EP0569669B1 - Doppelt wirkender elektromagnetischer Linearmotor - Google Patents

Doppelt wirkender elektromagnetischer Linearmotor Download PDF

Info

Publication number
EP0569669B1
EP0569669B1 EP93102606A EP93102606A EP0569669B1 EP 0569669 B1 EP0569669 B1 EP 0569669B1 EP 93102606 A EP93102606 A EP 93102606A EP 93102606 A EP93102606 A EP 93102606A EP 0569669 B1 EP0569669 B1 EP 0569669B1
Authority
EP
European Patent Office
Prior art keywords
armature
tube
linear motor
motor according
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93102606A
Other languages
English (en)
French (fr)
Other versions
EP0569669A1 (de
Inventor
Hermann Sanzenbacher
Roland Schempp
Berthold Dipl.-Ing. Pfuhl (Fh)
Volkmar Dipl.-Ing. Leutner
Friedhelm Dr. Dipl.-Ing. Zehner
Frank Dipl.-Ing. Simon
Dipl.-Ing. Zumbraegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0569669A1 publication Critical patent/EP0569669A1/de
Application granted granted Critical
Publication of EP0569669B1 publication Critical patent/EP0569669B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1615Armatures or stationary parts of magnetic circuit having permanent magnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1684Armature position measurement using coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets

