical, in which one or more non-adjacent CH 2 groups can also be replaced by -O- and / or -S-,
- residues (a) and (b) can be substituted one or more times by CN or halogen
- L 1 and L 2 each H, F or Cl
- X and Y are each independently of one another F, Cl, Br, CF 3 , CN, C0 2 alkyl or alkyl having 1 to 6 carbon atoms, one of the radicals X and Y also H, and m 0, 1, 2 or 3
- the invention further relates to the use of these compounds as components of liquid-crystalline media and liquid-crystal and electro-optical display elements which contain the liquid-crystalline media according to the invention.
- the compounds of the formula I can be used as components of liquid-crystalline media, in particular for displays based on the principle of the twisted cell, including its highly twisted variants, such as e.g. STN or SBE, the guest-host effect, the effect of "deformation of aligned phases or the effect of dynamic scattering.
- the invention was based on the task of finding new stable liquid-crystalline or mesogenic compounds which are suitable as components of liquid-crystalline media and in particular have a comparatively low viscosity and also a medium positive dielectric anisotropy.
- the compounds of formula I have a wide range of applications. Depending on the selection of the substituents, these compounds can serve as base materials from which liquid-crystalline phases are predominantly composed; but connections of the Formula I liquid-crystalline base materials from other classes of compounds can be added, for example, to influence the dielectric and / or optical anisotropy of such a dielectric and / or to optimize its threshold voltage and / or its viscosity.
- the compounds of the formula I are colorless and form liquid-crystalline mesophases in a temperature range which is conveniently located for electro-optical use. They are stable chemically, thermally and against light.
- the invention thus relates to the compounds of the formula I, in particular the optically active compounds of the formula I, in which X and Y are different from one another, and the compounds of the formula IA,
- the invention relates in particular to compounds of the formula I in which at least one of the radicals A 1 and A 2 is 1,4-phenylene, 1,4-cyclohexylene, pyrimidine-2,5-diy1 or pyridine-2 which is optionally substituted by fluorine , 5-diyl means.
- the invention furthermore relates to the use of these compounds as components of liquid-crystalline media.
- the invention further relates to liquid-crystalline media containing at least one compound which is a group of the formula
- L 1 , L 2 , X and Y have the meaning given, preferably a compound of the formula I, in particular chiral-toned media containing at least one optically active compound of the formula I.
- Liquid crystal display elements in particular electro-optical display elements, which contain such media, in particular matrix liquid crystal displays.
- Cbu -CXY in the following means a radical of the formula
- Cyc is a 1,4-cyclohexylene radical
- Che is a 1,4-cyclohexylene radical
- Dio is a 1,3-dioxane-2,5-diyl radical
- Dit is a 1,3-di-hian-2,5-diyl radical
- Phe is a 1,4-phenylene radical
- PheF a 1,4-phenylene radical which is mono- or disubstituted by fluorine
- Pyd a pyridine-2,5-diyl radical Pyr a pyrimidine-2,5-diyl radical
- Bi a bicyclo (2 , 2,2) octylene radical
- Cyc and / or Phe can be unsubstituted or mono- or disubstituted by F or CN.
- the compounds of the formula I accordingly comprise compounds with two rings of the sub-formulas Ia to Ib:
- the preferred compounds of sub-formula Ia include those of sub-formulas laa to Iah:
- sub-formula Ib include those of sub-formulas Iba to Ibm:
- sub-formula Ic include those of sub-formulas Ica to Icm:
- sub-formula Id include those of sub-formulas Ida to Idm:
- the preferred compounds of sub-formula le include those of sub-formulas Iea to Iek:
- R i _Phe-Cyc-Z i -Cbu CXY Ifk
- the preferred compounds of the formulas Ig include those of the formulas Iga to Igf:
- the radicals X and Y are preferably different from one another.
- the terminal group Cbu CXY thus preferably means a group of the formulas 1 to 8:
- R 1 is preferably alkyl, furthermore alkoxy.
- a 1 or A 2 are preferably Phe, Cyc, Che, Pyr or Dio.
- the compounds of the formula I preferably contain no more than one of the radicals Bi, Pyd, Pyr, Dio or Dit.
- a 1 and / or A 2 is 1,4-phenylene which is mono- or disubstituted by F or monosubstituted by CN.
- these are 2-fluoro-1,4-phenylene. 3-fluoro-l, 4-phenylene and 2,3-difluoro-l, 4-phenylene, 2,6-difluoro-l, 4-phenylene, 3,5-difluoro-l, 4-phenylene and 2-cyano -l, -phenylene and 3-cyano-l, 4-phenylene.
- Z 1 and Z 2 are preferably a single bond, -CO-O-, -O-CO- and -CH 2 CH -, in the second place preferably -CH 2 0-and
- R 1 is an alkyl radical or an alkoxy radical, this can be straight-chain or branched. It is preferably straight-chain, has 2, 3, 4, 5, 6 or 7 carbon atoms and accordingly preferably means ethyl, propyl, butyl, pentyl, hexyl, heptyl, ethoxy, propoxy, butoxy, pentoxy, hexoxy or heptoxy, also methyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, methoxy, octoxy, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradecoxy.
- R 1 is an alkenyl radical, this can be straight-chain or branched. It is preferably straight-chain and has 2 to 10 carbon atoms. Accordingly, it means especially vinyl, prop-1-, or prop-2-enyl, but-1-, 2- or but-3-enyl, pent-1-, 2-, 3- or pent-4-enyl, hex -1-, 2-, 3-, 4- or
- R 1 is an alkyl radical in which one CH 2 group has been replaced by -0- and one has been replaced by -CO-, these are preferably adjacent. Thus they contain an acyloxy group -C0-0- or an oxycarbonyl group -0-C0-.
- .- Wise these are straight-chain and have 2 to 6 carbon atoms. Accordingly, they mean especially acetyloxy, propionyloxy, butyryloxy, pentanoyloxy, hexanoyloxy, acetyloxymethyl, propionyloxymethyl, butyryloxymethyl, pentanoyloxymethyl, 2-acety- loxyethyl, 2-propionyloxyethyl, 2-butyryloxyethyl, 3-acety-
- R 1 is an alkenyl radical in which a CH 2 group has been replaced by CO or CO-O or 0-CO-, this can be straight-chain or branched. It is preferably straight-chain and has 4 to 13 carbon atoms. Accordingly, it means in particular acryloyloxymethyl, 2-acryloyloxyethyl, 3-acryloyloxypropyl, 4-acryloyloxybutyl, 5-acryloyloxypentyl, 6-acrylic-loyloxyhexyl, 7-acryloyloxyheptyl, 8-acryloyloxyoctyl, 5 9-acryloyloxynyloxyloxyloxylonyloxyloxynonyl, methoxyloxynonyl - thyl, 2-methacryloyloxyethyl, 3-methacryloyloxypropyl, 4-methacryloyloxybutyl, 5-methacryloyloxypentyl, 6-methacryloyl
- Branched groups of this type usually do not contain 5 more than one chain branch.
- R 1 represents an alkyl radical in which two or more CH 2 groups have been replaced by -0- and / or -C0-O-, this can be straight-chain or branched. It is preferably
- 10 branches and has 3 to 12 carbon atoms. Accordingly, it means especially bis-carboxy-methyl, 2,2-bis-carboxy-ethyl, 3,3-bis-carboxy-propyl, 4,4-bis-carboxy-butyl, 5,5-bis-carboxy-pen- tyl, 6, 6-bis-carboxy-hexyl, 7,7-bis-carboxy-heptyl, 8,8-bis-carboxy-octyl, 9, 9-bis-carboxy-nonyl, 10,10-bis-carboxy-
- Formula I includes both the racemates of these compounds and the optical antipodes and mixtures thereof. 0
- Ri, F, Cl, CF 3 , 0CF 3 or OCF 2 preferably denotes H, in particular when X and Y mean H or alkyl.
- V and L 2 are preferably identical and denote F, Cl or H, in particular H.
- Particularly preferred compounds of the formula I which have a group of the formula 1 are those of the sub-formulas Ila to Iln:
- Particularly preferred compounds of the formula I which have a group of the formula 2 are those of the sub-formulas I2a to I2o:
- alkyl-Cyc-PheF-Cbu CHCl I2o
- Particularly preferred compounds of the formula I which contain a group of the formula 7 are those of the sub-formulas I7a to l7o:
- Particularly preferred compounds of the formula I which have a group of the formula 8 are those of the formulas I8a to I8o:
- alkyl in each case mean alkyl or alkoxy groups with 1 to 12 carbon atoms.
- the 1, cyclohexenylene group preferably has the following structures:
- the compounds of the formula I are prepared by methods known per se, as described in the literature (for example in the standard works such as Houben-Weyl, Methods of Organic Chemistry, Georg-Thieme-Verlag, Stuttgart), under reaction conditions which are suitable for the reactions mentioned are known and suitable, and use can also be made of variants which are known per se and are not mentioned here in detail.
- the compounds of formula I can, for example, in analogy to that of Dobier et al. (J. Am. Chem. Soc. 107 (12), 3626-31 (1985)) can be prepared by cycloaddition of alkenes onto styrene derivatives (cf. Scheme I):
- the methylene cyclobutane carboxylic acid derivatives can be prepared from the corresponding nitriles with aqueous sodium hydroxide solution (e.g. Gripps et al. Am. Soc. __1 (1959), 2723-2728).
- the compounds of the formula I can be obtained from the corresponding 3-substituted cyclobutanones by condensation with methane derivatives according to C. Burton et al., Tetrahedron Lett. 23. (24), 3003-6 (1988) and J. Fried, et al., Tetrahedron Lett. 25/4329 (1984) in the presence of phosphine niesw be produced (e.g. scheme 3)
- the compounds of the formula I can be prepared by reducing a compound which otherwise corresponds to the formula I but which contains one or more reducible groups and / or C-C bonds instead of H atoms.
- Suitable reducible groups are preferably carbonyl groups, in particular keto groups, furthermore, for example, free or esterified hydroxyl groups or aromatically bound halogen atoms.
- the reduction can be carried out, for example, by catalytic hydrogenation at temperatures between about 0 ° and about 200 ° and pressures between about 1 and 200 bar in an inert solvent, for example an alcohol such as methanol, ethanol or isopropanol, an ether such as tetrahydrofuran (THF) or dioxane, an ester such as ethyl acetate, a carboxylic acid such as acetic acid or a hydrocarbon such as cyclohexane.
- Suitable catalysts are suitably noble metals such as Pt or Pd, which are in the form of oxides (for example Pt0 2 , PdO) on a support
- Ketones can also be prepared using the Clemmensen methods (with zinc, amalgamated zinc or tin and hydrochloric acid, expediently in an aqueous-alcoholic solution or in a heterogeneous phase with water / toluene at temperatures between about 80 and 120 °) or Wolff-Kishner (with hydrazine, expediently in the presence of alkali such as KOH or NaOH in a high-boiling solvent such as diethylene glycol or triethylene glycol at temperatures between about 100 and 200 °) to give the corresponding compounds of the formula I which contain alkyl groups and / or —CH 2 CH 2 bridges, be reduced.
