EP0573766A1 - Mandrin universel pour une machine de perçage d'un trou de coulée d'un four á cuve - Google Patents
Mandrin universel pour une machine de perçage d'un trou de coulée d'un four á cuve Download PDFInfo
- Publication number
- EP0573766A1 EP0573766A1 EP93106781A EP93106781A EP0573766A1 EP 0573766 A1 EP0573766 A1 EP 0573766A1 EP 93106781 A EP93106781 A EP 93106781A EP 93106781 A EP93106781 A EP 93106781A EP 0573766 A1 EP0573766 A1 EP 0573766A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drill
- axis
- rod
- chuck according
- cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/12—Opening or sealing the tap holes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T279/00—Chucks or sockets
- Y10T279/17—Socket type
- Y10T279/17042—Lost motion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T279/00—Chucks or sockets
- Y10T279/17—Socket type
- Y10T279/17042—Lost motion
- Y10T279/17085—Key retainer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T408/00—Cutting by use of rotating axially moving tool
- Y10T408/94—Tool-support
- Y10T408/95—Tool-support with tool-retaining means
Definitions
- the present invention relates to a mandrel for transmitting both a tensile force at the end of a rod as a moment of rotation to a drill. It relates more particularly to a universal mandrel for a machine for drilling a tap hole of a shaft furnace, said drilling machine comprising a working member provided with a spindle defining a longitudinal axis O, said working member being mounted with a sliding carriage on the drilling machine and capable of generating at least one moment of rotation around the axis O and a tensile / percussion force along the axis O, said mandrel comprising an oblong body provided at one of these ends of means to be made axially integral with the spindle and at the opposite end of a front cavity arranged around the axis O to introduce therein an end of a drill, respectively of a rod drilling.
- a drill is driven in rotation by a working member mounted on a mount which is aligned in the axis of the tap hole.
- This process therefore uses a rotating cutting tool, the drill, which is coupled to the spindle of the working member to make the taphole.
- the drill is provided with an axial channel, which crosses it longitudinally and which makes it possible to send pressurized air to the head of the drill, in order to better evacuate the drilling debris and especially to cool the head of the drill. forest.
- the device used to couple the drill to the spindle can be a fairly simple, therefore fairly light, mandrel which is screwed onto the spindle of the working member and which allows a moment of rotation to be transmitted to the drill.
- a metal rod is introduced into the taphole after having closed the taphole with a plugging mass and before the latter has completely hardened. If we want to open the tap hole, we extract the rod to make an opening in the hardened plugging mass.
- Such special coupling devices are for example known by the Luxembourg patent LU-83 917, filed on February 3, 1982, respectively by the Luxembourg patent LU-87 546, filed on June 30, 1989.
- the two documents present clamps which can be screwed onto the threaded spindle of the working member. They comprise a body provided with a front bore intended to receive the free end of the drilling rod and two movable jaws which are arranged symmetrically around this front bore and which are displaceable under the action of pneumatic cylinders to grip said end free.
- the object of the present invention is to provide a very robust universal mandrel, which hardly transmits the offset forces to which it is subjected to the spindle and which makes it possible to transmit a tensile / percussion force at the end of a rod and a important moment of rotation to a drill.
- a universal mandrel for a machine for drilling a tap hole of a shaft furnace said drilling machine comprising a working member provided with a spindle defining a longitudinal axis O, said working member being mounted using a sliding carriage on the drilling machine and capable of generating at least one moment of rotation around the axis O and a tensile / percussion force along the axis O, said mandrel comprising an oblong body provided at one of its ends with means to be made axially integral with the spindle and at the opposite end with a front cavity arranged around the axis O to introduce therein one end of a drill, respectively of a drilling rod.
- This mandrel is characterized by first means for gripping the end of a piercing rod in said cavity, these first means making it possible to transmit said tensile / percussion force to this rod and second means for blocking the end of a drill bit in said cavity, these second means making it possible to transmit a moment of rotation to this drill bit, said first and said second means being arranged in said body around said cavity, by a rigid structure, which is rigidly fixed to said sliding carriage and which s 'extends along said oblong body integral with the spindle, and by at least one bearing in this support structure which supports and guides said body radially while allowing a movement of rotation around the axis O and relative axial sliding of said body .
- the mandrel according to the present invention makes it unnecessary to exchange the pliers used for extracting a drill rod for a drill chuck if, on a machine for drilling a tap hole, it is desired to drill said hole. casting with a rotating cutting tool. According to the present invention, it suffices to introduce the end of the drill bit into the front cavity of the body. and to block it with said second means which ensure the transmission of the moment of rotation to the drill. During the extraction of a drilling rod from a tap hole, the end of the latter is introduced into the same front cavity, where it is then gripped by said first means making it possible to transmit to this rod a force of pull / percussion.
- the rotary body made integral with the spindle, is guided radially by at least one bearing mounted in a rigid support structure which is rigidly fixed to the sliding carriage of the working member. It is this assembly which allows the body to be rotated, comprising the first means for transmitting an axial tensile force to a drilling rod and the second means for transmitting a moment of rotation to a drill. This assembly also allows sufficient axial travel of the rotary body to transmit a percussion force.
- this mounting gives sufficient rigidity to the mandrel, when the latter is used to apply the lost rod method.
- the offset forces which appear especially when working with the piercing rod, are transmitted through the support structure to said sliding carriage and do not give rise to bending moments at spindle. It is recalled that such offset forces appear in particular when the drilling machine is withdrawn from the tap hole, while the rod is not yet entirely disengaged from the tap hole.
- such an early movement of the drilling machine from its working position to its garage position is often required, in particular in order to avoid the machine being subjected to splashes of the jet of molten metal, which is occur upon opening the tap hole.
- the mandrel according to the present invention also eliminates a defect in the mounting device according to the patent LU-87 010.
- the latter blocks any rotation of the clamp although it is still possible to operate the working member to produce a moment of rotation.
- the spindle, and certain elements of the mechanics of the working member are subjected to a maximum torsional force when the operator inadvertently triggers the rotational movement. This maximum torsional force is superimposed on the normal stresses which appear during the introduction and extraction of the rod, which leads to exaggerated fatigue of the elements of the working member.
- said first means transmitting said traction / percussion force to the piercing rod, comprise at least two movable jaws arranged symmetrically around the axis O and movable, under the action of jacks supplied with a pneumatic fluid, between a retracted position in which the distance between the jaws, measured perpendicular to the axis O, is greater than the greatest of the diameters of the rod and the drill and an advanced position, in which said distance is less than the diameter of the rod.
- the longitudinal axes of the cylinders make an angle with the axis of rotation between 10 ° and 20 °, which allows to firmly grip the end of the rod, while reducing the diametrical size of the mandrel.
- Said jacks advantageously include a return spring which returns the jaws in the retracted position against a stop surface, in the absence of pneumatic pressure.
- said second means transmitting said moment of rotation to the drill, comprise a transverse key, which is guided in transverse mortises arranged in said rotary body, and which cooperates with a flat formed in the end of the drill. It is a simple execution and effective of said second means for locking in rotation the end of the drill bit in said cavity.
- the present invention provides a removable sleeve which is introduced axially into said cavity to lock the jaws in the retracted position against a stop.
- This sleeve which is advantageously immobilized axially by said transverse key blocking the end of the drill in rotation, is intended to prevent the jaws from being able to move under the effect of striker strikes during drilling. Indeed, during drilling the jaws are subjected only to the action of the return spring which keeps them in the retracted position against a stop. However, the striker strikes cause a reaction on the jaws which, in the absence of the socket, would tend to project them, despite the existence of the return spring, on the end of the drill.
- this socket can also be advantageously used, when a piercing rod is introduced using the striker into the plugging mass.
- the universal chuck serves only as a hammer transmitting the strikes from the striker on the end of the rod, which is simply introduced into said cavity without using said first means to grip the end of the rod.
- Another substantial advantage of this socket is that it effectively protects the jaws in the event that there is penetration of molten iron into said cavity.
- said support structure integral with said sliding carriage, forms a cage surrounding said rotary body over most of its length.
- This cage advantageously comprises a front plate and a rear plate, each provided with a socket. In these two sockets are adjusted respectively a first and a second cylindrical seat of said rotary body. These two sockets define said bearing in which the rotary body can rotate and slide axially using said first and second cylindrical bearing.
- the cage advantageously comprises slides which cooperate with a central cylindrical surface of said rotary body.
- This preferred execution of the mandrel is of a particularly simple construction while imparting sufficient rigidity to said mandrel, which effectively prevents damage to the spindle and the working member, even during the application of significant offset forces. In addition, this execution ensures excellent rolling conditions for the rotary body, and allows, if necessary, its axial sliding. Axial sliding of small amplitude of said rotary body is indeed necessary for the operation of a striker integrated in the working member.
- the front plate is fixed by screws to the cage and can be removed to extract said rotary body from the cage.
- This feature allows easy maintenance of the chuck, since the rotary body can be easily exchanged for a spare rotary body, and the slides and bearing sleeves are easily accessible, which facilitates their rapid replacement.
- the present invention also solves, in a preferred embodiment of the mandrel, the problem of feeding with a only pneumatic fluid supply line, either the pneumatic jaws of the jaws, or the drill. It is in fact recalled that during drilling, pneumatic fluid is used, conveyed through an axial channel in the drill at the head of the latter, as fluid for rinsing the tap hole and as coolant for the head.