Definitions

  • the invention is based on a double-acting electromagnetic linear motor according to the type specified in the preamble of claim 1.
  • Such an electromagnetic linear motor is already known from the magazine O + P ( ⁇ lhydraulik und Pneumatik) 34 (1990), pages 754 to 761, a linear motor designed in a wet design being used for a directly actuated servo valve.
  • Such linear motors have a high energy density and high dynamics in a relatively small installation space, the armature being able to generate strokes and forces on both sides from a neutral central position.
  • two axially magnetized permanent magnets are arranged in the linear motor within an electrical coil, which are polarized so that their magnetic flow directions in the working air gaps are opposite.
  • DE-A-3 323 982 discloses an electromagnetic actuating device for a 2-way seat valve, in which two electrical coils are arranged radially outside an armature and separate a tubular body from the armature.
  • Two axially magnetized and oppositely polarized permanent magnets are installed in the coil arrangement, each permanent magnet being covered on the inside by a magnetically conductive socket section, which are kept apart by a non-magnetic, sleeve-shaped central part and form the tubular body. With its bushing sections, this body borders on associated pole shoes, which form axial air gaps with the armature.
  • the armature By alternately energizing one of the two coils, the armature can optionally be brought into two end positions and held there by a permanent magnet when the coils are switched off, so that a bistable function results. A deflection from a central position in opposite directions to that of a linear motor is not possible here.
  • the double-acting electromagnetic linear motor according to the invention with the characterizing features of the main claim has the advantage that it enables a simpler and less expensive design while maintaining a high power density and high dynamics.
  • This configuration of the sleeve-shaped pressure tube means that the linear motor can not only have a small size, but it can also be achieved with simple magnetic pole shapes in connection with different armature-pole nose covers a favorable course of the force-displacement characteristics.
  • the advantage here is that the magnetic flux is guided essentially over radial air gaps.
  • a high dynamic of the linear motor is also favored by the most uniform possible cross-sections for the magnetic flux, so that parasitic eddy currents are suppressed by a magnetic circuit with reduced cross-section and by axial slots in individual magnetic components.
  • a displacement measuring system can also be arranged in a space-saving manner, components which already exist can advantageously be used.
  • the highly dynamic linear motor can be manufactured relatively simply, inexpensively and compactly.
  • FIG. 1 shows a longitudinal section through a double-acting, electromagnetic linear motor
  • FIG. 2 shows the course of the magnetic flux lines in the linear motor according to FIG. 1 with the coil de-energized and in a simplified representation
  • FIG. 3 shows the course of the flux lines with the coil energized.
  • FIG. 1 shows a longitudinal section through a double-acting electromagnetic linear motor 10, which consists essentially of a polarized proportional magnet 11 and a displacement measuring system 12, which are arranged in a common housing 13 made of magnetically conductive material.
  • the housing 13 has a valve-side, first end face 14, on which a proportional valve, not shown, can be attached in a manner known per se.
  • a continuous hollow bore 15 extends in the housing 13 in the longitudinal direction from the valve-side end face 14 to an opposite, valve-facing, second end face 16.
  • This hollow bore 15 is offset several times and forms a first section 17 with a larger diameter, which is open towards the valve-side end face 14 and which, among other things, a coil 18 of the proportional magnet 11 receives.
  • the first section 17 is followed by a second section 19 with a smaller diameter in the hollow bore, in which a pressure pipe 21 of the linear motor 10 is guided and supported.
  • the second section 19 of the hollow bore 15 merges into a third section 22 with a larger diameter, which is open to the second end face 16.
  • the pressure tube 21 inserted into the offset hollow bore 15 consists of several individual parts which are put together, soldered to one another and then machined so that the pressure tube 21 results in a one-piece component after it has been machined.
  • the one-piece pressure tube 21 essentially consists of a multi-section anchor tube 23 and a one-section pick-up tube 24 with a smaller diameter that is firmly connected to it.
  • two sleeve-shaped intermediate pieces 27, 28 are arranged between an outside pressure tube piece 25 and an inner pressure tube part 26, between which there is a hollow cylindrical middle piece 29.
  • the pressure pipe piece 25 can therefore work in its hollow cylindrical region as a pole shoe 31, while the pressure tube part 26 forms a corresponding pole shoe 32 which cooperate with an armature 33 arranged in the armature tube 23.