- Clemmensen methods with zinc, amalgamated zinc or tin and hydrochloric acid, expediently in an aqueous-alcoholic solution or in a heterogeneous phase with water / toluene at temperatures between about 80 and 120 °
- Wolff-Kishner with hydrazine, expediently in the presence of
- arylsulfonyloxy groups can be removed reductively with LiAlH 4 , in particular p-toluenesulfonyloxy methyl groups can be reduced to methyl groups, advantageously in an inert solvent such as diethyl ether or THF Temperatures between about 0 and 100 °. Double bonds can be hydrogenated with NaBH 4 or tributyltin hydride in methanol.
- Esters of the formula I can also be esterified by corresponding carboxylic acids (or their reactive derivatives), in particular formula IV, with alcohols or phenols (or their reactive derivatives), in particular formula V,
- DCC dicyclohexylcarbodiimide
- Suitable reactive derivatives of the carboxylic acids mentioned are in particular the acid halides, especially the chlorides and bromides, and also the anhydrides, e.g. also “mixed anhydrides, azides or esters, in particular alkyl esters with 1-4 C atoms in the alkyl group.
- Suitable reactive derivatives of the alcohols or phenols mentioned in particular the corresponding metal-alcoholic come - ⁇ n late or phenolates, preferably of an alkali metal such as sodium or potassium, into consideration.
- the esterification is advantageously carried out in the presence of an inert solvent.
- Particularly suitable are ethers such as diethyl ether, di-n-butyl ether, THF, dioxane or anisole, ketones such as. As acetone, butanone or cyclohexanone, amides such as. B. DMF or phosphoric acid hexamethyl triamide, hydrocarbons such as benzene, toluene or xylene, halogenated hydrocarbons such. B. carbon tetrachloride, dichloromethane or tetrachlorethylene and sulfoxides such. B. dimethyl sulfoxide or sulfolane.
- Amides can be obtained, for example, from corresponding esters or acid halides by reaction with ammonia.
- Suitable water-releasing agents are, for example, inorganic acid chlorides such as S0C1 2 , PC1 3 , PC1 5 , P0C1 3 , S0 2 C1 2 , C0C1 2 , and also P 2 0 5 , P 2 S 5 , A1C1 3 (for example as a double compound with NaCl ), aromatic sulfonic acids and sulfonic acid halides. You can do this in the presence or absence of an inert
- Bases such as pyridine or triethylamine, aromatic hydrocarbons such as benzene, toluene or xylene or amides such as DMF into consideration.
- nitriles of the formula I mentioned above corresponding acid halides, preferably the chlorides, can also be reacted with sulfamide, advantageously in an inert Solvents such as B. tetramethylene sulfone at temperatures between about 80 ° and 150 °, preferably at 120 °. After the usual work-up, the nitriles can be isolated directly.
- sulfamide advantageously in an inert Solvents such as B. tetramethylene sulfone at temperatures between about 80 ° and 150 °, preferably at 120 °.
- Ethers of the formula I can be obtained by etherification of corresponding hydroxyl compounds, in particular of the formula VI or VII, preferably corresponding phenols, the hydroxyl compound advantageously first being converted into a corresponding metal derivative, for example by treatment with NaH, NaNH 2 , NaOH, KOH, Na 2 CO 3 or K 2 C0 3 is converted into the corresponding alkali metal alcoholate or alkali metal phenolate. This can then be reacted with the corresponding alkyl halide, sulfonate or dialkyl sulfate, advantageously in an inert solvent such as. B. acetone, 1,2-dimethoxyethane, DMF or dimethyl sulfoxide or with an excess of aqueous or aqueous-alcoholic NaOH or KOH at temperatures between about 20 ° and 100 °.
- nitriles of the formula I corresponding chlorine, bromine or iodine compounds of the formula I can also be reacted with a cyanide, preferably with a metal cyanide such as, for. B. NaCN, KCN or Cu 2 (CN) 2 , e.g. B. in
- Compounds of the formula I in which A 1 is substituted by at least one F atom and / or a CN group can also be obtained from the corresponding diazonium salts by exchanging the Diazonium group against a fluorine atom or against a CN group, for example by the methods of Schiemann or Sandmeyer, can be obtained.
- Dioxane derivatives or dithiane derivatives of the formula I are conveniently prepared by reacting an appropriate aldehyde (or one of its reactive derivatives) with a corresponding 1,3-diol (or one of its reactive derivatives) or a corresponding 1,3-dithiol, preferably in the presence an inert solvent such as Benzene or toluene and / or a catalyst e.g. a strong acid such as sulfuric acid, benzene or p-toluenesulfonic acid, at temperatures between about 20 ° and about 150 °, preferably between 80 ° and 120 °.
- Acetals are primarily suitable as reactive derivatives of the starting materials.
- aldehydes and 1,3-diols or 1,3-dithiols mentioned, and their reactive derivatives are known, and in some cases they can be prepared without difficulty from standard compounds of organic chemistry from compounds known from the literature.
- the aldehydes can be obtained by oxidation of corresponding alcohols or by reduction of nitriles or corresponding carboxylic acids or their derivatives, the diols by reduction of corresponding diesters and the dithiols by reaction of corresponding dihalides with NaSH.
- the liquid-crystalline media according to the invention preferably contain 2 to 40, in particular, as further constituents 4 to 30 components. These media very particularly preferably contain 7 to 25 components in addition to one or more compounds according to the invention.
- These further constituents are preferably selected from nematic or nematogenic (monotropic or isotropic) substances, in particular substances from the classes of azoxybenzenes, benzylidene anilines, biphenyls, terphenyls, phenyl- or cyclohexylbenzoates, cyclohexane-carboxylic acid phenyl- or cyclohexyl esters, phenyl or cyclohexyl esters of cyclohexylbenzoic acid, phenyl or cyclohexyl esters of cyclohexylcyclohexane carboxylic acid, cyclohexylphenyl esters of benzoic acid,
- trans-l 4-cyclohexylene or 1, -cyclohexenylene, pyr pyrimi-, c din-2,5-diyl or pyridine-2,5-diyl, dio l, 3-dioxane-2,5-diyl and G 2- (trans-l, 4-cyclohexyl) -ethyl, pyrimidine-2,5-diyl, pyridine-2,5-diyl or 1,3-dioxane-2,5-diyl.
- One of the radicals L and E is preferably Cyc, Phe or Pyr. ? 0 is preferably Cyc, Phe or Phe-Cyc.
- the media according to the invention preferably contain one or more components selected from the compounds of the formulas 1, 2, 3, 4 and 5, in which L and E are selected from the group Cyc, Phe and Pyr and at the same time one or more components from 2e selected from the compounds of the formulas 1, 2, 3, 4 and 5, in which one of the radicals L and E is selected from the group Cyc, Phe and Pyr and the other radical is selected from the group -Phe-Phe-, -Phe-Cyc-, -Cyc-Cyc-, -G-Phe- and -G-Cyc-, and optionally one or more components are selected
- R 'and R each independently represent alkyl, alkenyl, alkoxy, alkenyloxy or alkanoyloxy having up to 8 carbon atoms. In most of these compounds, R' and R" are each other different, one of these radicals is usually alkyl or alkenyl.
- R in the compounds of the sub-formulas Ib, 2b, 3b, 4b and 5b, R "means -CN, -CF 3 , -OCF 3 , -OCHF 2 , F, Cl or -NCS; R has the same for the compounds of the sub-formulas 1a to 5a and is preferably alkyl or alkenyl, but other variants of the proposed substituents in the compounds of the formulas 1, 2, 3, 4 and 5 are also common. Many such substances or mixtures thereof are commercially available. All of these substances can be obtained by methods known from the literature or by analogy.
- the media according to the invention preferably contain in addition
- Components from the group of compounds Ia, 2a, 3a, 4a and 5a (Group 1) also components from the group of compounds Ib, 2b, 3b, 4b and 5b (Group 2), the proportions of which are preferably as follows :
- Group 1 20 to 90%, in particular 30 to 90%
- group 2 10 to 80%, in particular 10 to 50%, the sum of the proportions of the compounds according to the invention and of the compounds from groups 1 and 2 giving up to 100%.
- the media according to the invention preferably contain 1 to 40%, particularly preferably 5 to 30%, of compounds according to the invention. Also preferred are media containing more than 40%, in particular 45 to 90%, of compounds according to the invention.
- the media preferably contain three, four or five compounds according to the invention.
- the media according to the invention are produced in a conventional manner.
- the components are dissolved in one another, advantageously at elevated temperature.
- the liquid-crystalline phases according to the invention can be modified so that they can be used in all types of liquid-crystal display elements which have hitherto become known.
- pleochroic dyes for producing colored guest-host systems or substances for changing the dielectric anisotropy, the viscosity and / or the orientation of the nematic phases can be added.
- K crystalline solid state
- S smectic phase (the index indicates the phase type)
- N nematic state
- Ch cholesteric phase
- I isotropic phase. The number between two symbols indicates the transition temperature in degrees Celsius.
- a mixture of 1 mol of 4- (trans-pentylcyclohexyl) bromobenzene and 3 l of THF is mixed with 1 mol of BuLi at -70 ° C.
- a mixture of 0.5 mol of zinc bromide in 1 l of THF is then added to the reaction mixture and the mixture is stirred at -65 ° C. for 30 minutes.
- 1 mol of vinyl bromide and 0.022 mol of nickel (II) chloride / TPP are added.
- the reaction mixture is stirred for 16 hours at room temperature and worked up as usual.
- the styrene derivative obtained is processed unpurified.
- Glacial acetic acid is stirred at room temperature for 17 hours. After the usual work-up, the product is obtained, which is further processed without being cleaned.
- the mixtures thus obtained are filled into a test cell.
- the "voltage holding ratio" of these cells is measured at room temperature HR (RT) and after heating to 100 ° C. HR (100).
- the "holding ratio” was measured according to: G. Weber et al. Liquid Crystals 5_, 1320 (1989).