- This preferred execution of the mandrel which solves this problem comprises a supply channel for the pneumatic fluid communicating with a supply channel in the spindle, a first distribution channel for the pneumatic fluid to the jaws jacks, a second distribution channel for the pneumatic fluid opening axially into a surface of said cavity on which the end of the drill rests and a three-way valve integrated in said body and making it possible to communicate said supply line, either with the first distribution channel, or with the second distribution channel.
- the present invention provides particularly simple embodiments of a three-way valve, which can be easily integrated into said rotary body to direct the pneumatic fluid, either to the jacks or towards the forest. It will be noted inter alia that the shutter surfaces in this three-way valve are essentially flat surfaces, which promotes obtaining a good seal with simple means.
- the mandrel according to the present invention can also be advantageously used to rotate a rod when it is introduced into the stopper mass, before the latter has completely hardened. It has in fact been observed that this rotation of the rod during its introduction into the mass makes it possible to substantially reduce the axial force which must be applied to the rod in order to make it penetrate into the blocking mass. He will be noted that, in this case, the rod can be either held by the jaws, the torque to be transmitted for the rotation is indeed relatively low, or by the transverse key. The rotation can of course also be an oscillatory movement around the longitudinal axis of the rod.
- Figure 1 shows a partial side view of the carriage 10 of a machine for drilling the tap hole of a shaft furnace.
- a carriage mobile 16 on which is fixed a working member 18.
- the working member 18 comprises for example a member generating a moment of rotation, a front striker and a rear striker.
- a pin 26 serves as an external transmission member for the moment of rotation and the blows produced by said front and rear strikers 22, 24.
- This pin 26 comprises a threaded end 28 and an axial channel 30 (see FIG. 2), which constitutes a pneumatic fluid supply channel.
- a universal mandrel 32 At the front of the carriage 16, that is to say on the side of the spindle 26, there is seen a preferred embodiment of a universal mandrel 32 according to the present invention.
- a rotary body 34 and a support structure 36 which is integral with the carriage 16 and which forms a sort of cage around the greater part of the rotary body 34.
- the rotary body 34 is a body of revolution which comprises a front cylindrical surface 37 and a rear cylindrical surface 38, as well as a central cylindrical surface 40 which has a diameter slightly greater than the other two cylindrical surfaces (see FIG. 2).
- the rear cylindrical bearing surface 38 comprises a tapped blind hole 42, produced according to the rules of the art along the axis of revolution O to receive the threaded end 28 of the spindle 26 of the working member 18.
- the front cylindrical bearing surface 37 has a first bore 44 coaxial with the axis of revolution O of the rotary body 34.
- This first bore 44 has a diameter substantially larger than that of a drill bit 46 or a rod 48 (cf. FIG. 1) which must be coupled to said mandrel 32.
- a second bore 50 which is blind, axially extends said first bore 44. The diameter of this second bore 50 is only slightly larger than the drill 46 and shank 48 diameters (see Figures 2 and 4).
- each notch slides a jaw 66, 66 '.
- Each of these jaws 66, 66 ' is extended by a rod 68, 68', whose axis O 'preferably forms an angle between 10 ° and 20 ° with the axis of revolution O, in a bore 70, 70' made with the same angle in the median surface 40 of the rotary body 34.
- This bore 70, 70 ' is closed axially by a threaded plug 72, 72'.
- the rod 68, 68 ' ends with a piston head 74, 74' adjusted according to the rules of the art in the bore 70, 70 '.
- Springs helical 77, 77 'mounted in the plugs 72, 72' have the sole purpose of preventing the piston heads 74, 74 'from abutting against the plugs 72, 72' in the absence of the pneumatic fluid.
- An inclined surface 82, 82 ', radially delimiting each notch 64, 64', serves as a guide surface for the jaws 66, 66 ', when a pneumatic fluid under pressure is introduced upstream of the pistons 74, 74' to advance the jaws 66, 66 'from a retracted position to an advanced position.
- the arrangement of the jaws 66, 66 ' is made so that in the retracted position the distance between the jaws 66, 66' measured perpendicular to the axis of revolution O is greater than the largest of the diameters of the rods 48 and drills 46 used, and in the fully advanced position said distance is less than the smallest diameter of the rods 48 used.
- the jaws 66, 66 ' are moreover provided, in a known manner, with a transverse edge 84, 84' for biting the piercing rod 48.
- the body of revolution 34 which is at this level a hollow cylinder, is provided, symmetrically to a plane passing through the axis of revolution O, two mortises 86, 86 '(see Figures 3 or 4).
- the latter are arranged so that a transverse key 88, which is guided in the two mortises 86, 86 ', comes to bear with one of its longitudinal surfaces 90 on a flat 92 made in the end of the drill 46.
- the end of the drill 46 is thus immobilized in rotation and axially in the cavity formed by the first and the second bore 44, 50.
- the reference 94 identifies a removable protective sleeve, the outside diameter of which is slightly less than the diameter of the second bore 50, and the internal diameter of which is slightly greater than the diameter of the end of the drill bit 46.
- This removable protective sleeve 94 is introduced in the second bore 50 so to axially lock the jaws 66 in the retracted position against the bearing surface 80 and thus to prevent them from being propelled forward during the operation of the striker.
- This socket 94 is advantageously provided at one of its ends with a coaxial ring 96 whose outside diameter corresponds to the inside diameter of the sleeve 52 (see Figures 2 and 3).
- this ring 96 facilitates the introduction of the sleeve 94 into the first bore 50 and makes it possible to block it axially by the same key 88 which is already used for locking in rotation the end of the drill bit 46.
- this ring 96 effectively prevents the penetration of splashes into the notches 64 and 64 'of the jaws.
- FIG. 4 indeed shows that in the absence of the protective sleeve 94 the notches 64 and 64 ′ are fully exposed to splashes of molten material which enter through the bore 44 in the rotary body 34.
- the rotary body 34 is also provided with a pneumatic fluid distribution system.
- a supply channel 102 is arranged in the axis of revolution O of the rotary body 34 and opens into a chamber 104 which is axially delimited on one side by the threaded end 28 of the spindle 26 and on the other side by the bottom of the blind hole 42. It is recalled that this chamber 104 is supplied by the axial channel 30 arranged in the spindle 26.
- the axial supply channel 102 arranged in the rotary body is extended by a radial channel 106 towards a tap with three tracks 108 arranged in said median surface 40 of the rotary body 34 (see FIG. 5). It will be appreciated that this three-way valve 108 is fully integrated in said rotary body 34.
- this three-way valve comprises a cylindrical piston 110 which can slide in a blind bore 112 made, for example parallel to the axis of revolution O, in the central cylindrical bearing 40.
- a plug 114 screwed in the threaded mouth 116 of the bore 112 delimits the latter axially.
- the cylindrical piston 110 ends with a coaxial rod 118 of smaller diameter than the piston 110. This rod 118 crosses the plug 114 to extend the piston 110 outwards and thus serve as the control member of the three-way valve.
- a first cylindrical chamber 120 into which opens a first distribution channel 122 which feeds the two jacks of the jaws 66, 66 '.
- This second channel 124 is oriented radially towards the axis of revolution O, where it is extended by an axial channel 132 up to the level of the second axial bore 50.
- this axial channel opens into said flat end surface 62.
- this second channel 132 is to make the end of the drill 46 communicate with the pneumatic fluid supply circuit, in order to be able to distribute this fluid through a channel 134 arranged axially in said drill 46 up to 'at the head thereof, where this fluid serves as flushing fluid and cooling fluid.
- the pneumatic fluid supply channel 106 has its mouth 107 at the middle part of the bore 112.
- the cylindrical piston 110 is provided with an axial bore 136 which opens at the rod 118 in a cylindrical chamber 138 fitted in the plug 114 and which communicates axially with the chamber 120 into which the first distribution channel 122. opens.
- the bore 136 opens axially in the cylindrical base of the piston 110.
- a longitudinal recess 140 is made in the piston 110 at the mouth 107 of the channel 106. This recess 140 is extended by a radial bore 142 in the axial bore 136 of the piston 110. Circumferential seals 144, 146, located on either side of this recess 140, prevent axial leaks between the piston 110 and bore 112, respectively in the first or second chamber 120, 126.
- the communication between this channel 122 and the supply channel 106 is closed off at a shoulder surface 148 of the piston 110 and a front annular surface 150 of the plug. threaded 114.
- the shoulder surface 148 of the piston is provided with an annular seal 152.
- the shoulder surface 148 abuts against the front annular surface 150 of the plug, which closes the cylindrical chamber 138, into which the axial pipe 136 of the piston opens, relative to the cylindrical chamber 120 into which the first distribution channel 122 opens.
- the communication between the supply channel 106 and the second distribution channel 124 is closed at the cylindrical base of the piston and at the terminal plane surface which axially delimits the bore.
- the annular base 154 of the piston is provided with an annular seal 156.
- the axial insertion of the piston 110 into the bore 112 first opens the communication between the supply channel 106 and the first distribution channel 122 through the axial bore 136, the chamber 138 arranged in the plug 114 and the first chamber 120 into which the first distribution channel 122.
- the cylindrical base 154 of the piston abuts against the flat surface of the bottom 128 of the bore. This contact closes the communication between the supply channel 106 and the second distribution channel 124 through the axial bore 136 and the second cylindrical chamber 126 into which the second distribution channel 124 opens.
- Figure 6 shows an alternative embodiment of the three-way valve of Figure 5.
- the three-way valve is actuated in the variant of Figure 6 by an eccentric disc 200 which comes to rest either on a first shoulder 202 or on a second shoulder 204, arranged in the piston 110.