  • the pressure pipe section 25 has an outwardly projecting ring flange 34 with which the pressure pipe 21 is guided in the first section 17 of the hollow bore 15, while on the other hand the pressure pipe part 26 is guided on its outer circumference in the region of the second section 19 of the hollow bore 15.
  • two annular permanent magnets 35, 36 are installed in the annular space between the coil 18 and the armature tube 23, which are axially magnetized and consist of rare earths in order to achieve a large lifting energy.
  • the permanent magnets 35, 36 are designed and arranged such that the north poles of the same name lie opposite one another and receive an annular pole piece 37 made of magnetic material between them.
  • the axial length of the two permanent magnets 35, 36 and the interposed pole piece 37 is selected so that it corresponds to the length of the electrical coil 18.
  • the axial length of the pole piece 37 is as large as that of the middle piece 29 in the pressure tube 21.
  • the axial length of the two intermediate pieces 27, 28 and the middle piece 29 is advantageously chosen to be approximately the length of the armature 33 corresponds.
  • the armature 33 is mounted twice with the aid of its lifting rod 38.
  • the part of the lifting rod 38 projecting outward through the pressure tube piece 25 forms a first bearing point 39 in a magnetic core 41 which is inserted into the pressure tube piece 25 from the first end face 14.
  • An opposite end 42 of the lifting rod 38 is guided in a second bearing 43 which is formed in the pressure tube part 26.
  • a fastening point 44 is formed in the pressure tube part 26, in which the cup-shaped pickup tube 24 is tightly fastened in the anchor tube 23 with its open end, on which a thickened outer collar is arranged.
  • the pickup tube 24, which consists of magnetically non-conductive material, is generally brazed in the fastening point 44.
  • the attachment point 44 lies in the same radial plane as the second section 19 of the hollow bore 15 and thus in the region of the pressure tube part 26 serving as a pole shoe 32. Since the housing wall 45 assigned to the second section 19 of the hollow bore 15 is relatively thin, the measuring system 12 arranged in the third section 22 is relatively close be built on the permanent magnet 36 or the coil 18, so that there is a particularly short construction in the axial direction.
  • the displacement measuring system 12 has a coil body 47 which carries the measuring coils 46 and which is arranged on the pickup tube 24 so as to be axially displaceable.
  • the coil body 47 is surrounded on all sides by an iron-metallic sheathing 48, from which the connecting cables 49 are only led upwards.
  • Disc springs 51 are arranged between the casing 48 and the pressure tube part 26, so that the coil body 41 together with its casing 48 can be axially adjusted with the aid of a self-locking nut 52.
  • an anti-rotation device 53 is arranged on the outside of the casing 48.
  • the third section 22 of the hollow bore 15 is closed to the outside by an end cap 54.
  • a ferrite core 55 is arranged in the interior of the pick-up tube 24 as part of the displacement measuring system 12, which is non-positively fixed with the aid of a compression spring 56 on a core carrier 57, which in turn is fastened in the end 42 of the lifting rod 38, its axial fixing using a caulking 58 is easy to carry out.
  • the linear motor 10 which is designed as a polarized proportional magnet, draws its lifting energy from the two axially magnetized permanent magnets 35, 36 installed with opposite poles and from a coil 18 which determines the direction of action of the force depending on the direction of the current.
  • FIG. 2 shows a simplified representation of the course of the magnetic flux lines in the linear motor 10 according to FIG. 1 when its coil 18 is not energized.
  • the lines of magnetic flux are formed symmetrically over the two permanent magnets 35, 36 in the deenergized state in such a way that they emerge in the north, using the pole piece 37 and the magnetically conductive middle piece 29 radially are introduced into the armature 33 and there run parallel to the non-magnetic, soldered intermediate pieces 27 and 28, respectively.
  • FIG. 3 shows in more detail, when the coil 18 is energized, its field overlaps the permanent magnetic field and thus leads to a field weakening or field extinction in the air gap 61 within the one permanent magnet 36, while a field strengthening in the air gap within the opposite, first permanent magnet 35 59 arises with a corresponding force effect on the armature 33.
  • the magnetic fields in the working air gaps 59, 61 can be strengthened or weakened in this way and magnetic forces can thus be achieved axially in two effective directions.
  • the linear motor 10 can achieve high dynamics in this way with a relatively small size and low current and power consumption as well as a high maximum force level.
  • the short design is also supported by the flat disc springs 51.
  • Another advantage of the compact design is the non-positive fixation of the ferrite core 55, so that the position measuring system 12 can be installed and adjusted correctly.