- the compounds (1), (2) and (3) are therefore suitable for the production of mixtures with positive anisotropy of the dielectric constants and high values of the holding ratio, in particular for active matrix displays.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Liquid Crystal Substances (AREA)
Description
Methylencyclobutanderivate
Die Erfindung betrifft Methylencyclobutanderivate der For¬ mel I
Li L2
wobei
R1 Halogen, CN, CF3, -OCF3, -OCF2H oder einen unsub- stituierten oder einen einfach durch CN, Halogen oder CF3, substituierten Alkyl- oder Alkenyl- oder
Perfluoralkylrest mit bis zu 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unsabängig voneinander durch -S-, - ^>-/ -\ζ^~, -0-, -CO-, -CO-0-, -O-CO- oder -0-CO-O- so ersetzt sein können, daß S- und/oder 0-Atome nicht direkt miteinander verknüpft sind,
Ai und A2 jeweils unabhängig voneinander eine
(a) trans-l,4-Cyclohexylenrest, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen durch -O- und/oder -S- ersetzt sein können,
(b) 1,4-Phenylenrest, worin auch eine oder zwei CH- Gruppen durch N ersetzt sein können,
(c) Rest aus der Gruppe 1,3-Cyclobutylen, 1,3-Bicyc- lo(l,l,l)pentylen, 1,4-Cyclohexenylen, 1,4-Bicy- clo (2,2,2)octylen, Piperidin-1,4-diyl, Naphtha- lin-2, 6-diyl, Decahydronapthalin-2,6-diyl und 1,2,3, -Tetrahydronaphthalin-2, 6-diyl,
wobei die Reste (a) und (b) durch CN oder Halogen ein- oder mehrfach substituiert sein können,
L1 und L2 jeweils H, F oder Cl,
Z1 und Z2 jeweils unabhängig voneinander -CH2CH2-, -C≡C-, -CH20-, -OCH2-, -CO-O-, -O-CO-, -CH=N-, -N=CH-,
-CH2S-, -SCH2-, eine Einfachbindung oder eine
Alkylengruppe mit 3 bis 6 C-Atomen, .worin auch eine CH2-Gruppe durch -0-, -C0-0-, -O-CO-, -CHHa- logen- oder -CHCN- ersetzt sein kann.
X und Y jeweils unabhängig voneinander F, Cl, Br, CF3, CN, C02 Alkyl oder Alkyl mit 1 bis 6 C-Atomen einer der Reste X und Y auch H, und
m 0, 1, 2 oder 3
bedeuten,
mit der Maßgabe, daß im Falle m = 0, A2 1,4-Phenylen und Z2 eine Einfachbindung, X und Y nicht gleichzeitig F bedeuten.
Die Erfindung betrifft weiterhin die Verwendung dieser Ver¬ bindungen als Komponenten flüssigkristalliner Medien sowie Flüssigkristall- und elektrooptische Anzeigeelemente, die die erfindungsgemäßen flüssigkristallinen Medien enthalten.
Die Verbindungen der Formel I können als Komponenten flüssigkristalliner Medien verwendet werden, insbesondere für Displays, die auf dem Prinzip der verdrillten Zelle ein¬ schließlich deren hochverdrillten Varianten, wie z.B. STN oder SBE, dem Guest-Host-Effekt, dem Effekt "der Deformation aufgerichteter Phasen oder dem Effekt der dynamischen Streu¬ ung beruhen.
Der Erfindung lag die Aufgabe zugrunde, neue stabile flüssigkristalline oder mesogene Verbindungen aufzufinden, die als Komponenten flüssigkristalliner Medien geeignet sind und insbesondere eine vergleichsweise geringe Viskosität besitzen sowie eine mittlere positive dielektrische Anisotro¬ pie.
Es wurde nun gefunden, daß Verbindungen der Formel I als Komponenten flüssigkristalliner Phasen vorzüglich geeignet sind. Insbesondere verfügen sie über vergleichsweise niedere
Viskositäten. Mit ihrer Hilfe lassen sich stabile flüssigkristalline Phasen mit breitem Mesophasenbereich vorteilhaften Werten für die optische und dielektrische Anisotropie erhalten, welche sich gleichzeitig durch sehr günstige Werte für den spezifischen Widerstand auszeichnen. Hierdurch lassen sich insbesondere bei Medien für Aktive-Ma¬ trix-Displays oder Supertwistdisplays deutliche Vorteile erziele .
Ähnliche Verbindungen mit einer 2-substituierten Methylency- clobutangruppe sind bereits bekannt. Diese weisen jedoch keine flüssigkristallinen Eigenschaften auf.
W.R. Dolbier, et al., Tetrahedron Letters 28 (14), 1491-1492, 1987, beschrieben z. B. die Herstellung von 3-Phenyl-l-(dif- luormethylen)-cyclobutan und 3-Phenyl-2,2-difluor-l-methylen- cyclobutan und Cycloaddition von Difluoralken an Styrol.
Mit der Bereitstellung von Verbindungen der Formel I wird außerdem ganz allgemein die Palette der flüssigkristallinen Substanzen, die sich unter verschiedenen anwendungstechni¬ schen Gesichtspunkten zur Herstellung flüssigkristalliner Gemische eignen, "erheblich verbreitert.
Die Verbindungen der Formel I besitzen einen breiten Anwen¬ dungsbereich. In Abhängigkeit von der Auswahl der Substituen- ten können diese Verbindungen als Basismaterialien dienen, aus denen flüssigkristalline Phasen zum überwiegenden Teil zusammengesetzt sind; es können aber auch Verbindungen der
Formel I flüssigkristallinen Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um beispielsweise die dielektrische und/oder optische Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellen¬ spannung und/oder dessen Viskosität zu optimieren.
Die erfindungsgemäßen Verbindungen der Formel I mit einer chiralen Gruppe der Formel
X
worin X und Y voneinander verschieden sind, und MG einen mesogenen Rest bedeutet,
eignen sich insbesondere als Dotierstoffe für chirale getu¬ tete smektische Phasen mit ferroelektrischen Eigenschaften.
Die Verbindungen der Formel I sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbe¬ reich. Chemisch, thermisch und gegen Licht sind sie stabil.
Gegenstand der Erfindung sind somit die Verbindungen der Formel I, insbesondere die optisch aktiven Verbindungen der Formel I, worin X und Y voneinander verschieden sind, sowie die Verbindungen der Formel IA,
woπn
Ri Alkyl mit 1 bis 15 C-Atomen, und
~® ~®~' ~©~"€/" oder" "'bedeuten.
Gegenstand der Erfindung sind insbesondere solche Verbindun¬ gen der Formel I, worin mindestens einer der Reste A1 und A2 gegebenenfalls durch Fluor substituiertes 1,4-Phenylen, 1,4-Cyclohexylen, Pyrimidin-2,5-diy1 oder Pyridin-2,5-diyl bedeutet.
Gegenstand der Erfindung ist weiterhin die Verwendung dieser Verbindungen als Komponenten flüssigkristalliner Medien. Gegenstand der Erfindung sind ferner flüssigkristalline Medien mit einem Gehalt an mindestens einer Verbindung, welche eine Gruppe der Formel
worin L1, L2, X und Y die angegebene Bedeutung besitzen, aufweist, vorzugsweise einer Verbindung der Formel I, insbe¬ sondere chiral getutete Medien mit einem Gehalt an minde- stens einer optisch aktiven Verbindung der Formel I. Sowie
Flüssigkristallanzeigeelemente, insbesondere elektrooptische Anzeigeelemente, die derartige Medien enthalten, insbesondere Matrix-Flüssigkristallanzeigen.
Der Einfachheit halber bedeuten im folgenden Cbu=-CXY einen Rest der Formel
Cyc einen 1,4-Cyclohexylenrest, Che einen 1,4-Cyclohexylen- rest, Dio einen l,3-Dioxan-2,5-diylrest, Dit einen 1,3-Dit- hian-2,5-diylrest, Phe einen 1,4-Phenylenrest, PheF einen ein- oder zweifach durch Fluor substituierten 1,4-Phenylen- rest, Pyd einen Pyridin-2,5-diylrest, Pyr einen Pyrimi- din-2,5-diylrest und Bi einen Bicyclo (2,2,2)-octylenrest, wobei Cyc und/oder Phe unsubstituiert oder ein- oder zweifach durch F oder CN substituiert sein können.
Die Verbindungen der Formel I umfassen dementsprechend Ver¬ bindungen mit zwei Ringen der Teilformeln Ia bis Ib:
Ri-A2-Cbu=CXY Ia
Verbindungen mit drei Ringen der Teilformeln Ic bis If:
sowie Verbindungen mit vier Ringen der Teilformeln Ig bis In:
Ri-Ai-Ai-A2-Cbu=CXY Ig
Ri-Ai-Z-.-Ai-Z-.-A2-Z2-Cbu=CXY In
Darunter sind besonders diejenigen der Teilformeln Ia, Ib, Ic, Id, Ie, If, Ig, Ii und II bevorzugt.
Die bevorzugten Verbindungen der Teilformel Ia umfassen diejenigen der Teilformeln laa bis Iah:
R1-Pyr-Cbu=CXY lad
Darunter sind diejenigen der Formeln laa, lab, lac, lad, laf und lag besonders bevorzugt.
Die bevorzugten Verbindungen der Teilformel Ib umfassen diejenigen der Teilformeln Iba bis Ibm:
Ibe
Ri-Cyc-COO-Cbu=CXY Ibf
Rι-Ai-CH2CH2-Cbu=CXY Ibg
Ri-Ai-CH20-Cbu=CXY Ibi
Die bevorzugten Verbindungen der Teilformel Ic umfassen diejenigen der Teilformeln Ica bis Icm:
Ri-Pyr-Phe-Cbu=CXY leg
Ri-Cyc-Phe-Cbu^XY Ici
Ri-Dit-Phe-Cbu=CXY Icj
Ri_Che-Phe-Cbu=CXY Ici
Darunter sind diejenigen der Formeln Ica, Icc, Icd, Ice, Ici und Icj besonders bevorzugt.
Die bevorzugten Verbindungen der Teilformel Id umfassen diejenigen der Teilformeln Ida bis Idm:
Die bevorzugten Verbindungen der Teilformel le umfassen diejenigen der Teilformeln Iea bis Iek:
Iek
Die bevorzugten Verbindungen der Teilformel If umfassen diejenigen der Teilformeln Ifa bis Ifp
Ri-Dio-Cyc-Zi-Cbu=CXY If j
Ri_Phe-Cyc-Zi-Cbu=CXY Ifk
Die bevorzugten Verbindungen der Formeln Ig umfassen diejeni¬ gen der Formeln Iga bis Igf:
In den Verbindungen der vor- und nachstehenden Formeln sind die Reste X und Y vorzugsweise verschieden voneinander.
Somit bedeutet die endständige Gruppe Cbu=CXY vorzugsweise eine Gruppe der Formeln 1 bis 8:
Cbu=CHF 1
Cbu=CHCl 2
Cbu=CHCF3 3
Cbu=CFCl 4
Cbu=CF-CF3 5
Cbu=CCl-CF3 6 Cbu=CF2 7
Cbu=CCl2 8
R1 bedeutet vorzugsweise Alkyl, ferner Alkoxy. A1 oder A2 bedeuten bevorzugt Phe, Cyc, Che, Pyr oder Dio. Bevorzugt enthalten die Verbindungen der Formel I nicht mehr als einen der Reste Bi, Pyd, Pyr, Dio oder Dit.