- a pawl 206 provided with a spring 208 constitutes a means for locking the disc 200 and accordingly the three-way valve 108, either in the first position or in the second position.
- FIG. 7 shows a different embodiment of the three-way valve.
- This valve 210 comprises a rotary cylinder 212 provided with a first channel 214 formed by a diametral bore and a second channel 216 formed by two radial bores forming between them a right angle.
- the cylinder is adjusted in a blind bore 218 preferably made perpendicular to the axis of revolution O, in the central cylindrical bearing 40.
- An elastic ring 220 holds the cylinder 214 in this bore 218 while allowing it to rotate about its axis of revolution O.
- the channel 214 communicates a branch 222 of the supply channel 102 with a branch 224 of the channel 132 supplying the drill and the channel 216 communicates the channel 122 supplying the jacks of the jaws 66, 66 '' via a channel 226 in the open air.
- the channel 214 no longer communicates the branch 222 of the supply channel with the branch 224 of channel 132, and channel 216 communicates channel 122 supplying the jaws jacks 66, 66 'with branch 222 of channel supply 102.
- a ratchet 230 provided with a spring 232 serves to lock the cylinder 212 in the two positions.
- the rotary body 34 which has been described above, is supported and guided radially by the support structure 36 integral with the sliding carriage 16 (see FIG. 1), which supports the working member 18.
- Two bars 160, 162 with rectangular section extend overhang, on the side of the spindle 26, the sliding carriage 16 on each side of the carriage 10.
- the two bars 160, 162 are connected transversely by a first frame 164 and a second frame 166 rectangular.
- These frames 164, 166 are axially spaced and connected in this same direction by an angle 168 at each of the four corners (see Figure 4).
- These angles 168 delimit between the first and the second frame 164, 166 the four edges of a prismatic space with square cross section, the longitudinal axis of which coincides with the axis of rotation O of the spindle 26.
- first plate 176 On the first and on the second frame 164, 166 are fixed respectively a first plate 176 and a second plate 178, so as to delimit said prismatic space axially (cf. FIG. 2).
- the first plate 176 that is to say the one which is furthest from the pin 26, is fixed by screws 177 to the front surface of the first frame 164 (see FIG. 3), while the second plate 178 can be either screwed or welded to the front of the second frame 166.
- first plate and in the second plate are respectively made a bore 180 and a bore 182 coaxial with the axis O (Cf Figure 2).
- Each of these two bores 180 and 182 is provided with a socket 184, 186, which is preferably provided with a shoulder 185, 187 which comes to bear on the inner surface of the first plate 176 respectively of the second plate 178
- the fixing of these sockets 184, 186 can be done, either by screwing, either by shrinking, gluing or any other suitable fixing method.
- the inside diameter of the socket 184 fixed in the first plate 176 corresponds to the diameter of the first cylindrical seat 36 of the rotary body 34.
- the inside diameter of the socket 186 fixed in the second plate 178 corresponds to the diameter of the second cylindrical seat 38.
- the adjustment of the diameters is chosen so as to allow rotation of the rotary body 34 under the effect of the rotation member 20, and a sliding of the latter in the axial direction under the effect of the striker 22, 24, while taking into account that the drilling machine must operate under harsh conditions.
- the speed of rotation corresponds to approximately 150 revolutions per minute, while the stroke of the sliding movement corresponds to approximately 5 cm.
- the central cylindrical surface 40 of the rotary body 34 is guided by four slides 190 fixed, for example by means of screws on the four angles 168.
- the four slides 190 can however also be fixed by screws 191 to the plates 176, 178 , which facilitates their disassembly.
- Each of these slides 190 naturally has a sliding surface 192 which matches the outer cylindrical surface of the central surface 40 of the rotary body 34 on a longitudinal angular segment.
- the present invention could also be achieved by providing the support carriage 16 of the working member 18 with a support structure comprising a robust sleeve, the longitudinal axis of which coincides with the axis of the spindle.
- This sleeve could then support a cylindrical rotary body having a constant diameter over its entire length (variant not shown in the figures).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Earth Drilling (AREA)
- Gripping On Spindles (AREA)
- Blast Furnaces (AREA)
Abstract
On présente un mandrin universel (32) permettant de transmettre aussi bien un effort de traction à l'extrémité d'une tige (48) qu'un moment de rotation à un foret (46) sur une machine de perçage (10) d'un trou de coulée. Ce mandrin universel comprend un corps rotatif (34) monté sur la broche d'entraînement (26) d'un organe de travail (18) coulissable sur la machine de perçage (10). Une structure de support (36) qui est solidaire de l'organe de travail (18) forme une cage de guidage autour du corps rotatif (34). Des moyens pour transmettre à l'extrémité d'une tige (48) un effort de traction et à un foret un moment de rotation sont disposés autour d'une cavité frontale dans le corps rotatif (34).
Description
- La présente invention concerne un mandrin permettant de transmettre aussi bien un effort de traction à l'extrémité d'une tige qu'un moment de rotation à un foret. Elle concerne plus particulièrement un mandrin universel pour une machine de perçage d'un trou de coulée d'un four à cuve, ladite machine de perçage comprenant un organe de travail muni d'une broche définissant un axe longitudinal O, ledit organe de travail étant monté à l'aide d'un chariot coulissant sur la machine de perçage et pouvant générer au moins un moment de rotation autour de l'axe O et un effort de traction/percussion suivant l'axe O, ledit mandrin comprenant un corps oblong muni à l'une de ces extrémités de moyens pour être rendu solidaire axialement de la broche et à l'extrémité opposée d'une cavité frontale aménagée autour de l'axe O pour y introduire une extrémité d'un foret, respectivement d'une tige de perçage.
- Il est connu que le perçage du trou de coulée d'un four à cuve peut se faire soit par forage normal, soit par le procédé de la tige perdue.
- Lors du forage normal, un foret est entraîné en rotation par un organe de travail monté sur un affût qui est aligné dans l'axe du trou de coulée. Ce procédé utilise en conséquence un outil tranchant en rotation, le foret, qui est accouplé à la broche de l'organe de travail pour réaliser le trou de coulée. Le plus souvent le foret est muni d'un canal axial, qui le traverse longitudinalement et qui permet de faire parvenir de l'air sous pression à la tête du foret, afin de mieux évacuer les débris de forage et surtout pour refroidir la tête du foret. Le dispositif utilisé pour accoupler le foret à la broche peut être un mandrin assez simple, donc assez léger, qui est vissé sur la broche de l'organe de travail et qui permet de transmettre un moment de rotation au foret.
- Dans le procédé de la tige perdue on introduit, après avoir obturé le trou de coulée avec une masse de bouchage et avant le durcissement complet de cette dernière, une tige métallique dans le trou de coulée. Si on veut ouvrir le trou de coulée, on extrait la tige pour réaliser une ouverture dans la masse de bouchage durcie.
- Pour l'extraction de la tige du trou de coulée, il est connu d'équiper l'organe de travail d'une machine de perçage d'un dispositif d'accouplement spécial pour solidariser l'extrémité libre de la tige fermement avec l'organe de travail et pour transmettre de cette façon à la tige un effort de traction axial et le plus souvent les coups d'un percuteur faisant partie intégrante de l'organe de travail.
- De tels dispositifs d'accouplement spéciaux sont par exemple connus par le brevet luxembourgeois LU-83 917, déposé le 3 février 1982, respectivement par le brevet luxembourgeois LU-87 546, déposé le 30 juin 1989. Les deux documents présentent des pinces pouvant être vissées sur la broche filetée de l'organe de travail. Elles comportent un corps muni d'un alésage frontal destiné à recevoir l'extrémité libre de la tige de perçage et deux mâchoires mobiles qui sont disposées symétriquement autour de cet alésage frontal et qui sont déplaçables sous l'action de vérins pneumatiques pour agripper ladite extrémité libre.
- Ces pinces ne sont cependant pas adaptées pour transmettre un moment de rotation à un foret. En effet la mise en rotation de la pince pour transmettre un moment important à un foret saisi entre les mâchoires endommagerait inévitablement ces dernières. Il ne faut pas non plus perdre de vue qu'une telle pince est montée en porte-à-faux sur la broche de l'organe de travail, et qu'elle pèse environ 50 kg, c'est-à-dire qu'elle est beaucoup plus massive que le mandrin utilisé normalement pour entraîner le foret. Il semble donc à priori exclu de la faire tourner à 150 tours par minute pour entraîner un foret.
- On s'est aussi rendu compte que la pince était souvent soumise à des efforts désaxés par rapport à l'axe de la broche lors de l'application du procédé de la tige perdue. Or, ces efforts désaxés induisent des moments de flexion inadmissibles dans la broche et dans la mécanique de l'organe de travail.
- Pour éviter cet inconvénient on a proposé dans le brevet luxembourgeois LU-87 010, déposé le 06 octobre 1987, un dispositif de montage sous forme de cage qui permet de fixer rigidement une pince, du type de celles décrites dans les brevets luxembourgeois LU-83 917 et LU-87 546, sur un chariot supportant l'organe de travail sur l'affût. Cette cage bloque toute rotation de la pince et évite que la broche ne soit soumise à un moment de flexion dû à des efforts désaxés. De plus, le dispositif du brevet LU-87 010 facilite le montage et le démontage de la pince sur la broche filetée de l'organe de travail.