  • the pressure tube 21 can thus be used to achieve a short design in the axial direction even with a wet design.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einem doppelt wirkenden elektromagnetischen Linearmotor nach der im Oberbegriff des Anspruchs 1 näher angegebenen Gattung.
  • Es ist schon ein solcher elektromagnetischer Linearmotor aus der Zeitschrift O + P (Ölhydraulik und Pneumatik) 34 (1990), Seiten 754 bis 761 bekannt, wobei ein in nasser Bauweise ausgeführter Linearmotor für ein direkt betätigtes Servoventil verwendet wird. Solche Linearmotoren weisen bei einem relativ kleinen Bauraum eine hohe Energiedichte und eine hohe Dynamik auf, wobei der Anker aus einer neutralen Mittelstellung heraus nach beiden Seiten hin Hübe und Kräfte erzeugen kann. Zu diesem Zweck sind bei dem linearen Motor innerhalb einer elektrischen Spule zwei axial magnetisierte Permanentmagneten angeordnet, welche so gepolt sind, daß ihre magnetischen Flußrichtungen in den Arbeitsluftspalten entgegengesetzt sind. Bei diesem Linearmotor in nasser Bauweise ist nun von Nachteil, daß der die Spule von einem druckmittelgefüllten Ankerraum trennende, rohrförmige Körper einen relativ großen Durchmesser aufweist, da die Permanentmagneten innerhalb dieses rohrförmigen Körpers angeordnet sind. Infolge dieser Bauweise des Rohrkörpers eignet sich der Linearmotor nur für niedrige Drücke. Ferner verwendet dieser Linearmotor relativ aufwendig bauende Formteile zur Bildung von Polschuhen, die mit den Stirnseiten des kolbenförmigen Ankers im wesentlichen über axial verlaufende Arbeitsluftspalte zusammenarbeiten. Solche axialen Luftspalte haben aber den Nachteil, daß sie eine Abstimmung der Kennlinien des Linearmotors erschweren. Ferner ist der relativ aufwendig bauende Linearmotor nicht zum unmittelbaren Anbau eines Wegmeßsystems geeignet, das hier unmittelbar am Servoventil angeflanscht werden muß. Dieser Linearmotor führt deshalb zu einer relativ aufwendigen, großen und kostspieligen Bauweise.
  • Ferner ist aus der DE-A-3 323 982 eine elektromagnetische Betätigungseinrichtung für ein 2-Wege-Sitzventil bekannt, bei der radial außerhalb eines Ankers zwei konzentrisch übereinander liegende, elektrische Spulen angeordnet sind, die ein rohrförmiger Körper von dem Anker trennt. Zwei axial magnetisierte und entgegengesetzt gepolte Permanentmagnete sind in der Spulenanordnung eingebaut, wobei jeder Permanentmagnet an seiner Innenseite durch einen magnetisch leitenden Buchsenabschnitt abgedeckt ist, die durch einen nicht magnetischen, hülsenförmigen Mittelteil im Abstand voneinander gehalten werden und den rohrförmigen Körper bilden. Dieser Körper grenzt mit seinen Buchsenabschnitten an zugeordnete Polschuhe, die mit dem Anker axiale Luftspalte bilden. Durch abwechselnde Erregung einer der beiden Spulen kann der Anker wahlweise in zwei Endstellungen gebracht werden und dort bei abgeschalteten Spulen jeweils von einem Permanentmagnet gehalten werden, so daß sich eine bistabile Funktion ergibt. Eine Auslenkung aus einer Mittelstellung nach entgegengesetzten Richtungen wie bei einem Linearmotor ist hier nicht möglich.
  • Vorteile der Erfindung
  • Der erfindungsgemäße doppelt wirkende elektromagnetische Linearmotor mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß er unter Beibehaltung einer hohen Leistungsdichte und einer hohen Dynamik eine einfachere und kostengünstigere Bauweise ermöglicht. So kann durch diese Ausbildung des hülsenförmigen Druckrohres der Linearmotor nicht nur eine kleine Baugröße aufweisen, sondern es läßt sich auch mit einfachen Magnetpolformen in Verbindung mit unterschiedlichen Anker-Polnasenüberdeckungen ein günstiger Verlauf der Kraft-Weg-Kennlinien erzielen. Dabei ist von Vorteil, daß der Magnetfluß im wesentlichen über radiale Luftspalte geführt wird. Eine hohe Dynamik des Linearmotors wird auch durch möglichst gleichmäßige Querschnitte für den Magnetfluß begünstigt, so daß parasitäre Wirbelströme durch einen querschnittsreduzierten Magnetkreis und durch axiale Schlitze in einzelnen Magnetbauteilen unterdrückt werden. Durch die Ausbildung des Druckrohrs lässt sich in platzsparender Weise auch ein Wegmeßsystem anordnen, wobei in vorteilhafter Weise bereits vorhandene Bauelemente verwendbar sind.
  • Der hochdynamische Linearmotor kann relativ einfach, kostengünstig und kompakt hergestellt werden.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Linearmotors möglich. Sie unterstützen vor allem eine einfache und kompakte Bauweise und begünstigen eine bessere Abstimmung der Kennlinien.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 einen Längsschnitt durch einen doppelt wirkenden, elektromagnetischen Linearmotor, Figur 2 den Verlauf der magnetischen Flußlinien im Linearmotor nach Figur 1 bei unbestromter Spule und in vereinfachter Darstellung und in Figur 3 den Verlauf der Flußlinien bei bestromter Spule.
  • Beschreibung des Ausführungsbeispiels
  • Die Figur 1 zeigt einen Längsschnitt durch einen doppelt wirkenden elektromagnetischen Linearmotor 10, der im wesentlichen aus einem polarisierten Proportionalmagneten 11 und einem Wegmeßsystem 12 besteht, die in einem gemeinsamen Gehäuse 13 aus magnetisch leitendem Material angeordnet sind. Das Gehäuse 13 weist eine ventilseitige, erste Stirnfläche 14 auf, an der in an sich bekannter Weise ein nicht näher gezeichnetes Proportionalventil angebaut werden kann.