Bevorzugt sind auch Verbindungen der Formel I sowie aller Teilformeln, in denen A1 und/oder A2 ein- oder zweifach durch F oder einfach durch CN substituiertes 1,4-Phenylen bedeutet Insbesondere sind dies 2-Fluor-l,4-phenylen, 3-Fluor-l,4- phenylen und 2,3-Difluor-l,4-phenylen, 2,6-Difluor-l,4-pheny len, 3,5-Difluor-l,4-phenylen sowie 2-Cyan-l, -phenylen und 3-Cyan-l,4-phenylen.
Besonders bevorzugt sind diejenigen Verbindungen der For¬ meln I, in denen A2 unsubstituiertes oder ein- oder zweifach durch F substituiertes 1,4-Phenylen bedeutet.
Z1 und Z2 bedeuten bevorzugt eine Einfachbindung, -CO-O-, -O-CO- und -CH2CH -, in zweiter Linie bevorzugt -CH20-und
-OCH2-.
Falls R1 einen Alkylrest oder einen Alkoxyrest bedeutet, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig, hat 2, 3, 4, 5, 6 oder 7 C-Atome und bedeutet demnach bevorzugt Ethyl, Propyl, Butyl, Pentyl, Hexyl, Hep- tyl, Ethoxy, Propoxy, Butoxy, Pentoxy, Hexoxy oder Heptoxy, ferner Methyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tri- decyl, Tetradecyl, Pentadecyl, Methoxy, Octoxy, Nonoxy, Decoxy, Undecoxy, Dodecoxy, Tridecoxy oder Tetradecoxy.
Oxaalkyl bedeutet vorzugsweise geradkettiges 2-Oxapropyl (= Methoxymethyl) , 2- (= Ethoxymethyl) oder 3-Oxabutyl (= 2-Me- thoxyethyl) , 2-, 3- oder 4-Oxapentyl, 2-, 3-, 4- oder 5-Oxa- hexyl, 2-, 3-, 4-, 5- oder 6-Oxaheptyl, 2-, 3-, 4-, 5-, 6- oder 7-Oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Oxanonyl, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder 9-Oxadecyl.
Falls R1 einen Alkenylrest bedeuten, so kann dieser geradket¬ tig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet demnach besonders Vinyl, Prop-1-, oder Prop-2-enyl, But-1-, 2- oder But-3-enyl, Pent-1-, 2-, 3- oder Pent-4-enyl, Hex-1-, 2-, 3-, 4- oder
Hex-5-enyl, Hept-1-, 2-, 3-, 4-, 5-oder Hept-6-enyl, Oct-1-, 2-, 3-, 4-, 5-, 6- oder Oct-7-enyl, Non-1-, 2-, 3-, 4-, 5-, 6-, 7- oder Non-8-enyl, Dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder Dec-9-enyl.
Falls Ri einen Alkylrest bedeutet, in dem eine CH2-Gruppe durch -0- und eine durch -CO- ersetzt ist, so sind diese bevorzugt benachbart. Somit beeinhalten diese eine Acyloxy- gruppe -C0-0- oder eine Oxycarbonylgruppe -0-C0-. Vorzugs-
.- weise sind diese geradkettig und haben 2 bis 6 C-Atome. Sie bedeuten demnach besonders Acetyloxy, Propionyloxy, Butyry- loxy, Pentanoyloxy, Hexanoyloxy, Acetyloxymethyl, Propiony- loxymethyl, Butyryloxymethyl, Pentanoyloxymethyl, 2-Acety- loxyethyl, 2-Propionyloxyethyl, 2-Butyryloxyethyl, 3-Acety-
1Q loxypropyl, 3-Propionyloxypropyl, 4-Acetyloxybutyl, Methoxy- carbonyl, Ethoxycarbonyl, Propoxycarbonyl, Butoxycarbonyl, Pentoxycarbonyl, Methoxycarbonylmethyl, Ethoxycarbonylmethyl, Propoxycarbonylmethyl, Butoxycarbonylmethyl, 2-(Methoxycar- bonyl)ethyl, 2-(Ethoxacarbonyl)ethyl, 2-(Propoxycar-
»5 bonyl)ethyl, 3-(MethoxycarbonyDpropyl, 3-(Ethoxycar¬ bonyl)propy1, 4-(Methoxycarbonyl)-buty1.
Falls R1 einen Alkenylrest bedeutet, in dem eine CH2-Gruppe durch CO oder CO-O oder 0-CO-ersetzt ist, so kann dieser o geradkettig oder verzweigt sein. Vorzugsweise ist er gerad¬ kettig und hat 4 bis 13 C-Atome. Er bedeutet demnach beson¬ ders Acryloyloxymethyl, 2-Acryloyloxyethyl, 3-Acryloyl- oxypropyl, 4-Acryloyloxybutyl, 5-Acryloyloxypentyl, 6-Acry- loyloxyhexyl, 7-Acryloyloxyheptyl, 8-Acryloyloxyoctyl, 5 9-Acryloyloxynonyl, 10-Acryloyloxydecyl, Methacryloyloxyme- thyl, 2-Methacryloyloxyethyl, 3-Methacryloyloxypropyl, 4-Methacryloyloxybutyl, 5-Methacryloyloxypentyl, 6-Metha- cryloyloxyhexyl, 7-Methacryloyloxyheptyl, 8-Methacryloy- loxyoctyl, 9-Methacryloyloxynonyl. 0
Verbindungen der Formel I, die über für Polymerisationsreak¬ tionen geeignete Flügelgruppen Ri verfügen, eignen sich zur Darstellung flüssigkristalliner Polymerer.
Verbindungen der Formeln I mit verzweigten Flügelgruppen R1 können gelegentlich wegen einer besseren Löslichkeit in den üblichen flüssigkristallinen Basismaterialien von Bedeutung sein, insbesondere aber als chirale Dotierstoffe, wenn sie optisch aktiv sind. Smektisehe Verbindungen dieser Art eignen sich als Komponenten für ferroelektrische Materialien.
10 Verbindungen der Formel I mit SA-Phasen eignen sich bei¬ spielsweise für thermisch adressierte Displays.
Verzweigte Gruppen dieser Art enthalten in der Regel nicht ,5 mehr als eine Kettenverzweigung. Bevorzugte verzweigte Reste R1 sind Isopropyl, 2-Butyl (= 1-Methylpropyl) , Isobutyl (= 2-Methylpropyl) , 2-Methylbutyl, Isopentyl (= 3-Methylbutyl) , 2-Methylpentyl, 3-Methylpentyl, 2-Ethylhexyl, 2-Propylpentyl, Isopropoxy, 2-Methylpropoxy, 2-Methylbutoxy, 3-Methylbutoxy, 2n 2-Methylpentoxy, 3-Methylpentoxy, 2-Ethylhexoxy, 1-Methyl- hexoxy, 1-Methylheptoxy, 2-Oxa-3-methylbutyl, 3-Oxa-4-methyl- pentyl, 4-Methylhexyl, 2-Nonyl, 2-Decyl, 2-Dodecyl, 6-Methy- loctoxy, 6-Methyloctaroyloxy, 5-Methylheptyloxycarbonyl, 2-Methylbutyryloxy, 3-Methylvaleryloxy, 4-Methylhexanoyloxy, 25 2-Chlorpropionyloxy, 2-Chlor-3-methylbutyryloxy, 2-Chlor-4- methylvaleryloxy, 2-Chlor-3-methylvaleryloxy, 2-Methyl-3-ox- apentyl, 2-Methyl-3-oxahexyl.
Bevorzugte optisch aktive Verbindungen der Formel I enthalte
30 als chiralen Rest eine Gruppe der Formel
worin X und Y voneinander verschieden sind.
Falls R1 einen Alkylrest darstellt, in dem zwei oder mehr CH2-Gruppen durch -0- und/oder -C0-O- ersetzt sind, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er
10 verzweigt und hat 3 bis 12 C-Atome. Er bedeutet demnach besonders Bis-carboxy-methyl, 2,2-Bis-carboxy-ethyl, 3,3-Bis- carboxy-propyl, 4,4-Bis-carboxy-butyl, 5,5-Bis-carboxy-pen- tyl, 6, 6-Bis-carboxy-hexyl, 7,7-Bis-carboxy-heptyl, 8,8-Bis- carboxy-octyl, 9, 9-Bis-carboxy-nonyl, 10,10-Bis-carboxy-
15 decyl, Bis-(methoxycarbonyl)-methyl, 2,2-Bis-(methoxycar- bonyl)-ethyl, 3,3-Bis-(methoxyearbony1)-propyl, 4,4-Bis-(me- thoxycarbonyl)-butyl, 5 ,5-Bis-(methoxycarbonyl)-pentyl, 6,6-Bis-(methoxycarbonyl)-hexyl, 7,7-Bis-(methoxycarbonyl)- heptyl, 8,8-Bis-(methoxycarbonyl)-oetyl. Bis-(ethoxycar-
_n bonyl)-methyl, 2,2-Bis-(ethoxycarbony1)-ethyl, 3,3-
Bis-(ethoxycarbony1)-propyl, 4,4-Bis-(ethoxycarbony1)-butyl, 5,5-Bis-(ethoxycarbonyl)-hexyl.
Verbindungen der Formel I, die über für Polykondensationen -j. geeignete Flügelgruppen R1 verfügen, eignen sich zur Darstel¬ lung flüssigkristalliner Polykondensate.
Formel I umfaßt sowohl die Racemate dieser Verbindungen als auch die optischen Antipoden sowie deren Gemische. 0
Vorzugsweise bedeutet Ri, F, Cl, CF3, 0CF3 oder OCF2H, insbe¬ sondere wenn X und Y H oder Alkyl bedeuten. V- und L2 sind
vorzugsweise gleich und bedeuten F, Cl oder H, insbesondere H.
Unter diesen Verbindungen der Formel I sowie den Unterformeln sind diejenigen bevorzugt, in denen mindestens einer der darin enthaltenden Reste eine der angegebenen bevorzugten Bedeutungen hat.
In den Verbindungen der Formel I sind diejenigen Stereoisome¬ ren bevorzugt, in denen die Ringe Cyc und Piperidin trans-l,4-disubstituiert sind. Diejenigen der vorstehend genannten Formeln, die eine oder mehrere Gruppen Pyd, Pyr, Dit und/oder Dio enthalten, umschließen jeweils die beiden 2,5-Stellungsisomeren.