- La facilité du montage de la pince est un aspect important, car le démontage de la pince doit s'effectuer lorsqu'on veut utiliser l'organe de travail pour travailler avec un foret, et le remontage de la pince doit s'effectuer au plus tard si on veut extraire une tige de perçage du trou de coulée à l'aide du même organe de travail. Même avec le dispositif de montage du brevet LU-87 010 cet échange de la pince contre un mandrin de forage et vice versa, reste un travail manuel pénible, qui consomme encore beaucoup de temps et qui expose l'ouvrier à des risques d'accidents.
- Le but de la présente invention est de proposer un mandrin universel très robuste, qui ne transmet guère les efforts désaxés auxquels il est soumis à la broche et qui permet de transmettre un effort de traction/percussion à l'extrémité d'une tige et un important moment de rotation à un foret.
- Ce problème est résolu par un mandrin universel pour une machine de perçage d'un trou de coulée d'un four à cuve, ladite machine de perçage comprenant un organe de travail muni d'une broche définissant un axe longitudinal O, ledit organe de travail étant montée à l'aide d'un chariot coulissant sur la machine de perçage et pouvant générer au moins un moment de rotation autour de l'axe O et un effort de traction/percussion suivant l'axe O, ledit mandrin comprenant un corps oblong muni à l'une de ses extrémités de moyens pour être rendu solidaire axialement de la broche et à l'extrémité opposée d'une cavité frontale aménagée autour de l'axe O pour y introduire une extrémité d'un foret, respectivement d'une tige de perçage. Ce mandrin est caractérisé par des premiers moyens pour saisir l'extrémité d'une tige de perçage dans ladite cavité, ces premiers moyens permettant de transmettre à cette tige ledit effort de traction/percussion et des seconds moyens pour bloquer l'extrémité d'un foret dans ladite cavité, ces seconds moyens permettant de transmettre à ce foret un moment de rotation, lesdits premiers et lesdits seconds moyens étant agencés dans ledit corps autour de ladite cavité, par une structure rigide, qui est rigidement fixée audit chariot coulissant et qui s'étend le long dudit corps oblong solidaire de la broche, et par au moins un palier dans cette structure de support qui supporte et guide radialement ledit corps tout en permettant un mouvement de rotation autour de l'axe O et de coulissement axial relatif dudit corps.
- Le mandrin selon la présente invention rend superflu l'échange de la pince servant à l'extraction d'une tige de perçage contre un mandrin de forage si, sur une machine de perçage d'un trou de coulée, on veut forer ledit trou de coulée avec un outil tranchant en rotation. Selon la présente invention il suffit en effet d'introduire l'extrémité du foret dans la cavité frontale du corps rotatif et de la bloquer avec lesdits seconds moyens qui assurent la transmission du moment de rotation au foret. Lors de l'extraction d'une tige de perçage d'un trou de coulée, l'extrémité de cette dernière est introduite dans la même cavité frontale, où elle est ensuite saisie par lesdits premiers moyens permettant de transmettre à cette tige un effort de traction/percussion.
- Selon une caractéristique essentielle de la présente invention le corps rotatif, rendu solidaire de la broche, est guidé radialement par au moins un palier monté dans une structure de support rigide qui est fixée rigidement au chariot coulissant de l'organe de travail. C'est ce montage qui permet une mise en rotation du corps comprenant les premiers moyens pour transmettre un effort axial de traction à une tige de perçage et les deuxièmes moyens pour transmettre un moment de rotation à un foret. Ce montage permet aussi une course axiale suffisante du corps rotatif pour transmettre un effort de percussion.
- De plus ce montage confère une rigidité suffisante au mandrin, lorsque ce dernier est utilisé pour appliquer le procédé de la tige perdue. En effet par l'intermédiaire dudit palier, les efforts désaxés, qui apparaissent surtout lorsqu'on travaille avec la tige de perçage, sont transmis à travers la structure de support audit chariot coulissant et ne donnent pas lieu à des moments de flexion au niveau de la broche. Il est rappelé que de tels efforts désaxés apparaissent notamment lorsque la machine de perçage est retirée du trou de coulée, alors que la tige n'est pas encore entièrement dégagée du trou de coulée. Or, un tel déplacement précoce de la machine de perçage de sa position de travail vers sa position de garage est souvent requis, notamment dans le but d'éviter que la machine ne soit soumise à des éclaboussures du jet de métal en fusion, qui se produisent dès l'ouverture du trou de coulée.
- Il sera noté que le mandrin selon la présente invention supprime aussi un défaut du dispositif de montage selon le brevet LU-87 010. Ce dernier bloque toute rotation de la pince bien qu'il soit encore possible de faire fonctionner l'organe de travail pour produire un moment de rotation. Il en résulte que la broche, et certains éléments de la mécanique de l'organe de travail, sont soumis à un effort de torsion maximal lorsque l'opérateur déclenche par inadvertance le mouvement de rotation. Cet effort de torsion maximal vient se superposer aux sollicitations normales qui apparaissent lors de l'introduction et de l'extraction de la tige, ce qui conduit à une fatigue exagérée des éléments de l'organe de travail.
- Dans une exécution préférentielle lesdits premiers moyens, transmettant ledit effort de traction/percussion à la tige de perçage, comprennent au moins deux mâchoires mobiles disposés symétriquement autour de l'axe O et déplaçables, sous l'action de vérins alimentés avec un fluide pneumatique, entre une position rétractée dans laquelle la distance entre les mâchoires, mesurée perpendiculairement à l'axe O, est supérieure au plus grand des diamètres de la tige et du foret et une position avancée, dans laquelle ladite distance est inférieure au diamètre de la tige.
- De préférence les axes longitudinaux des vérins font avec l'axe de rotation un angle entre 10° et 20°, ce qui permet de saisir fermement l'extrémité de la tige, tout en réduisant l'encombrement diamétral du mandrin. Lesdits vérins comportent avantageusement un ressort de rappel qui ramène les mâchoires en position rétractée contre une surface de butée, en absence de pression pneumatique.
- Selon une exécution préférentielle lesdits seconds moyens, transmettant ledit moment de rotation au foret, comprennent une clavette transversale, qui est guidée dans des mortaises transversales aménagées dans ledit corps rotatif, et qui coopère avec un méplat effectué dans l'extrémité du foret. Il s'agit d'une exécution simple et efficace desdits seconds moyens pour bloquer en rotation l'extrémité du foret dans ladite cavité.
- Dans une exécution préférentielle la présente invention propose une douille amovible qui est introduite axialement dans ladite cavité pour bloquer les mâchoires en position rétractée contre une butée. Cette douille, qui est avantageusement immobilisée axialement par ladite clavette transversale bloquant en rotation l'extrémité du foret, a pour but d'éviter que les mâchoires ne puissent bouger sous l'effet des coups du percuteur lors du forage. En effet, lors du forage les mâchoires sont soumises uniquement à l'action du ressort de rappel qui les maintient en position rétractée contre une butée. Or, les coups du percuteur provoquent une réaction sur les mâchoires qui, en absence de la douille, aurait tendance à les projeter, malgré l'existence du ressort de rappel, sur l'extrémité du foret. Il en résulterait un martellement des mâchoires et ces dernières seraient vite endommagées. Il sera apprécié que cette douille pourra aussi être avantageusement utilisée, lorsqu'on introduit une tige de perçage à l'aide du percuteur dans la masse de bouchage. Dans ce cas le mandrin universel sert uniquement comme marteau transmettant les coups du percuteur sur l'extrémité de la tige, qui est simplement introduite dans ladite cavité sans utiliser lesdits premiers moyens pour saisir l'extrémité de la tige. Un autre avantage substantiel de cette douille est qu'elle protège efficacement les mâchoires dans le cas où on aurait une pénétration de fonte en fusion dans ladite cavité. Il faut en effet relever que lors du forage du trou de coulée ce risque est particulièrement élevé, car immédiatement après que le foret a réalisé la percée du trou, la fonte commence à jaillir de ce dernier et des éclaboussures plus ou moins importantes pénètrent à l'intérieur de ladite cavité du mandrin, qui se trouve encore à proximité du trou de coulée. Ces éclaboussures risquent alors de bloquer les mâchoires. Or, ce risque est efficacement supprimé par l'utilisation de ladite douille qui est avantageusement munie à une de ses extrémités d'un anneau coaxial qui obture radialement ladite cavité autour du foret.
- Dans une exécution préférentielle ladite structure de support, solidaire dudit chariot coulissant, forme une cage entourant ledit corps rotatif sur la plus grande partie de sa longueur. Cette cage comporte avantageusement une plaque frontale et une plaque arrière, munies chacune d'une douille. Dans ces deux douilles sont ajustées respectivement une première et une deuxième portée cylindrique dudit corps rotatif. Ces deux douilles définissent ledit palier dans lequel le corps rotatif peut tourner et coulisser axialement à l'aide de ladite première et deuxième portée cylindrique. La cage comporte avantageusement des glissières qui coopèrent avec une portée cylindrique médiane dudit corps rotatif. Cette exécution préférentielle du mandrin est d'une construction particulièrement simple tout en conférant une rigidité suffisante audit mandrin, qui évite efficacement un endommagement de la broche et de l'organe de travail, même lors de l'application d'efforts désaxés importants. De plus, cette exécution assure d'excellentes conditions de roulement au corps rotatif, et permet, le cas échéant, son coulissement axial. Un coulissement axial de faible amplitude dudit corps rotatif est en effet nécessaire au fonctionnement d'un percuteur intégré dans l'organe de travail.
- De préférence la plaque frontale est fixée par des vis sur la cage et peut être enlevée pour extraire ledit corps rotatif de la cage. Cette caractéristique permet une maintenance facile du mandrin, car le corps rotatif peut être facilement échangé contre un corps rotatif de réserve, et les glissières et les douilles des paliers sont d'accès aisé, ce qui facilite leur remplacement rapide.