  • Im Gehäuse 13 verläuft in Längsrichtung von der ventilseitigen Stirnfläche 14 aus eine durchgehende Hohlbohrung 15 zu einer entgegengesetzt liegenden, ventilabgewandten, zweiten Stirnfläche 16.
  • Diese Hohlbohrung 15 ist mehrfach abgesetzt und bildet einen zur ventilseitigen Stirnfläche 14 hin offenen, ersten Abschnitt 17 mit größerem Durchmesser, welcher u.a. eine Spule 18 des Proportionalmagneten 11 aufnimmt. An den ersten Abschnitt 17 schließt sich in der Hohlbohrung ein zweiter Abschnitt 19 mit kleinerem Durchmesser an, in dem ein Druckrohr 21 des Linearmotors 10 geführt und gelagert ist. Der zweite Abschnitt 19 der Hohlbohrung 15 geht in einen dritten Abschnitt 22 mit größerem Durchmesser über, der zur zweiten Stirnfläche 16 hin offen ist.
  • Das in die abgesetzte Hohlbohrung 15 eingeführte Druckrohr 21 besteht aus mehreren Einzelteilen, die so zusammengesteckt, miteinander verlötet und anschließend bearbeitet sind, daß das Druckrohr 21 nach seiner Bearbeitung ein einstückiges Bauelement ergibt. Das einstückige Druckrohr 21 besteht im wesentlichen aus einem mehrgliedrigen Ankerrohr 23 und einem damit fest verbundenen, eingliedrigen Aufnehmerrohr 24 mit kleinerem Durchmesser. Bei dem Ankerrohr 23 mit gegenüber dem Aufnehmerrohr 24 größeren Durchmesser sind zwischen einem außen liegenden Druckrohrstück 25 und einem innenliegenden Druckrohrteil 26 zwei hülsenförmige Zwischenstücke 27, 28 angeordnet, zwischen denen ein hohlzylindrisches Mittelstück 29 liegt. Während die beiden Zwischenstücke 27, 28 aus magnetisch nicht leitendem Material bestehen, sind das Druckrohrstück 25, das Druckrohrteil 26 sowie das Mittelstück 29 aus magnetisch leitendem Material hergestellt. Das Druckrohrstück 25 kann daher in seinem hohlzylindrischen Bereich als Polschuh 31 arbeiten, während das Druckrohrteil 26 einen entsprechenden Polschuh 32 bildet, die mit einem im Ankerrohr 23 angeordneten Anker 33 zusammenarbeiten. Das Druckrohrstück 25 weist dabei einen nach außen kragenden Ringflansch 34 auf, mit dem das Druckrohr 21 im ersten Abschnitt 17 der Hohlbohrung 15 geführt ist, während andererseits das Druckrohrteil 26 an seinem Außenumfang im Bereich des zweiten Abschnitts 19 der Hohlbohrung 15 geführt ist.
  • Am Außenumfang des Druckrohres 21 sind in dem ringförmigen Raum zwischen Spule 18 und Ankerrohr 23 zwei ringförmige Permanentmagneten 35, 36 eingebaut, die axial magnetisiert sind und zur Erzielung einer großen Hubenergie aus seltenen Erden bestehen. Die Permanentmagnete 35, 36 sind so ausgebildet und angeordnet, daß die gleichnamigen Nord-Pole einander gegenüberliegen und zwischen sich ein ringförmiges Polstück 37 aus magnetischem Material aufnehmen. Die axiale Länge der beiden Permanentmagnete 35, 36 und des dazwischenliegenden Polstücks 37 ist so gewählt, daß es der Länge der elektrischen Spule 18 entspricht. Zudem ist die axiale Länge des Polstücks 37 so groß wie diejenige des Mittelstücks 29 im Druckrohr 21. Ferner wird in vorteilhafter Weise die axiale Länge der beiden Zwischenstücke 27, 28 und des Mittelstücks 29 so groß gewählt, daß sie in etwa der Länge des Ankers 33 entspricht.
  • Der Anker 33 ist mit Hilfe seiner Hubstange 38 zweifach gelagert. Der durch das Druckrohrstück 25 nach außen ragende Teil der Hubstange 38 bildet eine erste Lagerstelle 39 in einem Magnetkern 41, der in das Druckrohrstück 25 von der ersten Stirnfläche 14 her eingesetzt ist. Ein entgegengesetzt liegendes Ende 42 der Hubstange 38 ist in einer zweiten Lagerstelle 43 geführt, die im Druckrohrteil 26 ausgebildet ist. Unmittelbar angrenzend an die zweite Lagerstelle 43 ist im Druckrohrteil 26 eine Befestigungsstelle 44 ausgebildet, in der das becherförmige Aufnehmerrohr 24 mit seinem offenen Ende, an dem ein verdickter Außenbund angeordnet ist, in dem Ankerrohr 23 dicht befestigt ist. Das Aufnehmerrohr 24, das aus magnetisch nicht leitendem Material besteht, wird in der Befestigungsstelle 44 in der Regel hart verlötet. Die Befestigungsstelle 44 liegt auf diese Weise in der gleichen radialen Ebene wie der zweite Abschnitt 19 der Hohlbohrung 15 und somit im Bereich des als Polschuh 32 dienenden Druckrohrteils 26. Da die dem zweiten Abschnitt 19 der Hohlbohrung 15 zugeordnete Gehäusewand 45 relativ dünn ausgebildet ist, kann das im dritten Abschnitt 22 angeordnete Wegmeßsystem 12 relativ nahe an den Permanentmagneten 36 bzw. die Spule 18 herangebaut werden, so daß sich eine in axialer Richtung besonders kurze Bauweise ergibt.
  • Das Wegmeßsystem 12 weist einen die Meßspulen 46 tragenden Spulenkörper 47 auf, der axial verschiebbar auf dem Aufnehmerrohr 24 angeordnet ist. Der Spulenkörper 47 ist allseitig von einer eisenmetallischen Ummantelung 48 umgeben, aus der lediglich nach oben die Anschlußkabel 49 herausgeführt sind. Zwischen der Ummantelung 48 und dem Druckrohrteil 26 sind Tellerfedern 51 angeordnet, so daß der Spulenkörper 41 zusammen mit seiner Ummantelung 48 mit Hilfe einer selbstsichernden Mutter 52 axial justierbar ist. Zum Schutz gegen Verdrehen ist außen an der Ummantelung 48 eine Verdrehsicherung 53 angeordnet. Der dritte Abschnitt 22 der Hohlbohrung 15 ist nach außen hin durch eine Abschlußkappe 54 verschlossen.