Insbesonders bevorzugte Verbindungen der Formel I, welche eine Gruppe der Formel 1 aufweisen, sind die der Teilformeln Ila bis Iln:
alkyl-Cyc-Cbu=CHF Ila alkyl-Phe-Cbu=CHF Ilb alkyl-Cyc-Cyc-Cbu=CHF Ilc alkyl-Cyc-Phe-Cbu=CHF 'ild alkyl-Cyc-CH2CH2-Cbu=CHF Ile alkyl-Phe-CH2CH2-Cbu=CHF Ilf alkyl-Phe-CO-0-Cbu=CHF Ilg alkyl-Cyc-CO-0-Cbu=CHF Ilh alkyl-Cyc-Phe-C≡C-Cbu=CHF Ili alky1-Cyc-Phe-CH2CH2-Cbu=CHF 11j alkyl-Cyc-Cyc-CH2CH2-Cbu=CHF Ilk
alkyl-Phe-Phe-CH2CH2-Cbu=CHF 111 alkyl-Cyc-CH2CH2-Cyc-Cbu=CHF Um alkyl-Cyc-PheF-Cbu=CHF Iln
Insbesondere bevorzugte Verbindungen der Formel I, welche eine Gruppe der Formel 2 aufweisen, sind diejenigen der Teilformeln I2a bis I2o:
alkyl-Phe-Cbu=CHCl I2a alkyl-Cyc-Cbu=CHCl I2b alkyl-Cyc-Phe-Cbu=CHCl I2c alkyl-Cyc-Cyc-Cbu=CHCl I2d alkyl-Phe-Phe-Cbu=CHCl I2e alkyl-Phe-CH2CH2-Cbu=CHCl I2f alkyl-Cyc-CH2CH2-Cbu=CHCl I2g alkyl-Cyc-CO-0-Cbu=CHCl I2h alkyl-Phe-CO-0-Cbu=CHCl I2i alkyl-Cyc-Phe-C≡C-Cbu=CHCl 12j alkyl-Cyc-Phe-CH2CH2-Cbu=CHCl I2k alkyl-Cyc-Cyc-CH2CH2-Cbu=CHCl 121 alkyl-Phe-Phe-CH2CH2-Cbu=CHCl I2m alkyl-Cyc-CH2CH2-Cyc-Cbu=CHCl I2n
alkyl-Cyc-PheF-Cbu=CHCl I2o
Insbesondere bevorzugte Verbindungen der Formel I, welche eine Gruppe der Formel 7 enthalten, sind diejenigen der Teilformeln I7a bis l7o:
alkyl-PheF-Cbu=CF2 17a alkyl-Cyc-Cbu=CF2 I7b
alkyl-Cyc-Phe-Cbu=CF2 I7c alkyl-Cyc-Cyc-Cbu=CF2 I7d alkyl-Phe-Phe-Cbu=CF2 I7e alkyl-Phe-CH2CH2-Cbu=CF2 I7f alkyl-Cyc-CH2CH2-Cbu=CF2 I7g alkyl-Cyc-CO-0-Cbu=CF2 I7h alkyl-Phe-CO-0-Cbu=CF2 I7i alkyl-Cyc-Phe-G≡C-Cbu=CF2 17 j alkyl-Cyc-Phe-CH2CH2-Cbu=CF2 I7k alkyl-Cyc-Cyc-CH2CH2-Cbu=CF2 171 alkyl-Phe-Phe-CH2CH2-Cbu=CF2 I7m alkyl-Cyc-CH2CH2-Cyc-Cbu=CF2 I7n alkyl-Cyc-PheF-Cbu=CF2 I7o
Insbesondere bevorzugte Verbindungen der Formel I, welche eine Gruppe der Formel 8 aufweisen, sind diejenigen der Formeln I8a bis I8o:
alkyl-Phe-Cbu=CCl2 I8a alkyl-Cyc-Cbu=CCl2 I8b alkyl-Cyc-Phe-Cbu=CCl2 I8c alkyl-Cyc-Cyc-Cbu=CCl2 I8d alkyl-Phe-Phe-Cbu=CCl2 I8e alkyl-Phe-CH2CH2-Cbu=CCl2 I8f alkyl-Cyc-CH2CH2-Cbu=CCl2 I8g alkyl-Cyc-CO-0-Cbu=CCl2 I8h alkyl-Phe-CO-0-Cbu=CCl2 I8i alkyl-Cyc-Phe-C≡C-Cbu=CCl2 18j alky1-Cyc-Phe-CH2CH2-Cbu=CCl2 18k
alkyl-Cyc-Cyc-CH2CH2-Cbu=CCl2 181 alkyl-Phe-Phe-CH2CH2-Cbu=CCl2 18m alkyl-Cyc-CH2CH2-Cyc-Cbu=CCl2 18n alkyl-Cyc-PheF-Cbu=CCl2 I8o
In den voranstehenden Verbindungen der Teilformeln Ila bis Um, I2a bis I2n, I7a bis I7n und I8a bis I8n bedeuten alkyl- jeweils Alkyl bzw. Alkoxygruppen mit 1 bis 12 C-Atomen.
Die 1, -Cyclohexenylen-Gruppe hat vorzugsweise folgende Strukturen:
Die Verbindungen der Formel I werden nach an sich bekannten Methoden dargestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.
Die Verbindungen der Formel I können z.B. in Analogie zu den von Dobier et al. (J. Am. Chem. Soc. 107 (12), 3626-31 (1985) ) beschriebenen Verfahren durch Cycloaddition von Alkenen an Styrolderivate hergestellt werden (vgl. Schema I) :
I-i L2
Die Verbindungen der Formel I, worin Z2 -O-CO- bedeutet, lassen sich durch Veresterung 3-Methylencyclobutansäure gemä Schema 2 erhalten
Ri-(Ai-Zi)m-A2-OH + HOOC
Die Methylencyclobutancarbonsäure-Derivate können aus den entsprechenden Nitrilen mit wäßriger Natronlauge hergestellt werden (z.B. Gripps et al.. Am. Soc. __1 (1959), 2723-2728) .
Weiterhin können die Verbindungen der Formel I aus den ent- sprechenden 3-substιtuιerten Cyclobutanonen durch Kondensa¬ tion mit Methan-Derivaten nach C. Burton et al., Tetrahedron Lett. 23. (24), 3003-6 (1988) bzw. J. Fried, et al., Tetrahe¬ dron Lett. 25/ 4329 (1984) in Gegenwart einesw Phosphins
hergestellt werden (z.B. Schema 3)
Weiterhin können die Verbindungen der Formel I hergestellt werden, indem man eine Verbindung, die sonst der Formel I entspricht, aber an Stelle von H-Atomen eine oder mehrere reduzierbare Gruppen und/oder C-C-Bindungen enthält, redu¬ ziert.
Als reduzierbare Gruppen kommen vorzugsweise Carbonylgruppen in Betracht, insbesondere Ketogruppen, ferner z.B. freie oder veresterte Hydroxygruppen oder aromatisch gebundene Haloge¬ natome. Bevorzugte Ausgangsstoffe für die Reduktion entspre¬ chen der Formel I, können aber an Stelle eines Cyclohexanrin- ges einen Cyclohexenring oder Cyclohexanonring und/oder an Stelle einer -CH2CH2-Gruppe eine -CH=CH-Gruppe und/oder an Stelle einer -CH2-Gruppe eine -CO-Gruppe und/oder an Stelle eines H-Atoms eine freie oder eine funktionell (z.B. in Form ihres p-Toluolsulfonats) abgewandelte OH-Gruppe enthalten.
Die Reduktion kann z.B. erfolgen durch katalytische Hydrie¬ rung bei Temperaturen zwischen etwa 0° und etwa 200° sowie Drucken zwischen etwa 1 und 200 bar in einem inerten Lösungsmittel, z.B. einem Alkohol wie Methanol, Ethanol oder Isopropanol, einem Ether wie Tetrahydrofuran (THF) oder Dioxan, einem Ester wie Ethylacetat, einer Carbonsäure wie Essigsäure oder einem Kohlenwasserstoff wie Cyclohexan. Als Katalysatoren eignen sich zweckmäßig Edelmetalle wie Pt oder Pd, die in Form von Oxiden (z.B. Pt02, PdO), auf einem Träge
(z.B. Pd auf Kohle, Calciumcarbonat oder Strontiumcarbonat) oder in feinverteilter Form eingesetzt werden können.
Ketone können auch nach den Methoden von Clemmensen (mit Zink, amalgamiertem Zink oder Zinn und Salzsäure, zweckmäßig in wäßrig-alkoholischer Lösung oder in heterogener Phase mit Wasser/Toluol bei Temperaturen zwischen etwa 80 und 120°) oder Wolff-Kishner (mit Hydrazin, zweckmäßig in Gegenwart vo Alkali wie KOH oder NaOH in einem hochsiedenden Lösungsmitte wie Diethylenglykol oder Triethylenglykol bei Temperaturen zwischen etwa 100 und 200°) zu den entsprechenden Verbindun¬ gen der Formel I, die Alkylgruppen und/oder -CH2CH2-Brücken enthalten, reduziert werden.
Weiterhin sind Reduktionen mit komplexen Hydriden möglich. Beispielsweise können Arylsulfonyloxygruppen mit LiAlH4 reduktiv entfernt werden, insbesondere p-Toluolsulfonyloxyme thylgruppen zu Methylgruppen reduziert werden, zweckmäßig in einem inerten Lösungsmittel wie Diethylether oder THF bei
Temperaturen zwischen etwa 0 und 100°. Doppelbindungen können mit NaBH4 oder Tributylzinnhydrid in Methanol hydriert wer¬ den.
c Verbindungen der Formel I, die ansonsten der Formel I ent¬ sprechen, aber an Stelle von 1,4-Phenylenresten 1,4-Cyclohe- xenylenreste besitzen, können zum Beispiel mit DDQ (Dichlor- dicyanobenzochinon) in einem geeigneten Lösungsmittel oxi- diert werden.
10
Ester der Formel I können auch durch Veresterung entsprechen¬ der Carbonsäuren (oder ihrer reaktionsfähigen Derivate) , insbesondere der Formel IV, mit Alkoholen bzw. Phenolen (oder ihren reaktionsfähigen Derivaten) , insbesondere der Formel V,
15 oder nach der DCC-Methode (DCC = Dicyclohexylcarbodiimid) erhalten werden.
Die entsprechenden Carbonsäuren und Alkohole bzw. Phenole sind bekannt oder können in Analogie zu bekannten Verfahren ?n hergestellt werden.
Als reaktionsfähige Derivate der genannten Carbonsäuren eignen sich insbesondere die Säurehalogenide, vor allem die Chloride und Bromide, ferner die Anhydride, z.B. auch „ gemischte Anhydride, Azide oder Ester, insbesondere Alkyle- ster mit 1-4 C-Atomen in der Alkylgruppe.