- La présente invention résout aussi, dans une exécution préférentielle du mandrin, le problème d'alimenter avec une seule conduite d'alimentation en fluide pneumatique, soit les vérins pneumatiques des mâchoires, soit le foret. Il est en effet rappelé que lors d'un forage on utilise le fluide pneumatique, acheminé à travers un canal axial dans le foret à la tête de ce dernier, comme fluide de rinçage du trou de coulée et comme fluide de refroidissement de la tête.
- Cette exécution préférentielle du mandrin qui résout ce problème comporte un canal d'alimentation pour le fluide pneumatique communiquant avec un canal d'alimentation dans la broche, un premier canal de distribution du fluide pneumatique vers les vérins des mâchoires, un deuxième canal de distribution du fluide pneumatique débouchant axialement dans une surface de ladite cavité sur laquelle l'extrémité du foret prend appui et un robinet à trois voies intégré dans ledit corps et permettant de faire communiquer ladite conduite d'alimentation, soit avec le premier canal de distribution, soit avec le deuxième canal de distribution.
- Il sera apprécié par l'homme de l'art, que la présente invention fournit des exécutions particulièrement simples d'un robinet à trois voies, qui peut être facilement intégré dans ledit corps rotatif pour diriger le fluide pneumatique, soit vers les vérins, soit vers le foret. Il sera entre autres noté que les surfaces d'obturation dans ce robinet à trois voies sont essentiellement des surfaces planes, ce qui favorise l'obtention d'une bonne étanchéité avec des moyens simples.
- Le mandrin, selon la présente invention, peut aussi être utilisé avantageusement pour mettre en rotation une tige lors de l'introduction de celle-ci dans la masse de bouchage, avant le durcissement complet de celle-ci. On a en effet constaté que cette mise en rotation de la tige lors de son introduction dans la masse permet de réduire sensiblement l'effort axial qu'on doit appliquer à la tige pour la faire pénétrer dans la masse de bouchage. Il sera noté que, dans ce cas, la tige peut être, soit tenue par les mâchoires, le couple à transmettre pour la mise en rotation est en effet relativement faible, soit par la clavette transversale. La rotation peut bien entendu aussi être un mouvement oscillatoire autour de l'axe longitudinal de la tige.
- D'autres particularités et caractéristiques ressortiront de la description détaillée d'un mode de réalisation préférentiel présenté ci-après à titre d'illustration en se référant aux figures annexées, dans lesquelles:
- la Figure 1 représente une vue latérale d'une partie de l'affût d'une machine de perçage du trou de coulée d'un four à cuve, avec un organe de travail muni d'un mandrin universel selon l'invention;
- la Figure 2 représente une coupe par un plan vertical à travers l'axe dudit mandrin universel;
- la Figure 3 représente une vue selon les flèches (I) du mandrin universel, la plaque frontale est partiellement coupée;
- la Figure 4 représente une coupe selon la ligne de coupe (II) du mandrin universel de la Figure 2, certains éléments ont été enlevés pour permettre une vue à l'intérieur du corps du mandrin universel;
- la Figure 5 représente une coupe à travers une première exécution d'un robinet à trois voies intégré dans ledit mandrin universel;
- la Figure 6 représente une variante d'exécution du robinet de la Figure 5;
- la Figure 7 représente une coupe à travers une deuxième exécution d'un robinet à trois voies intégré dans ledit mandrin universel.
- La Figure 1 représente une vue partielle latérale de l'affût 10 d'une machine de perçage du trou de coulée d'un four à cuve. Le long de cet affût coulisse, par l'intermédiaire de plusieurs galets 12, 14, un chariot mobile 16 sur lequel est fixé un organe de travail 18. Le plus souvent le chariot de support 16 est muni de ses propres moyens d'entraînement (non représentés), par exemple une chaîne sans fin entraînée par un moteur. L'organe de travail 18 comporte par exemple un organe générant un moment de rotation, un percuteur avant et un percuteur arrière. Une broche 26 sert d'organe de transmission externe du moment de rotation et des coups produits par lesdits percuteurs avant et arrière 22, 24. Cette broche 26 comprend une extrémité filetée 28 et un canal axial 30 (Cf. Figure 2), qui constitue un canal d'alimentation en fluide pneumatique.
- A l'avant du chariot 16, c'est-à-dire du côté de la broche 26, on voit une exécution préférentielle d'un mandrin universel 32 selon la présente invention. On distingue notamment un corps rotatif 34 et une structure de support 36 qui est solidaire du chariot 16 et qui forme une sorte de cage autour de la plus grande partie du corps rotatif 34.
- Le corps rotatif 34 est un corps de révolution qui comprend une portée cylindrique avant 37 et une portée cylindrique arrière 38 , ainsi qu'une portée cylindrique médiane 40 qui a un diamètre légèrement supérieur aux deux autres portées cylindriques (Cf. Figure 2). La portée cylindrique arrière 38 comprend un trou borgne taraudé 42, réalisé suivant les règles de l'art selon l'axe de révolution O pour recevoir l'extrémité filetée 28 de la broche 26 de l'organe de travail 18.
- La portée cylindrique avant 37 comporte un premier alésage 44 coaxial à l'axe de révolution O du corps rotatif 34. Ce premier alésage 44 a un diamètre sensiblement plus grand que celui d'un foret 46 ou d'une tige 48 (Cf. Figure 1) qui doivent être accouplés audit mandrin 32. Un deuxième alésage 50 qui est borgne, prolonge axialement ledit premier alésage 44. Le diamètre de ce deuxième alésage 50 n'est que légèrement plus grand que les diamètres du foret 46 et de la tige 48 (Cf. Figures 2 et 4).
- Sur la Figure 2 on voit que dans le premier alésage 44 est ajusté un manchon 52 qui est fixé par des vis sur ledit corps 34. Ce manchon 52 comporte au niveau du fond 56 dudit premier alésage 44 un bourrelet 58 circonférentiel. Celui-ci définit une surface de transition 60 entre ledit premier alésage 44 au grand diamètre et ledit second alésage 50 au petit diamètre, afin de faciliter l'introduction de l'extrémité de la tige 48 ou du foret 46 dans le deuxième alésage 50. Il va de soi que cette surface de transition 60 aurait aussi pu être réalisée directement dans la matière du corps de révolution 34. Une surface plane 62, perpendiculaire à l'axe de révolution O, constitue le fond du deuxième alésage 50 borgne. Cette surface plane 62 sert d'appui axial au foret 46 lors du forage, respectivement à la tige 48 lors de l'enfoncement de cette dernière dans la masse de bouchage.
- Au niveau du deuxième alésage 50 sont aménagées deux encoches 64, 64' (Cf. Figures 2 et 4), qui sont symétriques par rapport à un plan passant par l'axe de révolution. Dans chaque encoche coulisse une mâchoire 66, 66'. Chacune de ces mâchoires 66, 66' est prolongée par une tige 68, 68', dont l'axe O' fait de préférence un angle entre 10° et 20° avec l'axe de révolution O, dans un alésage 70, 70' effectué avec le même angle dans la portée médiane 40 du corps rotatif 34. Cet alésage 70, 70' est fermé axialement par un bouchon fileté 72, 72'. La tige 68, 68' se termine par une tête de piston 74, 74' ajusté selon les règles de l'art dans l'alésage 70, 70'. Un ressort hélicoïdal 76, 76' monté entre la tête de piston 74, 74' et une surface d'appui 78, 78' fait rentrer, en absence d'un fluide pneumatique sous pression, la tige 68, 68' au maximum dans l'alésage 70, 70', c'est-à-dire jusqu'à ce que la mâchoire 66, 66' soit bloquée par une surface de butée axiale 80, 80' dans son encoche 64, 64'. Les ressorts hélicoïdaux 77, 77' montés dans les bouchons 72, 72' ont pour seul but d'éviter que les têtes de piston 74, 74' ne butent contre les bouchons 72, 72' en l'absence du fluide pneumatique. Une surface inclinée 82, 82', délimitant radialement chaque encoche 64, 64', sert de surface de guidage aux mâchoires 66, 66', lorsqu'on introduit un fluide pneumatique sous pression en amont des pistons 74, 74' pour faire avancer les mâchoires 66, 66' d'une position rétractée vers une position avancée.
- On notera que l'agencement des mâchoires 66, 66' est réalisé de façon que dans la position rétractée la distance entre les mâchoires 66, 66' mesurée perpendiculairement à l'axe de révolution O soit supérieure au plus grand des diamètres des tiges 48 et forets 46 utilisés, et que dans la position entièrement avancée ladite distance soit inférieure au plus petit diamètre des tiges 48 utilisées. Les mâchoires 66, 66' sont d'ailleurs munies, de façon connue, d'une arête transversale 84, 84' pour mordre la tige de perçage 48.
- A l'avant, c'est-à-dire au niveau du premier alésage 44, le corps de révolution 34, qui est à ce niveau un cylindre creux, est muni, symétriquement à un plan passant par l'axe de révolution O, de deux mortaises 86, 86' (Cf. Figures 3 ou 4). Ces dernières sont agencées de façon qu'une clavette transversale 88, qui est guidée dans les deux mortaises 86, 86', vienne s'appuyer avec une de ses surfaces longitudinales 90 sur un méplat 92 effectué dans l'extrémité du foret 46. L'extrémité du foret 46 est ainsi immobilisée en rotation et axialement dans la cavité formée par le premier et le deuxième alésage 44, 50.