  • Im Inneren des Aufnehmerrohrs 24 ist als Teil des Wegmeßsystems 12 ein Ferritkern 55 angeordnet, der mit Hilfe einer Druckfeder 56 kraftschlüssig auf einem Kerntäger 57 fixiert ist, der seinerseits im Ende 42 der Hubstange 38 befestigt ist, wobei dessen axiale Festlegung mit Hilfe einer Verstemmung 58 leicht durchführbar ist.
  • Die Wirkungsweise des Linearmotors 10 wird wie folgt erläutert, wobei zusätzlich auf die Figuren 2 und 3 Bezug genommen wird.
  • Der als polarisierter Proportionalmagnet ausgebildete Linearmotor 10 bezieht seine Hubenergie aus den zwei gegenpolig eingebauten, axial magnetisierten Permanentmagneten 35, 36 und aus einer in Abhängigkeit der Stromrichtung die Kraftwirkrichtung vorgebende Spule 18.
  • Die Figur 2 zeigt nun in vereinfachter Darstellung den Verlauf der magnetischen Flußlinien im Linearmotor 10 nach Figur 1, wenn dessen Spule 18 nicht bestromt ist. Bei der in Figur 1 und Figur 2 dargestellten Mittelstellung des Ankers 33 bilden sich im unbestromten Zustand die magnetischen Flußlinien über beide Permanentmagnete 35, 36 symmetrisch derart aus, daß sie im Norden austreten, unter gemeinsamer Nutzung des Polstücks 37 und des magnetisch leitenden Mittelstücks 29 radial in den Anker 33 eingeleitet werden und dort parallel zu den jeweils nicht magnetischen, eingelöteten Zwischenstücken 27 bzw. 28 verlaufen. Von dort werden sie im Bereich der beiden Stirnflächen des Ankers 33 über die Luftspalte 59, 61 im wesentlichen in radialer Weise in den Polschuh 31 des Druckrohrstücks 25 bzw. in den Polschuh 32 des Druckrohrteils 26 und weiter in die Gehäusewand 45 überführt, von wo sie in die Südpole der Permanentmagneten 35, 36 eintreten und den Magnetkreis schließen. Dabei fließt nur ein relativ geringer Streufluß von den Nordpolen der Permanentmagneten 35, 36 über die Spule 18 und das Gehäuse 13 zurück zu den Südpolen. Gering ist auch der Nutzfluß vom Anker 33 unmittelbar über dessen Stirnflächen in axialer Richtung zu dem Magnetkern 41 bzw. zum Druckrohrteil 26. In diesem Betriebszustand bei unbestromter Spule 18 ist die resultierende Kraft bei einer Mittelstellung des Ankers 33 gleich Null.
  • Wie die Figur 3 näher zeigt, überlagert sich bei einer Bestromung der Spule 18 deren Feld dem Permanentmagnetfeld und führt somit innerhalb des einen Permanentmagneten 36 zu einer Feldabschwächung bzw. einer Feldauslöschung im Luftspalt 61, während innerhalb des gegenüberliegenden, ersten Permanentmagneten 35 eine Feldverstärkung im Luftspalt 59 mit entsprechender Kraftwirkung auf den Anker 33 entsteht. In Abhängigkeit von der Stromrichtung durch die Spule 18 lassen sich auf diese Weise die Magnetfelder in den Arbeitsluftspalten 59, 61 verstärken oder abschwächen und damit magnetische Kräfte axial in zwei Wirkrichtungen erzielen. Der Linearmotor 10 kann auf diese Weise bei relativ kleiner Baugröße und geringer Strom- und Leistungsaufnahme sowie einem hohen maximalen Kraftniveau eine hohe Dynamik erreichen. Begünstigt wird dies auch dadurch, daß durch möglichst gleichmäßige Querschnitte im Magnetkreis und durch das Einbringen von axialen Schlitzen in einzelnen Bauteilen parasitäre Wirbelströme unterdrückt werden. Dabei lässt sich trotz der einfach aufgebauten Bauelemente der Verlauf der Kraft-Weg-Kennlinien leicht beeinflussen, indem die Polnasenüberdeckung in den Luftspalten 59 und 61 variiert werden kann. Äußerst günstig für die kompakte Bauform des Linearmotors 10 ist dabei die Verlegung der Befestigungsstelle 44 hinein in das vom Magnetfluß durchströmte Druckrohrteil 26, so daß Spule 18 und Wegmeßsystem 12 in axialer Richtung des Linearmotors 10 gesehen relativ nahe beieinander liegen können. Begünstigt wird diese kurze Bauform des Linearmotors 10 auch durch die Ummantelung 48, welche die Meßspulen 46 von dem störenden Magnetfluß des Proportionalmagneten 11 schützt. Ferner wird die kurze Bauweise auch durch die flachen Tellerfedern 51 unterstützt. Vorteilhaft für die kompakte Bauform ist ferner auch die kraftschlüssige Fixierung des Ferritkerns 55, so daß eine einwandfreie Montage und Justierung des Wegmeßsystems 12 möglich ist. Bei dem Linearmotor 10 lässt sich somit mit Hilfe des Druckrohrs 21 auch bei nasser Bauweise eine in axialer Richtung kurze Bauform erzielen.
  • Selbstverständlich sind an der gezeigten Ausführungsform Änderungen möglich, ohne vom Gedanken der Erfindung abzuweichen. So kann anstelle des gezeigten Wegmeßsystems in Drosselbauweise ein Spulenkörper mit drei Meßspulen für eine Transformatorbauweise verwendet werden. Auch bleiben die Vorteile des Linearmotors erhalten, wenn die Befestigungsstelle 44 des Aufnehmerrohrs 24 im Druckrohrteil 26 noch weiter nach links, in Richtung zu den Polschuhen 32 hin, verlagert wird. Auch wäre es möglich, anstelle des gezeigten Aufnehmerrohrs 24 an dessem offenen Ende einen radialen Flansch vorzusehen und es damit an der radialen Stirnseite des Druckrohrteils 26 zu befestigen so daß hierbei wenig axialer Bauraum verloren geht. Fernerhin wäre es möglich, die Verstemmung 58 für eine weitere Baulängenreduzierung auf die andere Seite der zweiten Lagerstelle 43 zu verlegen, wobei sie auch innerhalb des Ankers 33 angeordnet werden kann.