Als reaktionsfähige Derivate der genannten Alkohole bzw. Phenole kommen insbesondere die entsprechenden Metall-alkoho- -^n late bzw. Phenolate, vorzugsweise eines Alkalimetalls wie Natrium oder Kalium, in Betracht.
Die Veresterung wird vorteilhaft in Gegenwart eines inerten Lösungsmittels durchgeführt. Gut geeignet sind insbesondere Ether wie z.B. Diethylether, Di-n-butylether, THF, Dioxan oder Anisol, Ketone wie z. B. Aceton, Butanon oder Cyclohex- anon, Amide wie z. B. DMF oder Phosphorsäurehexamethyl- triamid, Kohlenwasserstoffe wie z.B. Benzol, Toluol oder Xylol, Halogenkohlenwasserstoffe wie z. B. Tetrachlorkohlen¬ stoff, Dichlormethan oder Tetrachlorethylen und Sulfoxide wie z. B. Dimethylsulfoxid oder Sulfolan.
Zur Herstellung von Nitrilen der Formel I können entspre¬ chende Säureamide, z.B. solche, in denen an Stelle des Restes CN eine CONH2-Gruppe steht, dehydratisiert werden. Die
Amide sind z.B. aus entsprechenden Estern oder Säurehaloge- niden durch Umsetzung mit Ammoniak erhältlich. Als wasserab¬ spaltende Mittel eignen sich beispielsweise anorganische Säurechloride wie S0C12, PC13, PC15, P0C13, S02C12, C0C12, ferner P205, P2S5, A1C13 (z.B. als Doppelverbindung mit NaCl) , aromatische Sulfonsäuren und Sulfonsäurehalogenide. Man kann dabei in Gegenwart oder Abwesenheit eines inerten
Lösungsmittels bei Temperaturen zwischen etwa 0° und 150° arbeiten; als Lösungsmittel kommen z.B. Basen wie Pyridin oder Triethylamin, aromatische Kohlenwasserstoffe wie Benzol, Toluol oder Xylol oder Amide wie DMF in Betracht.
Zur Herstellung der vorstehend genannten Nitrile der Formel I kann man auch entsprechende Säurehalogenide, vorzugsweise die Chloride, mit Sulfamid umsetzen, zweckmäßig in einem inerten
Lösungsmittel wie z. B. Tetramethylensulfon bei Temperaturen zwischen etwa 80° und 150°, vorzugsweise bei 120°. Nach üblicher Aufarbeitung kann man direkt die Nitrile isolieren.
Ether der Formel I sind durch Veretherung entsprechender HydroxyVerbindungen, insbesondere der Formel VI bzw. VII, vorzugsweise entsprechender Phenole, erhältlich, wobei die Hydroxyverbindung zweckmäßig zunächst in ein entsprechendes Metallderivat, z.B. durch Behandeln mit NaH, NaNH2, NaOH, KOH, Na2CO 3 oder K2C03 in das entsprechende Alkalimetallal- koholat oder Alkalimetallphenolat übergeführt wird. Dieses kann dann mit dem entsprechenden Alkylhalogenid, -sulfonat oder Dialkylsulfat umgesetzt werden, zweckmäßig in einem inerten Lösungsmittel wie z. B. Aceton, 1,2-Dimethoxyethan, DMF oder Dimethylsulfoxid oder auch mit einem Überschuß an wäßriger oder wäßrig-alkoholischer NaOH oder KOH bei Tempera¬ turen zwischen etwa 20° und 100°.
Zur Herstellung von Nitrilen der Formel I können auch ent- sprechende Chlor-, Brom- oder Jodverbindungen der Formel I mit einem Cyanid umgesetzt werden, vorzugsweise mit einem Metallcyanid wie z. B. NaCN, KCN oder Cu2(CN)2, z. B. in
Gegenwart von Pyridin in einem inerten Lösungsmittel wie z. B. DMF oder N-Methylpyrrolidon bei Temperaturen zwischen 20° und 200°.
Verbindungen der Formel I, worin A1 durch mindestens ein F-Atom und/oder eine CN-Gruppe substituiert ist, können auch aus den entsprechenden Diazoniumsalzen durch Austausch der
Diazoniumgruppe gegen ein Fluoratom oder gegen eine CN- Gruppe, z.B. nach den Methoden von Schiemann oder Sandmeyer, erhalten werden.
Dioxanderivate bzw. Dithianderivate der Formel I werden zwecksmäßig durch Reaktion eines entsprechenden Aldehyds (oder eines seiner reaktionsfähigen Derivate) mit einem entsprechenden 1,3-Diol (oder einem seiner reaktionsfähigen Derivate) bzw. einem entsprechenden 1,3-Dithiol hergestellt, vorzugsweise in Gegenwart eines inerten Lösungsmittels wie z.B. Benzol oder Toluol und/oder eines Katalysators, z.B. einer starken Säure wie Schwefelsäure, Benzol- oder p-Toluol- sulfonsäure, bei Temperaturen zwischen etwa 20° und etwa 150° vorzugsweise zwischen 80° und 120°. Als reaktionsfähige Derivate der Ausgangsstoffe eignen sich in erster Linie Acetale.
Die genannten Aldehyde und 1,3-Diole bzw. 1,3-Dithiole sowie ihre reaktionsfähigen Derivate sind zum Teil bekannt, zum Teil können sie ohne Schwierigkeiten nach Standardverfahren der Organischen Chemie aus literaturbekannten Verbindungen hergestellt werden. Beispielsweise sind die Aldehyde durch Oxydation entsprechender Alkohole oder durch Reduktion von Nitrilen oder entsprechenden Carbonsäuren oder ihrer Deri¬ vate, die Diole durch Reduktion entsprechender Diester und die Dithiole durch Umsetzung entsprechender Dihalogenide mit NaSH erhältlich.
Die erfindungsgemäßen flüssigkristallinen Medien enthalten vorzugsweise neben einer oder mehreren erfindungsgemäßen Verbindungen als weitere Bestandteile 2 bis 40, insbesondere
4 bis 30 Komponenten. Ganz besonders bevorzugt enthalten diese Medien neben einer oder mehreren erfindungsgemäßen Verbindungen 7 bis 25 Komponenten. Diese weiteren Bestand¬ teile werden vorzugsweise ausgewählt aus nematischen oder nematogenen (monotropen oder isotropen) Substanzen, insbeson¬ dere Substanzen aus den Klassen der Azoxybenzole, Benzyliden- aniline, Biphenyle, Terphenyle, Phenyl- oder Cyclohexylben- zoate, Cyclohexan-carbonsäurephenyl- oder cyclohexyl-ester, Phenyl- oder Cyclohexylester der Cyclohexylbenzoesäure, Phenyl- oder Cyclohexylester der Cyclohexylcyclohexancar- bonsaure, Cyclohexylphenylester der Benzoesäure, der Cyclo- hexancarbonsäure, bzw. der Cyclohexylcyclohexancarbonsäure, Phenylcyclohexane, Cyclohexylbiphenyle, Phenylcyclohexylcy- clohexane, Cyclohexylcyclohexane, Cyclohexylcyclohexene, Cyclohexylcyclohexylcyclohexene, 1,4-Bis-cyclohexylbenzole, 4,4'-Bis-cyclohexylbiphenyle, Phenyl- oder Cyclohexylpyrimi- dine, Phenyl- oder Cyclohexylpyridine, Phenyl- oder Cyclo- hexyldioxane, Phenyl- oder Cyclohexyl-1,3-dithiane, 1,2- Diphenylethane, 1,2-Dicyclohexylethane, l-Phenyl-2-cyclohexy- lethane, l-Cyclohexyl-2-(4-phenyl-cyclohexyl)-ethane, 1-Cy- clohexyl-2-biphenylylethane, 1-Pheny1-2-cyclohexylphenylet- hane, gegebenenfalls halogenierten Stilbene, Benzylpheny- lether, Tolane und substituierten Zimtsäuren. Die 1,4-Pheny- lengruppen in diesen Verbindungen können auch fluoriert sein.
Die wichtigsten als weitere Bestandteile erfindungsgemäßer Medien in Frage kommenden Verbindungen lassen sich durch die Formeln 1, 2, 3, 4 und 5 charakterisieren:
R'-L-E-R" 1
R'-L-COO-E-R" 2
R'-L-OOC-E-R" 3
R'-L-CH2CH2-E-R" 4
R'-L-C--C-E-R" 5
In den Formeln 1, 2, 3, 4 und 5 bedeuten L und E, die gleich oder verschieden sein können, jeweils unabhängig voneinander
10 einen bivalenten Rest aus der aus -Phe-, -Cyc-, -Phe-Phe-, -Phe-Cyc-, -Cyc-Cyc-, -Pyr-, -Dio-, -G-Phe- und -G-Cyc- sowi deren Spiegelbilder gebildeten Gruppe, wobei Phe unsubstitu- iertes oder durch Fluor substituiertes 1,4-Phenylen, Cyc. trans-l,4-Cyclohexylen oder 1, -Cyclohexenylen, Pyr Pyrimi- ,c din-2,5-diyl oder Pyridin-2,5-diyl, Dio l,3-Dioxan-2,5-diyl und G 2-(trans-l,4-Cyclohexyl)-ethyl, Pyrimidin-2,5-diyl, Pyridin-2,5-diyl oder l,3-Dioxan-2,5-diyl bedeuten.
Vorzugsweise ist einer der Reste L und E Cyc, Phe oder Pyr. ?0 ist vorzugsweise Cyc, Phe oder Phe-Cyc. Vorzugsweise enthal¬ ten die erfindungsgemäßen Medien eine oder mehrere Komponen¬ ten ausgewählt aus den Verbindungen der Formeln 1, 2, 3, 4 und 5, worin L und E ausgewählt sind aus der Gruppe Cyc, Phe und Pyr und gleichzeitig eine oder mehrere Komponenten aus- 2e gewählt aus den Verbindungen der Formeln 1, 2, 3, 4 und 5, worin einer der Reste L und E ausgewählt ist aus der Gruppe Cyc, Phe und Pyr und der andere Rest ausgewählt ist aus der Gruppe -Phe-Phe-, -Phe-Cyc-, -Cyc-Cyc-, -G-Phe- und -G-Cyc-, und gegebenenfalls eine oder mehrere Komponenten ausgewählt
30
aus den Verbindungen der Formeln 1, 2, 3, 4 und 5, worin die Reste L und E ausgewählt sind aus der Gruppe -Phe-Cyc-, -Cyc-Cyc-, -G-Phe- und -G-Cyc-.