- La référence 94 repère une douille de protection amovible, dont le diamètre extérieur est légèrement inférieur au diamètre du second alésage 50, et dont le diamètre intérieur est légèrement supérieur au diamètre de l'extrémité du foret 46. Cette douille de protection amovible 94 est introduite dans le deuxième alésage 50 afin de bloquer axialement les mâchoires 66 en position rétractée contre la surface d'appui 80 et d'éviter ainsi leur propulsion vers l'avant lors du fonctionnement du percuteur. Cette douille 94 est avantageusement munie à une de ses extrémités d'un anneau coaxial 96 dont le diamètre extérieur correspond au diamètre intérieur du manchon 52 (Cf. Figures 2 et 3). Il sera apprécié que cet anneau 96 facilite l'introduction de la douille 94 dans le premier alésage 50 et permet de la bloquer axialement par la même clavette 88 qui sert déjà au blocage en rotation de l'extrémité du foret 46. De plus, cet anneau 96 prévient efficacement la pénétration d'éclaboussures dans les encoches 64 et 64' des mâchoires. La Figure 4 montre en effet qu'en absence de la douille de protection 94 les encoches 64 et 64' sont pleinement exposées à des éclaboussures de matériaux en fusion qui entrent à travers l'alésage 44 dans le corps rotatif 34.
- Le corps rotatif 34 est aussi muni d'un système de distribution du fluide pneumatique. Un canal d'alimentation 102 est aménagé dans l'axe de révolution O du corps rotatif 34 et débouche dans une chambre 104 qui est délimitée axialement d'un côté par l'extrémité filetée 28 de la broche 26 et de l'autre côté par le fond du trou borgne 42. Il est rappelé que cette chambre 104 est alimentée par le canal axial 30 aménagé dans la broche 26. Le canal d'alimentation 102 axial aménagé dans le corps rotatif est prolongé par un canal radial 106 vers un robinet à trois voies 108 aménagé dans ladite portée médiane 40 du corps rotatif 34 (Cf. Figure 5). Il sera apprécié que ce robinet à trois voies 108 est entièrement intégré dans ledit corps rotatif 34.
- Dans une première exécution (Cf Figure 5), ce robinet à trois voies comprend un piston cylindrique 110 qui peut coulisser dans un alésage borgne 112 effectué, par exemple parallèlement à l'axe de révolution O, dans la portée cylindrique médiane 40. Un bouchon 114 vissé dans l'embouchure taraudée 116 de l'alésage 112 délimite ce dernier axialement. Le piston cylindrique 110 se termine par une tige coaxiale 118 de diamètre plus faible que le piston 110. Cette tige 118 traverse le bouchon 114 pour prolonger le piston 110 vers l'extérieur et servir ainsi d'organe de commande du robinet à trois voies. Immédiatement derrière le bouchon 114 est aménagée dans l'alésage 112 une première chambre cylindrique 120 dans laquelle débouche un premier canal de distribution 122 qui alimente les deux vérins des mâchoires 66, 66'. A l'extrémité opposée de l'alésage 112 débouche radialement un deuxième canal de distribution 124 dans une deuxième chambre 126 définie dans l'alésage 112 et limitée axialement d'un côté par le fond 128 de l'alésage 112 et de l'autre côté par un épaulement 130 du piston 110. Ce deuxième canal 124 est orienté radialement vers l'axe de révolution O, où il est prolongé par un canal axial 132 jusqu'au niveau du deuxième alésage axial 50. Ici ce canal axial débouche dans ladite surface plane terminale 62. Le but de ce deuxième canal 132 est de faire communiquer l'extrémité du foret 46 avec le circuit d'alimentation du fluide pneumatique, afin de pouvoir distribuer ce fluide à travers un canal 134 aménagé axialement dans ledit foret 46 jusqu'à la tête de celui-ci, où ce fluide sert de fluide de rinçage et de fluide de refroidissement.
- Le canal d'alimentation du fluide pneumatique 106 a son embouchure 107 au niveau de la partie médiane de l'alésage 112. Le piston cylindrique 110 est muni d'un alésage axial 136 qui débouche au niveau de la tige 118 dans une chambre cylindrique 138 aménagée dans le bouchon 114 et qui communique axialement avec la chambre 120 dans laquelle débouche le premier canal de distribution 122. A l'autre extrémité du piston 110, l'alésage 136 débouche axialement dans la base cylindrique du piston 110. Un évidement longitudinal 140 est réalisé dans le piston 110 au niveau de l'embouchure 107 du canal d'alimentation 106. Cet évidement 140 est prolongé par un alésage radial 142 dans l'alésage axial 136 du piston 110. Des joints circonférentiels 144, 146, situés de part et d'autre de cet évidement 140, empêchent des fuites axiales entre le piston 110 et l'alésage 112, respectivement dans la première ou la deuxième chambre 120, 126.
- Du côté du premier canal de distribution 122 l'obturation de la communication entre ce canal 122 et le canal d'alimentation 106 se fait au niveau d'une surface d'épaulement 148 du piston 110 et d'une surface annulaire frontale 150 du bouchon fileté 114. La surface d'épaulement 148 du piston est munie d'un joint annulaire 152. Lors du déplacement axial du piston 110 en direction du bouchon 114, la surface d'épaulement 148 vient buter contre la surface annulaire frontale 150 du bouchon, ce qui obture la chambre cylindrique 138, dans laquelle débouche la conduite axiale 136 du piston, par rapport à la chambre cylindrique 120 dans laquelle débouche le premier canal de distribution 122.
- L'obturation de la communication entre le canal d'alimentation 106 et le deuxième canal de distribution 124 s'effectue au niveau de la base cylindrique du piston et de la surface plane terminale qui délimite axialement l'alésage. A cette fin, la base annulaire 154 du piston est munie d'un joint annulaire 156. L'enfoncement axial du piston 110 dans l'alésage 112 ouvre d'abord la communication entre le canal d'alimentation 106 et le premier canal de distribution 122 à travers l'alésage axial 136, la chambre 138 aménagée dans le bouchon 114 et la première chambre 120 dans laquelle débouche le premier canal de distribution 122. En fin de course la base cylindrique 154 du piston bute contre la surface plane du fond 128 de l'alésage. Ce contact obture la communication entre le canal d'alimentation 106 et le deuxième canal de distribution 124 à travers l'alésage axial 136 et la deuxième chambre cylindrique 126 dans laquelle débouche le deuxième canal de distribution 124.
- La Figure 6 représente une variante d'exécution du robinet à trois voies de la Figure 5. Au lieu d'être actionné par une tige 118 dans le prolongement axial du piston 110, le robinet à trois voies est actionné dans la variante de la Figure 6 par un disque excentrique 200 qui vient s'appuyer, soit sur un premier épaulement 202, soit sur un deuxième épaulement 204, aménagés dans le piston 110. Un cliquet 206 muni d'un ressort 208 constitue un moyen pour bloquer le disque 200 et en conséquence le robinet à trois voies 108, soit dans la première position, soit dans la deuxième position.
- La Figure 7 représente une réalisation différente du robinet à trois voies. Ce robinet 210 comporte un cylindre rotatif 212 muni d'un premier canal 214 formé par un alésage diamétral et un deuxième canal 216 formé par deux alésages radiaux formant entre eux un angle droit. Le cylindre est ajusté dans un alésage borgne 218 effectué de préférence perpendiculairement à l'axe de révolution O, dans la portée cylindrique médiane 40. Un anneau élastique 220 maintient le cylindre 214 dans cet alésage 218 tout en lui permettant de tourner autour de son axe de révolution O. Dans une première position, le canal 214 fait communiquer une branche 222 du canal d'alimentation 102 avec une branche 224 du canal 132 alimentant le foret et le canal 216 fait communiquer le canal 122 alimentant les vérins des mâchoires 66, 66' via un canal 226 à l'air libre. Dans une deuxième position, c'est-à-dire après une rotation de 90 ° du cylindre 212 dans le sens de rotation des aiguilles d'une montre, le canal 214 ne fait plus communiquer la branche 222 du canal d'alimentation avec la branche 224 du canal 132, et le canal 216 fait communiquer le canal 122 alimentant les vérins des mâchoires 66, 66' avec la branche 222 du canal d'alimentation 102. Un cliquet 230 muni d'un ressort 232 sert à bloquer le cylindre 212 dans les deux positions.
- Le corps rotatif 34 qu'on a décrit ci-avant, est supporté et guidé radialement par la structure de support 36 solidaire du chariot coulissant 16 (Cf. Figure 1), qui lui supporte l'organe de travail 18. Deux barres 160, 162 à section rectangulaire prolongent en porte-à-faux, du côté de la broche 26, le chariot coulissant 16 de chaque côté de l'affût 10. A leur extrémité libre les deux barres 160, 162 sont reliées transversalement par un premier cadre 164 et un deuxième cadre 166 rectangulaires. Ces cadres 164, 166 sont espacés axialement et reliés dans cette même direction par une cornière 168 au niveau de chacun des quatre coins (Cf. Figure 4). Ces cornières 168 délimitent entre le premier et le deuxième cadre 164, 166 les quatre arêtes d'un espace prismatique à section transversale carrée, dont l'axe longitudinal coïncide avec l'axe de rotation O de la broche 26.
- Sur le premier et sur le deuxième cadre 164, 166 sont fixées respectivement une première plaque 176 et une deuxième plaque 178, de façon à délimiter ledit espace prismatique axialement (Cf. Figure 2). La première plaque 176, c'est-à-dire celle qui est la plus éloignée de la broche 26, est fixée par des vis 177 sur la surface frontale du premier cadre 164 (Cf. Figure 3), tandis que la deuxième plaque 178 peut être soit vissée, soit soudée sur la face frontale du deuxième cadre 166.