Claims (11)

  1. Doppeltwirkender elektromagnetischer Linearmotor (10), insbesondere für Ventilschieber, mit einem aus einer Mittelstellung nach beiden Seiten hin auslenkbarem Anker (33) und einer radial außerhalb des Ankers liegenden in entgegengesetzten Richtungen bestrombaren elektrischen Spule (18), die durch einen zwischen ihnen angeordneten rohrförmigen Körper (21) voneinander getrennt sind, der die Spule (18) von einem druckmittelgefüllten Ankerraum trennt, sowie mit zwei axial magnetisierten Permanentmagneten (35, 36), die entgegengesetzt gepolt innerhalb der Spule (18) eingebaut sind und zwischen ihren einander zugewandten, gleichnamigen Polen wenigstens ein magnetflußleitendes Polstück (37) aufweisen, während ihren außenliegenden, gleichnamigen Polen Polschuhe (31, 32) zugeordnet sind, die mit dem Anker (33) Arbeitsluftspalte (59, 61) bilden, dadurch gekennzeichnet, daß der rohrförmige Körper als ein den Anker (33) aufnehmendes im wesentlichen hülsenförmiges Druckrohr (21) ausgebildet ist, an dessen Außenumfang die Permanentmagenten (35, 36) angeordnet sind und daß das Druckrohr (21) zwischen seinen die beiden Polschuhe (31, 32) bildenden Abschnitten (25, 26) zwei nichtmagnetische Zwischenstücke (27, 28) aufweist, zwischen denen ein magnetflußleitendes Mittelstück (29) angeordnet ist.
  2. Linearmotor nach Anspruch 1, dadurch gekennzeichnet, daß die axiale Länge der beiden Permanentmagneten (35, 36) mit ihrem dazwischenliegenden Polstück (37) im wesentlichen der Länge der Spule (18) entspricht.
  3. Linearmotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Anker (33) mit den Polschuhen (31, 32) des Druckrohrs (21) Arbeitsluftspalte (59, 61) bildet, in denen der Magnetfluß im wesentlichen radial überführt wird.
  4. Linearmotor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die axiale Länge des Mittelstücks (29) im Druckrohr (21) im wesentlichen dem Abstand der beiden Permanentmagnete (35, 36) voneinander enspricht, der insbesondere dem einzigen Polstück (37) gleicht.
  5. Linearmotor nach Anspruch 4, dadurch gekennzeichnet, daß die axiale Länge eines Zwischenstückes (27, 28) im wesentlichen die halbe Länge eines Permanentmagneten (35, 36) beträgt.
  6. Linearmotor nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Druckrohr (21) aus einem die Permanentmagnete (35, 36) und die Spule (18) tragenden Ankerrohr (23) und einem dem Wegmeßsystem (12) zugeordneten Aufnehmerrohr (24) besteht, das mit seinem offenen Ende in einer Befestigungsstelle (44) dicht und fest mit dem Ankerrohr (23) verbunden ist, wobei das Ankerrohr (23) im Gehäuse (13) gelagert und in seinem Inneren der Anker (33) gleitend geführt ist.
  7. Linearmotor nach Anspruch 6, dadurch gekennzeichnet, daß an dem als Polschuh (32) dienenden Druckrohrteil (26) des Ankerrohrs (23) die Befestigungsstelle (44) des Aufnehmerrohrs (24) angeordnet ist.
  8. Linearmotor nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Befestigungsstelle (44) des Aufnehmerrohrs (24) im wesentlichen in der gleichen radialen Ebene liegt, wie der das Ankerrohr (23) lagernde, zweite Abschnitt (19) der Hohlbohrung (15) mit kleinem Durchmesser, an den sich nach beiden Seiten hin Abschnitte (17, 22) mit größerem Durchmesser anschließen.
  9. Linearmotor nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die außen auf dem Aufnehmerrohr (24) angeordneten Meßspulen (46) des Wegmeßsystems (12) von einer abschirmenden Ummantelung (48) umgeben sind.
  10. Linearmotor nach Anspruch 8, dadurch gekennzeichnet, daß die Meßspulen (46) mit Ummantelung (48) axial justierbar auf dem Aufnehmerrohr (24) angeordnet sind und insbesondere sich über Tellerfedern (51) am Druckrohr (21) abstützen.
  11. Linearmotor nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, daß mit dem Anker (33) ein in das Aufnehmerrohr (24) hineinragender Kernträger (57) befestigt ist, auf dem ein Ferritkern (55) des Wegmeßsystems (12) gleitend geführt und von einer Feder (56) in einer Endstellung gehalten ist.
EP93102606A 1992-03-16 1993-02-19 Doppelt wirkender elektromagnetischer Linearmotor Expired - Lifetime EP0569669B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4208366 1992-03-16
DE4208366A DE4208366A1 (de) 1992-03-16 1992-03-16 Doppeltwirkender elektromagnetischer linearmotor