R' und R" bedeuten in den Verbindungen der Teilformeln la, 2a, 3a, 4a und 5a jeweils unabhängig voneinander Alkyl, Alkenyl, Alkoxy, Alkenyloxy oder Alkanoyloxy mit bis zu 8 Kohlenstoffatomen. Bei den meisten dieser Verbindungen sind R' und R" voneinander verschieden, wobei einer dieser Reste meist Alkyl oder Alkenyl ist. In den Verbindungen der Teil¬ formeln lb, 2b, 3b, 4b und 5b bedeutet R" -CN, -CF3, -OCF3, -OCHF2, F, Cl oder -NCS; R hat dabei die bei den Verbindungen der Teilformeln la bis 5a angegebene Bedeutung und ist vor¬ zugsweise Alkyl oder Alkenyl. Aber auch andere Varianten der vorgesehenen Substituenten in den Verbindungen der Formeln 1, 2, 3, 4 und 5 sind gebräuchlich. Viele solcher Substanzen oder auch Gemische davon sind im Handel erhältlich. Alle diese Substanzen sind nach literaturbekannten Methoden oder in Analogie dazu erhältlich.
Die erfindungsgemäßen Medien enthalten vorzugsweise neben
Komponenten aus der Gruppe der Verbindungen la, 2a, 3a, 4a und 5a (Gruppe 1) auch Komponenten aus der Gruppe der Verbin¬ dungen lb, 2b, 3b, 4b und 5b (Gruppe 2) , deren Anteile vor- zugsweise wie folgt sind:
Gruppe 1: 20 bis 90 %, insbesondere 30 bis 90 %, Gruppe 2: 10 bis 80 %, insbesondere 10 bis 50 %,
wobei die Summe der Anteile der erfindungsgemäßen Verbindun¬ gen und der Verbindungen aus den Gruppen 1 und 2 bis zu 100 % ergeben.
Die erfindungsgemäßen Medien enthalten vorzugsweise 1 bis 40 %, insbesondere vorzugsweise 5 bis 30 % an erfindungs¬ gemäßen Verbindungen. Weiterhin bevorzugt sind Medien, ent¬ haltend mehr als 40 %, insbesondere 45 bis 90 % an erfindun- gege äßen Verbindungen. Die Medien enthalten vorzugsweise drei, vier oder fünf erfindungsgemäße Verbindungen.
Die Herstellung der erfindungsgemäßen Medien erfolgt in an sich üblicher Weise. In der Regel werden die Komponenten ineinander gelöst, zweckmäßig bei erhöhter Temperatur. Durch geeignete Zusätze können die flüssigkristallinen Phasen nach der Erfindung so modifiziert werden, daß sie in allen bisher bekannt gewordenen Arten von Flüssigkristallanzeigeelementen verwendet werden können.
Derartige Zusätze sind dem Fachmann bekannt und in der Lite¬ ratur ausführlich beschrieben (H. Kelker/R. Hatz, Handbook of Liquid Crystals, Verlag Chemie, Weinheim, 1980) . Beispiels¬ weise können pleochroitische Farbstoffe zur Herstellung farbiger Guest-Host-Systeme oder Substanzen zur Veränderung der dielektrischen Anisotropie, der Viskosität und/oder der Orientierung der nematischen Phasen zugesetzt werden.
Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen, mp. = Schmelzpunkt, cp. = Klärpunkt. Vor- und nachstehend bedeuten Prozentangaben Gewichtsprozent; alle
Temperaturen sind in Grad Celsius angegeben. "Übliche Aufar¬ beitung" bedeutet: man gibt Wasser hinzu, extrahiert mit Methylenchlorid, trennt ab, trocknet die organische Phase, dampft ein und reinigt das Produkt durch Kristallisation und/oder Chromatographie.
Es bedeuten ferner:
K: Kristallin-fester Zustand, S: smektisehe Phase (der Index kennzeichnet den Phasentyp) , N: nematischer Zustand, Ch: cholesterische Phase, I: isotrope Phase. Die zwischen zwei Symbolen stehende Zahl gibt die Umwandlungstemperatur in Grad Celsius an.
DAST Diethylaminoschwefeltrifluorid
DCC Dicyclohexylcarbodiimid
DDQ Dichlordicyanobenzochinon
DIBALH Diisobutylaluminiumhydrid
HMTAP Hexamethyltriaminophosphin
KOT Kalium-tertiär-butanolat
PCC Pyridiniumchlorochromat
THF Tetrahydrofuran
TPP Triphenylphosphin pTSOH p-Toluolsulfonsäure
Beispiel 1
Darstellung von 3-[4-(trans-4-Pentylcyclohexyl)- phenyl]-1-(difluormethylen)-cyclobutan
A) 4-(trans-4-Pentylcyclohexyl)-vinylbenzol
Ein Gemisch aus 1 mol 4-(trans-Pentylcyclohexyl)-brombenzol und 3 1 THF wird bei -70 °C mit 1 mol BuLi versetzt. Zu dem Reaktionsgemisch werden anschließend ein Gemisch aus 0,5 mol Zinkbromid in 1 1 THF zugegeben und 30 Minuten bei -65 °C gerührt. Anschließend werden 1 mol Vinylbromid und 0,022 mol Nickel (II)chlorid/TPP hinzugegeben.
Das Reaktionsgemisch wird 16 Stunden bei Raumtemperatur gerührt und wie üblich aufgearbeitet. Das erhaltene Styrol- Derivat wird ungereinigt weiterverarbeitet.
B) 3-[4-(trans-4-Pentylcyclohexyl)-phenyl]-2,2-dichlor- cyclobutanon
Ein Gemisch aus 0,25 mol JLA, 23,0 g Zink-Kupfer (3 % Kupfer) und 800 ml Diethylether wird innerhalb 15 Minuten mit 0,25 ml Trichloracetylchlorid versetzt und anschließend 8 Stunden unter Rückfluß gerührt. Nach üblicher Aufarbeitung erhält man das Produkt, welches ungereinigt weiterverarbeitet wird.
C) 3-[4-(trans-4-Pentylcyclohexyl)-phenyl]-cyclobutanon
Ein Gemisch aus 0,144 mol JLB, 0,53 mol Zink-Pulver und 880 ml
Eisessig wird 17 Stunden bei Raumtemperatur gerührt. Nach üblicher Aufarbeitung erhält man das Produkt, welches unge- reinigt weiterverarbeitet wird.
D)
Ein Gemisch aus 1,5 mol Dibromidfluormethan, 100 ml Tetrag- lyme wird bei 0 °C mit einem Gemisch aus 0,3 mol Hexame- thyltriaminophosphin und 50 ml Tetraglyme versetzt. Anschließend werden 0,075 und IC hinzugegeben und 16 Stunden bei Raumtemperatur gerührt. Nach üblicher Aufarbeitung und Kristallisation aus 100 ml Ethanol/Ethylacetat erhält man das reine Produkt, K 42 I, Δε +2,85, Δn 0,071.
Analog werden hergestellt
3-[4-(trans-4-Propylcyclohexyl)-phenyl]-1-(difluor ethylen)- cyclobutan
3-[4-(trans-4-Ethylcyclohexyl)-phenyl]-1-(difluormethylen)- cyclobutan
3-[4-(träns-4-Butylcyclohexyl)-phenyl]-1-(difluormethylen)- cyclobutan
3-[4-(trans-4-Hexylcyclohexyl)-phenyl]-1-(difluormethylen)- cyclobutan
3-[4-(trans-4-Heptylcyclohexyl)-phenyl]-1-(difluormethylen)- cyclobutan
3-[4-[trans-4-Ethylcyclohexyl)-2,3-difluorphenyl]-1-(difluor¬ methylen)-cyclobutan
3-[4-[trans-4-Propylcyclohexyl)-2,3-difluorphenyl]-1-(diflu¬ ormethylen)-cyclobutan
3-[4-[trans-4-Pentylcyclohexyl)-2,3-difluorphenyl]-1-(diflu- ormethylen)-cyclobutan
3-[4-[trans-4-Hexylcyclohexyl)-2,3-difluorphenyl]-1-(difluor¬ methylen)-cyclobutan
3-[4-[trans-4-Heptylcyclohexyl)-2,3-difluorphenyl]-1-(diflu¬ ormethylen)-cyclobutan
3-[4-[trans-4-Ethylcyclohexyl)-2, 6-difluorphenyl]-1-(difluor¬ methylen)-cyclobutan
3-[4-[trans-4-Propylcyclohexyl)-2, 6-difluorphenyl]-1-(diflu¬ ormethylen)-cyclobutan,
3-[4-[trans-4-Pentylcyclohexyl)-2, 6-difluorphenyl]-1-(diflu¬ ormethylen)-cyclobutan , K 29 I
3-[4-[trans-4-Hexylcyclohexyl)-2, 6-difluorphenyl]-1-(difluor¬ methylen)-cyclobutan
3-[4-[trans-4-Heptylcyclohexyl)-2,6-difluorphenyl]-1- (difluormethylen)-cyclobutan
3-(trans-4-Ethylcyclohexyl)-1-(difluormethylen)-cyclobutan 3-(trans-4-Propylcyclohexyl)-1-(difluormethylen)-cyclobutan 3-(trans-4-Butylcyclohexyl)-1-(difluormethylen)-cyclobutan 3-(trans-4-Pentylcyclohexyl)-1-(difluormethylen)-cyclobutan 3-(trans-4-Hexylcyclohexyl)-1-(difluormethylen)-cyclobutan 3-(trans-4-Heptylcyclohexyl)-1-(difluormethylen)-cyclobutan 3-(trans-4-Octylcyclohexyl)-1-(difluormethylen)-cyclobutan
3-[trans,trans-4-(4-Ethylcyclohexyl)-cyclohexyl]-1-(difluor¬ methylen)-cyclobutan, Δn 0,073, Δε = 4,20
3-[trans,trans-4-(4-Propylcyclohexyl)-cyclohexyl]-1-(difluor¬ methylen)-cyclobutan, Δn 0,058, Δε = 2,97
3-[trans,trans-4-(4-Butylcyclohexyl)-cyclohexyl]-1-(difluor¬ methylen)-cyclobutan, K 40 SB 99 N 104 I, Δε = 3,03, Δn = 0,067
3-[trans,trans-4-(4-Pentylcyclohexyl)-cyclohexy1]-1-(difluor¬ methylen)-cyclobutan, K 38 SB 99 N 112,1 I, Δε = 4,18, Δn = 0,072
3-[trans,trans-4-(4-Hexylcyclohexyl)-cyclohexyl]-1-(difluor¬ methylen)-cyclobutan 3-[trans,trans-4-(4-Heptylcyclohexyl)-cyclohexyl]-1-(difluor- methylen)-cyclobutan
3-[4-(trans-4-Ethylcyclohexyl)-2-fluorphenyl]-1-(difluor¬ methylen)-cyclobutan
3-[4-(trans-4-Propylcyclohexyl)-2-fluorphenyl]-1-(difluor¬ methylen)-cyclobutan 3-[4-(trans-4-Butylcyclohexyl)-2-fluorphenyl]-1-(difluor¬ methylen)-cyclobutan
3-[4-(trans-4-Pentylcyclohexyl)-2-fluorphenyl]-1-(difluor¬ methylen)-cyclobutan 3-[4-(trans-4-Hexylcyclohexyl)-2-fluorphenyl]-1-(difluor- methylen)-cyclobutan
3-[4-(trans-4-Heptylcyclohexyl)-2-fluorphenyl]-1-(difluor¬ methylen)-cyclobutan
Beispiel 2
Herstellung von (4- [trans-4-Propylcyclohexyl) -phenyl) -3-iso- propylidencyclobutancarbonsäureester
Zu einem Gemisch aus 0,1 mol 3-Isopropylidencyclobutancar- bonsäureester (hergestellt nach Gripps et al.. Am. Soc. üi
(1959), 2723-2728) 0,1 mol 4-(trans-4-Propylcyclohexyl)-phe- nol und 100 ml Dichlormethan gibt bei 0 °C ein Gemisch aus
0,11 mol DCC und 50 ml Dichlormethan. Nach 16stündigem Rühren bei Raumtemperatur, Abtrennen der festen Bestandteile und üblicher Aufarbeitung erhält man das Produkt.