- Dans la première plaque et dans la deuxième plaque sont respectivement effectués un alésage 180 et un alésage 182 coaxiaux a l'axe O (Cf Figure 2). Chacun de ces deux alésages 180 et 182 est muni d'une douille 184, 186, qui est de préférence munie d'un épaulement 185, 187 qui vient s'appuyer sur la surface intérieure de la première plaque 176 respectivement de la deuxième plaque 178. La fixation de ces douilles 184, 186 peut se faire, soit par vissage, soit par frettage, par collage ou tout autre mode de fixation adapté. Le diamètre intérieur de la douille 184 fixée dans la première plaque 176 correspond au diamètre de la première portée cylindrique 36 du corps rotatif 34. Le diamètre intérieur de la douille 186 fixée dans la deuxième plaque 178 correspond au diamètre de la deuxième portée cylindrique 38. L'ajustement des diamètres est choisi de façon à permettre une rotation du corps rotatif 34 sous l'effet de l'organe de rotation 20, et un glissement de ce dernier en direction axiale sous l'effet du percuteur 22, 24, tout en tenant compte que la machine de perçage doit fonctionner dans des conditions rudes. A titre d'information il sera encore précisé que, sur une machine de perçage d'un trou de coulée, la vitesse de rotation correspond à environ 150 tours par minute, alors que la course du mouvement de glissement correspond à environ 5 cm.
- La portée cylindrique médiane 40 du corps rotatif 34 est guidée par quatre glissières 190 fixées, par exemple à l'aide de vis sur les quatre cornières 168. Alternativement les quatre glissières 190 peuvent cependant aussi être fixées par des vis 191 aux plaques 176, 178, ce qui facilite leur démontage. Chacune de ces glissières 190 possède bien entendu une surface de glissement 192 qui épouse la surface cylindrique extérieure de la portée médiane 40 du corps rotatif 34 sur un segment angulaire longitudinal.
- Il est évident à l'homme de l'art que la présente invention pourrait aussi être réalisée en munissant le chariot de support 16 de l'organe de travail 18 d'une structure de support comprenant un manchon robuste, dont l'axe longitudinal coïncide avec l'axe de la broche. Ce manchon pourrait alors supporter un corps rotatif cylindrique ayant un diamètre constant sur toute sa longueur (variante non montrée dans les figures).
- Il sera cependant apprécié que l'exécution du mandrin décrit ci-avant à l'aide des figures a l'avantage d'être de construction particulièrement simple, de faciliter le remplacement et la maintenance du corps rotatif et des surfaces de glissement, de garantir une bonne absorption des efforts désaxés par rapport à l'axe de la broche et néanmoins de garantir une faible résistance au roulement et au glissement du corps rotatif 34 dans la structure de support 36.
Claims (14)
- Mandrin universel (32) pour une machine de perçage d'un trou de coulée d'un four à cuve, ladite machine de perçage comprenant un organe de travail (18) muni d'une broche (26) définissant un axe longitudinal (O), ledit organe de travail (18) étant monté à l'aide d'un chariot coulissant (16) sur la machine de perçage et pouvant générer au moins un moment de rotation (1) autour de l'axe (O) et un effort de percussion/traction (2) suivant l'axe (O), ledit mandrin comprenant un corps oblong (34) muni à l'une de ses extrémités de moyens pour être rendu solidaire axialement de la broche (26) et à l'extrémité opposée d'une cavité frontale aménagée autour de l'axe (O) pour introduire une extrémité d'un foret (46), respectivement d'une tige de perçage (48) et étant caractérisé par des premiers moyens pour saisir l'extrémité d'une tige de perçage dans ladite cavité, ces premiers moyens permettant de transmettre à cette tige ledit effort de percussion/traction, et des seconds moyens pour bloquer l'extrémité d'un foret dans ladite cavité, ces seconds moyens permettant de transmettre à ce foret un moment de rotation, lesdits premiers et seconds moyens étant agencés dans ledit corps (34) autour de la cavité frontale, et par une structure de support rigide (36), qui est rigidement fixée audit chariot coulissant (16) et qui s'étend le long dudit corps oblong (34), et par au moins un palier dans cette structure de support (36) qui supporte et guide radialement ledit corps oblong (34) tout en permettant un mouvement de rotation autour de l'axe (O) et de coulissement axial relatif dudit corps (34).
- Mandrin selon la revendication 1, caractérisé en ce que lesdits premiers moyens, transmettant ledit effort de traction à la tige de perçage, comprennent au moins deux mâchoires mobiles (66, 66') disposées symétriquement autour de l'axe (O) et déplaçables sous l'action de vérins, alimentés avec un fluide pneumatique, entre une position rétractée, dans laquelle la distance entre les mâchoires mesurée perpendiculairement à l'axe (O) est supérieur au plus grand des diamètres de la tige et du foret, et une position avancée, dans laquelle ladite distance est inférieure au diamètre de la tige.
- Mandrin selon la revendication 2, caractérisé en ce que les axes longitudinaux des vérins font avec l'axe (O) un angle entre 10 et 20°.
- Mandrin selon la revendication 2 ou 3, caractérisé par des ressorts hélicoïdaux (76, 76') montés dans lesdits vérins et dont l'action est opposée à l'action du fluide pneumatique sous pression alimentant ces vérins.
- Mandrin selon l'une quelconque des revendications 1 à 4, caractérisé en ce que lesdits seconds moyens, transmettant ledit moment de rotation au foret, comprennent une clavette transversale (88) qui est logée dans des mortaises transversales (86, 86') dans ledit corps (34) et qui coopère avec un méplat (92) effectué dans l'extrémité du foret (46) pour bloquer celle-ci en rotation dans ladite cavité.
- Mandrin selon la revendication 2, 3 ou 4, caractérisé par une douille amovible (94) qui est introduite axialement dans ladite cavité pour bloquer les mâchoires en position rétractée contre une butée.
- Mandrin selon les revendications 5 et 6, caractérisé en ce que la douille (94) est munie à une de ses extrémités d'un anneau coaxial (96) qui obture radialement ladite cavité autour du foret et qui est immobilisé axialement dans celle-ci par ladite clavette transversale (88).
- Mandrin selon l'une quelconque des revendication 1 à 7, caractérisé en ce que ladite structure de support rigide (36) forme une cage entourant ledit corps oblong sur la plus grande partie de sa longueur, en ce que ladite cage comporte une plaque frontale (176) et une plaque arrière (178) munies chacune d'une douille (184, 186) et en ce que ledit corps (34) est muni au niveau de chacune des douilles d'une portée cylindrique (36, 38) coaxiale avec l'axe (O).
- Mandrin selon la revendication 8, caractérisé en ce que ladite plaque frontale (176) est fixée par des vis (177) sur la cage et peut être enlevée pour extraire ledit corps rotatif (34) de ladite cage.
- Mandrin selon la revendication 8 ou 9, caractérisé par quatre glissières (190) montées entre la plaque frontale (176) et la plaque arrière (178) et par une troisième portée cylindrique (40) dudit corps (34), qui est coaxiale avec l'axe (O) et qui a un diamètre plus grand que les autres deux portées cylindriques (36, 38), lesdites glissières (190) guidant radialement cette portée cylindrique médiane.
- Mandrin selon la revendication 2, caractérisé en ce que ledit corps rotatif comporte un canal d'alimentation (102, 106) pour le fluide pneumatique communiquant avec un canal d'alimentation (30) dans la broche, un premier canal de distribution (122) du fluide pneumatique vers les vérins des mâchoires, un deuxième canal de distribution (124, 132) du fluide pneumatique débouchant axialement dans une surface (62) de ladite cavité sur laquelle l'extrémité du foret (46) prend appui et un robinet à trois voies (108) intégré dans ledit corps rotatif (34) et permettant de faire communiquer ladite conduite d'alimentation (102, 106), soit avec le premier canal de distribution (122), soit avec le deuxième canal de distribution (124).
- Mandrin selon la revendication 11, caractérisé en ce que le robinet à trois voies (108) comprend un piston cylindrique (110) pouvant coulisser axialement entre une première position et une deuxième position dans un alésage (112) effectué dans ledit corps (34), le piston (110) étant muni d'un alésage axial (136) faisant communiquer ledit canal d'alimentation (102, 106) dans ladite première position avec une première chambre (120) dans laquelle débouche le premier canal de distribution (122) et dans ladite deuxième position avec une deuxième chambre (126) dans laquelle débouche le deuxième canal de distribution (124).
- Mandrin selon la revendication 11 caractérisé en ce que le robinet à trois voies (210) comprend un cylindre (212) pouvant être tourné autour de son axe (O) dans un alésage (218) effectué dans ledit corps (34) entre une première position et une deuxième position, le cylindre étant muni de canaux internes faisant communiquer ledit canal d'alimentation (102, 222) dans la première position avec le premier canal de distribution (122) et dans la deuxième position avec le deuxième canal de distribution (124).