Publications (2)

Publication Number Publication Date
EP0569669A1 EP0569669A1 (de) 1993-11-18
EP0569669B1 true EP0569669B1 (de) 1996-05-08

Family

ID=6454178

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93102606A Expired - Lifetime EP0569669B1 (de) 1992-03-16 1993-02-19 Doppelt wirkender elektromagnetischer Linearmotor

Country Status (2)

Country Link
EP (1) EP0569669B1 (de)
DE (2) DE4208366A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167895A (zh) * 2014-08-20 2014-11-26 浙江万向精工有限公司 双向线性力马达

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006014020A1 (de) * 2006-01-17 2007-07-19 Robert Bosch Gmbh Polrohr
DE102011108464A1 (de) * 2011-07-23 2013-01-24 Volkswagen Aktiengesellschaft Bistabiler Hubmagnet für Lenkungsverriegelungen
DE102012213052B4 (de) * 2012-07-25 2016-05-19 Kuhnke Automation Gmbh & Co. Kg Betätigungsmagnet zum Bewegen einer Verschlussnadel einer Heißkanaldüse eines Spritzgusswerkzeugs
EP3776606A4 (de) * 2018-05-07 2022-01-12 G.W. Lisk Company, Inc. Einzelspulenvorrichtung und verfahren

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2013051A1 (de) * 1970-03-19 1971-10-07 Magnetschultz Spezialfabrik F Elektromagnet für Regelzwecke
JPS5889059A (ja) * 1981-11-16 1983-05-27 ム−グ・インコ−ポレ−テツド 電気機械式アクチユエ−タ
DE3207912A1 (de) * 1982-03-05 1983-09-15 Bosch Gmbh Robert Magnetischer linearantrieb
DE3323982A1 (de) * 1983-07-02 1985-01-10 Messerschmitt Boelkow Blohm Bistabile, elektromagnetische betaetigungsvorrichtung
EP0284634A1 (de) * 1987-03-31 1988-10-05 MOOG GmbH Elektromechanisches Stellglied

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167895A (zh) * 2014-08-20 2014-11-26 浙江万向精工有限公司 双向线性力马达

Also Published As

Publication number Publication date
EP0569669A1 (de) 1993-11-18
DE59302490D1 (de) 1996-06-13
DE4208366A1 (de) 1993-09-23

Similar Documents

Publication Publication Date Title
DE3215057C2 (de) Selbsthaltendes solenoid
DE69333172T2 (de) Magnetorheolodische Flüssigkeitsvorrichtungen
EP0060969B1 (de) Magnetantriebssystem zur Erzeugung linearer Bewegungen
EP0564794B1 (de) Elektromechanischer Doppelhubmagnet
EP0450288B1 (de) Elektrischer Linearmotor
DE102008038926A1 (de) Elektromagnetischer Linearmotor
DE102013108164B4 (de) Ventil mit einem Linearantrieb für den Ventilkolben
EP0075219B1 (de) Magnetventil
EP0569669B1 (de) Doppelt wirkender elektromagnetischer Linearmotor
DE69626316T2 (de) Elektromagnet
DE4445069A1 (de) Polarisiertes Relais
DE19836516A1 (de) Elektromagnetischer Linearmotor
DE19900788B4 (de) Antriebsvorrichtung
DE102019204839A1 (de) Elektromagnetische Antriebseinrichtung und damit ausgestattetes Proportional-Magnetventil
EP0422458B1 (de) Wegmesssystem
EP1386332A1 (de) Elektromagnetische stelleinrichtung
DE102012106330B4 (de) Spulenkern für elektromagnetischen Antrieb und selbiger sowie Verfahren zu dessen Herstellung
DE102010032688B4 (de) Elektromagnet mit Permanentmagnet
DE3934287A1 (de) Magnetventil
WO2019110338A1 (de) Elektromagnetische aktuatorvorrichtung, aktuatorsystem und verwendung einer aktuatorvorrichtung bzw. eines aktuatorsystems
DE69517308T2 (de) Magnetischer betätiger mit mehrfach luftspalten
DE3131762C2 (de) Elektromagnetisches Hubankerrelais
DE3919617A1 (de) Steuermotor, insbesondere fuer ein servoventil
DE19901679B4 (de) Elektromagnet
DE3110251A1 (de) "elektromagnet"

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19940507

17Q First examination report despatched

Effective date: 19941004

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59302490

Country of ref document: DE

Date of ref document: 19960613

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960730

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010420

Year of fee payment: 9

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020221

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030219

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050219