Analog werden hergestellt :
gegeben.
Die so erhaltenen Mischungen werden in eine Testzelle gefüllt.
Die "Voltage holding ratio" dieser Zellen wird bei Raumtempe¬ ratur HR (RT) und nach Erhitzen auf 100 °C HR (100) gemessen.
Die Messung der "holding ratio" erfolgte nach: G. Weber et al. Liquid Crystals 5_, 1320 (1989) .
Die Verbindungen (1), (2) und (3) sind somit zur Herstellung von Mischungen mit positiver Anisotropie der Dielektrizitäts- konstanzen und hohen Werten der holding ratio insbesondere für Aktivmatrix-Anzeigen geeignet.
Claims
Methylencyclobutanderivate der Formel I
U L2
wobei
R- Halogen, CN, CF3, -OCF3, -OCF2H oder einen unsubstituierten oder einen einfach durch CN, Halogen oder CF3, substituierten Alkyl- oder
Alkenyl- oder Perfluoralkylrest mit bis zu 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unsabängig voneinander durch -S-, -\/" ""r><^~' ~0-' -CO-, -CO-O-, -O-CO- oder -O-CO-O- so ersetzt sein können, daß S- und/oder O-Atome nicht direkt miteinander verknüpft sind,
A1 und A2 jeweils unabhängig voneinander eine
(a) trans-l,4-Cyclohexylenrest, worin auch eine oder mehrere nicht benachbarte CH2-Gruppen durch -0- und/oder -S- ersetzt sein können. (b) 1,4-Phenylenrest, worin auch eine oder zwei CH-Gruppen durch N ersetzt sein können,
(c) Rest aus der Gruppe 1,3-Cyclobutylen, 1,3- Bicyclo (1,1, l)pentylen, 1,4-Cyclohexenylen, 1,4-Bicyclo (2,2,2) octylen, Piperidin-1, 4- diyl, Naphthalin-2, 6-diyl, Decahydronaptha- lin-2, 6-diyl und 1,
2,
3,4-Tetrahydronaphtha- lin-2, 6-diyl,
wobei die Reste (a) und (b) ein- oder mehrfach durch CN oder Halogen substituiert sein können,
H und L2 jeweils H, F oder Cl,
Zi und Z2 jeweils unabhängig voneinander -CH2CH2-,
-CsC-, -CH20-, -0CH2-, -CO-O-, -O-CO-, -CH=N-, -N=CH-, -CH2S-, -SCH2-, eine Einfachbindung oder eine Alkylengruppe mit 3 bis 6 C-Atomen, worin auch eine CH2-Gruppe durch -0-, -CO-O-,
-O-CO-, -CHHalogen- oder -CHCN- ersetzt sein kann,
X und Y jeweils unabhängig voneinander F, Cl, Br CF3, CN, C02 oder Alkyl mit 1 bis 6 C-Atomen, eine der Reste X und Y auch H, und
m 0, 1, 2 oder 3
bedeuten. mit der Maßgabe, daß im Falle m = 0, A2 1,4-Phenylen und Z2 eine Einfachbindung X und Y nicht gleichzeitig F bedeuten.
Derivate der Formel I nach Anspurch 1, worin mindestens einer der Reste A1 und A2, gegebenenfalls durch Fluor substituiertes 1,4-Phenylen, 1,4-Cyclohexylen, Pyrimi- din,2-5,diyl oder Pyridin-2,5-diy1 bedeutet.
Derivate nach Anspruch 1 der Formel IA
worin
Ri Alkyl mit 1 bis 15 C-Atomen
n 0 oder 1
bedeuten.
4. Optisch aktive Methylencyclobutanderivate der Formel I dadurch gekennzeichnet, daß X und Y voneinander ver¬ schieden sind.
5. Verwendung der Verbindungen der Formel I als Komponenten flüssigkristalliner Medien für elektrooptische Anzeigen.
6. Flüssigkristallines Medium mit mindestens zwei Komponen¬ ten, dadurch gekennzeichnet, daß mindestens eine Komp-
I L2
nente eine Gruppe der Formel worin L1, L2, X und Y die angegebene Bedeutung besitzen, aufweist.
7. Flüssigkristallines Medium nach Anspruch 6, dadurch gekennzeichnet, daß mindestens eine Komponente eine Verbindung der Formel I ist.
8. Chiral getutetes flüssigkristallines Medium mit minde¬ stens einer achiralen Komponente und mindestens einer chiralen Komponente, dadurch gekennzeichnet, daß minde¬ stens eine chirale Komponente ein optisch aktives Methy- lencyclobutan-Derivat der Formel I nach Anspruch 4 ist.
9. Elektrooptische Anzeige, dadurch gekennzeichnet, daß sie als Dielektrikum ein flüssigkristallines Medium nach einem der Ansprüche 6 bis 8 enthält.
10. Matrix-Flüssigkristallanzeige nach Anspruch 9, dadurch gekennzeichnet, daß sie als Dielektrikum ein flüssig¬ kristallines Medium nach Anspruch 6, 7 oder 8 enthält.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4108713 | 1991-03-16 | ||
DE4108713 | 1991-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0576450A1 true EP0576450A1 (de) | 1994-01-05 |
Family
ID=6427528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92905642A Withdrawn EP0576450A1 (de) | 1991-03-16 | 1992-03-04 | Methylencyclobutanderivate |
Country Status (5)
Country | Link |
---|---|
US (1) | US5384072A (de) |
EP (1) | EP0576450A1 (de) |
JP (1) | JPH06507603A (de) |
DE (1) | DE4206771A1 (de) |
WO (1) | WO1992016483A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4218613B4 (de) * | 1992-06-05 | 2005-09-29 | Merck Patent Gmbh | Flüssigkristallines Medium |
DE4239169A1 (de) * | 1992-11-21 | 1994-05-26 | Merck Patent Gmbh | Cyclobutan - Benzol - Derivate |
DE19945889A1 (de) * | 1998-09-29 | 2000-04-27 | Merck Patent Gmbh | Flüssigkristalline Verbindungen und Flüssigkristallines Medium |
DE19955932B4 (de) | 1998-11-26 | 2020-08-06 | Merck Patent Gmbh | Cyclobutan-Derivate und flüssigkristallines Medium |
DE10141565A1 (de) * | 2000-09-22 | 2002-04-11 | Merck Patent Gmbh | Flüssigkristallverbindung, diese enthaltendes Flüssigkristallmedium und elektrooptische Flüssigkristallanzeige |
KR101359093B1 (ko) * | 2005-09-19 | 2014-02-05 | 메르크 파텐트 게엠베하 | 시클로부테인 및 스피로[3.3]헵테인 화합물 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3717484A1 (de) * | 1987-05-23 | 1988-12-01 | Merck Patent Gmbh | Cyclobutanderivate |
JPH01216967A (ja) * | 1988-02-26 | 1989-08-30 | Chisso Corp | 液晶化合物 |
-
1992
- 1992-03-04 DE DE4206771A patent/DE4206771A1/de not_active Withdrawn
- 1992-03-04 JP JP4505493A patent/JPH06507603A/ja active Pending
- 1992-03-04 WO PCT/EP1992/000478 patent/WO1992016483A1/de not_active Application Discontinuation
- 1992-03-04 EP EP92905642A patent/EP0576450A1/de not_active Withdrawn
- 1992-03-04 US US08/119,071 patent/US5384072A/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO9216483A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1992016483A1 (de) | 1992-10-01 |
DE4206771A1 (de) | 1992-09-17 |
JPH06507603A (ja) | 1994-09-01 |
US5384072A (en) | 1995-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE4327748B4 (de) | Cyclopropyl- und Cyclobutyl-Derivate | |
WO1989008689A1 (en) | 2,3-difluorobenzene derivatives and their use as components of liquid crystal media | |
WO1988010251A1 (en) | Aryl sulphur pentafluorides | |
DE4445224B4 (de) | Benzolderivate | |
DE4006921B4 (de) | Difluormethylenverbindungen | |
EP0418362B1 (de) | Trifluormethylcyclohexan-derivate | |
DE4303634B4 (de) | Indan-Derivate | |
WO1995004790A1 (de) | 2-fluorcycloyhexen-derivate | |
DE19909760B4 (de) | Benzofuran-Derivate | |
EP0465621B1 (de) | Partiell fluorierte verbindungen | |
DE4015681C2 (de) | Partiell fluorierte Verbindungen und deren Verwendung als Komponenten flüssigkristalliner Medien | |
DE4023106A1 (de) | Difluormethylenverbindungen | |
WO1990001021A1 (de) | Fluorierte alkoxyverbindungen | |
DE3906052A1 (de) | Dihalogenbenzolderivate | |
EP0449015B1 (de) | Difluormethylverbindungen und flüssigkristallines Medium | |
DE4227772C2 (de) | 2-Fluor-perfluoralkylcyclohexen-Derivate und deren Verwendung | |
WO1994026840A1 (de) | Partiell fluorierte benzolderivate und flüssigkristallines medium | |
EP0576450A1 (de) | Methylencyclobutanderivate | |
DE4002374C2 (de) | Partiell fluorierte Verbindungen und deren Verwendung als Komponente flüssig kristalliner Medien | |
DE4409526A1 (de) | Indan-Derivate | |
DE4101600A1 (de) | Partiell fluorierte verbindungen | |
DE4027458A1 (de) | Halogenacetylen-derivate | |
DE4002411A1 (de) | Methylencyclohexanderivate | |
DE4408418C2 (de) | Flüssigkristalline Spiroverbindungen | |
DE4235975A1 (de) | Methylenspiroalkan-Derivate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19930904 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
17Q | First examination report despatched |
Effective date: 19951103 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19960314 |