- Mandrin selon l'une quelconque des revendications 1 à 12 caractérisé en ce que le mandrin est utilisé pour communiquer à la tige de perçage un moment de rotation lorsqu'on introduit cette dernière dans le trou de coulée avant le durcissement d'une masse de bouchage avec laquelle on a obturé le trou de coulée.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU88129 | 1992-06-10 | ||
LU88129A LU88129A1 (fr) | 1992-06-10 | 1992-06-10 | Mandrin universel pour une machine de percage d'un trou de coulee d'un four a cuve |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0573766A1 true EP0573766A1 (fr) | 1993-12-15 |
Family
ID=19731360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93106781A Withdrawn EP0573766A1 (fr) | 1992-06-10 | 1993-04-27 | Mandrin universel pour une machine de perçage d'un trou de coulée d'un four á cuve |
Country Status (6)
Country | Link |
---|---|
US (1) | US5348430A (fr) |
EP (1) | EP0573766A1 (fr) |
JP (1) | JPH0679506A (fr) |
CA (1) | CA2095464A1 (fr) |
DE (1) | DE4318571A1 (fr) |
LU (1) | LU88129A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111215937A (zh) * | 2019-11-27 | 2020-06-02 | 安徽枫雅轩科技信息服务有限公司 | 一种拨叉杆横槽自动加工装置 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19738171A1 (de) * | 1997-09-01 | 1999-03-04 | Delmag Maschinenfabrik | Bohrgerät |
AT407919B (de) * | 1998-01-19 | 2001-07-25 | Boehler Pneumatik Internat Gmb | Pneumatisch oder hydraulisch betreibbarer hammer und verwendung des hammers zum offenstellen oder zum verschliessen einer abstichöffnung eines metallurgischen gefässes |
JP3817617B2 (ja) | 1999-05-10 | 2006-09-06 | 新日本製鐵株式会社 | さく孔装置 |
DE102008053178A1 (de) | 2008-10-24 | 2010-05-12 | Dürr Systems GmbH | Beschichtungseinrichtung und zugehöriges Beschichtungsverfahren |
AT511616B1 (de) * | 2011-09-08 | 2013-01-15 | Tmt Bbg Res And Dev Gmbh | Einrichtung zur zuführung von spülmedium in einem bohrhammer |
AT511810B1 (de) | 2011-09-27 | 2013-03-15 | Tmt Bbg Res And Dev Gmbh | Schlagwerk für eine hammereinrichtung und verfahren zum offenstellen einer abstichöffnung |
US9333611B2 (en) * | 2013-09-13 | 2016-05-10 | Colibri Spindles, Ltd. | Fluid powered spindle |
US10207379B2 (en) | 2016-01-21 | 2019-02-19 | Colibri Spindles Ltd. | Live tool collar having wireless sensor |
JP6603288B2 (ja) * | 2017-10-25 | 2019-11-06 | ファナック株式会社 | 工作機械の切削液供給装置 |
CN111890093B (zh) * | 2020-07-22 | 2021-12-10 | 北京铁科首钢轨道技术股份有限公司 | 用于加工圆柱面型钢支座纵向上摆的工装 |
CN114054806A (zh) * | 2021-12-10 | 2022-02-18 | 惠州市金富永五金制品有限公司 | Pin针自动钻孔的载料机构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862750A (en) * | 1972-10-17 | 1975-01-28 | Inland Steel Co | Tophole opening apparatus |
EP0025423A1 (fr) * | 1979-09-05 | 1981-03-18 | Atlas Copco France S.A. | Machine pour percer le trou de coulée de hauts fourneaux |
FR2520857A1 (fr) * | 1982-02-03 | 1983-08-05 | Wurth Paul Sa | Dispositif d'accouplement d'une tige de percage du trou de coulee d'un four a cuve a l'outil de travail d'une machine de percage |
FR2621264A1 (fr) * | 1987-10-06 | 1989-04-07 | Wurth Paul Sa | Dispositif de montage d'une pince pour l'accouplement d'une tige de percage du trou de coulee d'un four a cuve a une machine de percage |
EP0405207A2 (fr) * | 1989-06-30 | 1991-01-02 | Paul Wurth S.A. | Dispositif d'accouplement d'une tige de perçage du trou de coulée d'un four à cuve à l'outil de travail d'une machine de perçage |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4284284A (en) * | 1979-01-31 | 1981-08-18 | Black & Decker Inc. | Retainer arrangement for tools |
DE3624232A1 (de) * | 1986-07-18 | 1988-01-28 | Hilti Ag | Spannfutter fuer werkzeuge |
LU87190A1 (fr) * | 1988-04-06 | 1989-11-14 | Wurth Paul Sa | Machine de percage de trous de coulee d'un four a cuve |
DE3828309C3 (de) * | 1988-08-20 | 1998-07-30 | Bosch Gmbh Robert | Bohrhammer |
DE4104131A1 (de) * | 1990-05-08 | 1991-11-14 | Bosch Gmbh Robert | Handbohrmaschine |
-
1992
- 1992-06-10 LU LU88129A patent/LU88129A1/fr unknown
-
1993
- 1993-04-27 EP EP93106781A patent/EP0573766A1/fr not_active Withdrawn
- 1993-05-04 CA CA002095464A patent/CA2095464A1/fr not_active Abandoned
- 1993-06-04 DE DE4318571A patent/DE4318571A1/de not_active Withdrawn
- 1993-06-08 JP JP5137813A patent/JPH0679506A/ja active Pending
- 1993-06-10 US US08/076,350 patent/US5348430A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862750A (en) * | 1972-10-17 | 1975-01-28 | Inland Steel Co | Tophole opening apparatus |
EP0025423A1 (fr) * | 1979-09-05 | 1981-03-18 | Atlas Copco France S.A. | Machine pour percer le trou de coulée de hauts fourneaux |
FR2520857A1 (fr) * | 1982-02-03 | 1983-08-05 | Wurth Paul Sa | Dispositif d'accouplement d'une tige de percage du trou de coulee d'un four a cuve a l'outil de travail d'une machine de percage |
FR2621264A1 (fr) * | 1987-10-06 | 1989-04-07 | Wurth Paul Sa | Dispositif de montage d'une pince pour l'accouplement d'une tige de percage du trou de coulee d'un four a cuve a une machine de percage |
EP0405207A2 (fr) * | 1989-06-30 | 1991-01-02 | Paul Wurth S.A. | Dispositif d'accouplement d'une tige de perçage du trou de coulée d'un four à cuve à l'outil de travail d'une machine de perçage |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111215937A (zh) * | 2019-11-27 | 2020-06-02 | 安徽枫雅轩科技信息服务有限公司 | 一种拨叉杆横槽自动加工装置 |
CN111215937B (zh) * | 2019-11-27 | 2021-03-02 | 安徽匠桥财务咨询服务有限公司 | 一种拨叉杆横槽自动加工装置 |
Also Published As
Publication number | Publication date |
---|---|
DE4318571A1 (de) | 1993-12-16 |
US5348430A (en) | 1994-09-20 |
JPH0679506A (ja) | 1994-03-22 |
LU88129A1 (fr) | 1994-03-01 |
CA2095464A1 (fr) | 1993-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0573766A1 (fr) | Mandrin universel pour une machine de perçage d'un trou de coulée d'un four á cuve | |
FR2508359A1 (fr) | Porte-outil pour perceuses et perceuses a percussion | |
EP0335795A1 (fr) | Porte-outil de foreuse | |
EP0818264B1 (fr) | Outil et procédé d'ébavurage | |
FR2573303A1 (fr) | Mandrin a levier pour piece a main dentaire | |
FR2937891A3 (fr) | Mandrin porte-foret auto-serrant | |
FR2540772A1 (fr) | Outil automatique de vissage de goujons | |
BE1024703B1 (fr) | Procede d’extraction de vis de securite pour roues de vehicule automobile et extracteur pour la mise en oeuvre du procede | |
FR2836082A3 (fr) | Structure de limitation de couple de mecanisme de martelage de type marteau a broches | |
EP1815926A2 (fr) | Mandrin porte-outil pour l'équipement d'une machine tournante | |
FR2709260A1 (fr) | Perceuse à main notamment perforateur. | |
EP3381616B1 (fr) | Extracteur et procede d'extraction d'un injecteur coince dans la culasse d'un moteur de vehicule automobile | |
FR2935278A1 (fr) | Dispositif de precentrage pour l'assemblage automatique par dilatation thermique d'outils avec un porte-outils. | |
FR2511632A1 (fr) | Mandrin de serrage, notamment pour outils de percage sous percussion | |
BE1004162A3 (fr) | Dispositif de montage d'une pince pour l'accouplement d'une tige de percage du trou de coulee d'un four a cuve a une machine de percage. | |
EP0574729A1 (fr) | Machine de perçage d'un trou de coulée d'un four à cuve | |
EP2789417B1 (fr) | Guide de perçage pour tubes de différents diamètres | |
CA2081788A1 (fr) | Machine de percage d'un trou de coulee d'un four a cuve | |
BE1025099B1 (fr) | Extracteur et procede d'extraction d'un injecteur coince dans la culasse d'un moteur de vehicule automobile | |
EP0405207B1 (fr) | Dispositif d'accouplement d'une tige de perçage du trou de coulée d'un four à cuve à l'outil de travail d'une machine de perçage | |
EP0314544B1 (fr) | Mandrin de serrage, notamment pour des machines à avance automatique | |
FR2685653A1 (fr) | Dispositif de refection du revetement interieur d'un trou de coulee notamment d'un convertisseur d'acierie. | |
EP0179024A1 (fr) | Dispositif de montage d'une pince destinée au serrage d'une pièce dans une machine-outil | |
LU88453A1 (fr) | Dispositif de bouchage du trou de coulée | |
LU83478A1 (fr) | Dispositif d'accouplement d'une tige de percage du trou de coulee d'un four a cuve a l'outil de travail d'une machine de percage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19940324 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19970319 |