EP0565160B1 - Verfahren zur Herstellung von Sintereisen-Formteilen mit porenfreier Zone - Google Patents

Verfahren zur Herstellung von Sintereisen-Formteilen mit porenfreier Zone Download PDF

Info

Publication number
EP0565160B1
EP0565160B1 EP93200835A EP93200835A EP0565160B1 EP 0565160 B1 EP0565160 B1 EP 0565160B1 EP 93200835 A EP93200835 A EP 93200835A EP 93200835 A EP93200835 A EP 93200835A EP 0565160 B1 EP0565160 B1 EP 0565160B1
Authority
EP
European Patent Office
Prior art keywords
zones
sintered
moulded part
sintering
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93200835A
Other languages
English (en)
French (fr)
Other versions
EP0565160A1 (de
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PMG Fuessen GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Publication of EP0565160A1 publication Critical patent/EP0565160A1/de
Application granted granted Critical
Publication of EP0565160B1 publication Critical patent/EP0565160B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1109Inhomogenous pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/1208Containers or coating used therefor
    • B22F3/1258Container manufacturing
    • B22F3/1266Container manufacturing by coating or sealing the surface of the preformed article, e.g. by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for producing sintered molded parts made of iron materials which are pore-free in individual zones or edge zones and are porous in the other zones.
  • Sintered molded parts made of iron materials are usually produced by compressing powders in green presses to form green compacts or powder compacts and then sintering them using largely standardized processes. Sintered densities of approx. 90% of the theoretical density are achieved. This density can only be improved to a limited extent by means of known additional processes, unless other significant disadvantages are accepted. Accordingly, the mechanical strength properties lag behind those of molded parts made of melted, 100% sealed materials. The cost advantages of pure chipless production speak in favor of the use of sintering technology for the production of molded parts. In relation to the dimensions achieved in powder pressing, the finished parts have good dimensional stability and tight, reproducible dimensional tolerances. Furthermore, sintered molded parts can be excellently calibrated due to the existing residual porosity after sintering, that is, they can be pressed to a limited extent very precisely to a predetermined target size.
  • Methods are also known for making shaped bodies made of materials that differ in certain areas, at least one area of which is a sintered body, as tight as possible in all areas and thus mechanically strong.
  • DE-A1 22 58 310 entitled “Sintered iron molded part and method and sintered tile for its manufacture” describes a way in which a molded part pressed from ferrous material is brought into connection with an agent from which at least one of the following is connected during the sintering process the sintering temperatures diffuse austenite-forming elements into the surface of the molded part ". This results in a material refinement in the surface area with the aim of improving the surface wear resistance.
  • the finished sintered iron molded part has porosity in all areas, and also in the diffusion area the molded part has at least "closed porosity" with a maximum total of about 95% material density.
  • DE 30 07 008 describes a wear-resistant part for internal combustion engines which comprises a base body made of a melted iron or steel material and an iron-containing sintered body which is intimately connected to the base body by sintering.
  • the essence of the invention is the iron alloy proposed for the sintered body.
  • This method also serves the purpose of producing parts "which are characterized by high toughness inside their body and a particularly high abrasion resistance, at least in a section of their surface".
  • a wear-resistant hard metal powder is pressed and sintered onto a steel base body in order to produce a workpiece with a wear-resistant surface.
  • hard metal can be produced almost 100% tightly due to the binder phase which is molten during sintering.
  • the finished composite body is uniformly tight.
  • the disadvantage here is the strong sintering shrinkage, which precludes the manufacture of molded parts in narrowly tolerated target dimensions without post-machining post-processing - in addition to other disadvantageous factors such as material brittleness and material costs.
  • material composites are created by joining individual material areas using sintering technology.
  • the finished material composites have a consistently high, ideally 100% density.
  • Individual molded part areas have different mechanical properties, but always high wear and strength values in the area of surface zones.
  • the object of the present invention is to achieve the high mechanical strength that can be achieved for 100% dense materials in the case of molded parts made of iron materials in appropriately stressed molded parts and yet to allow a final calibration of the sintered molded part.
  • the task consists in practically completely eliminating the residual porosity of approx. 10% by volume remaining in conventional production by means of sintering, that is to say at least approximately 100 in these zones, using a sequence of suitable, individually known process steps in individual predetermined zones of a sintered molded part % material density and correspondingly high mechanical strength and wear resistance.
  • the approximately 10% by volume residual porosity is to be maintained or increased in other zones of the sintered molded part. This is to ensure that, as with the use of standard methods, the part dimensions achieved with the green compact pressing are consistently preserved and that the finished sintered parts are suitable for a final calibration.
  • the method to be used should also have sufficient economic viability for the production of mass parts.
  • the object described above is achieved in a process for producing a sintered molded part from ferrous materials of the type described at the outset, according to which a molded part is brought to about 10% by volume residual porosity in a further process step by means of conventional pressing and sintering processes zone-wise introduction of filler materials into the remaining pores and / or by means of locally effective mechanical densification of the molded part, in these zones to a residual porosity of 5% by volume or less and thus to a closed pore structure and then by means of the HIP or sinter-HIP process is further compressed in these zones. All other zones of the sintered molded part retain the usual residual porosity of approx. 10% by volume.
  • the term “dense, approximately pore-free sintered molded part in individual zones or edge regions” by definition means that these zones are practically 100% dense, but at least have negligibly small residual porosity of less than 1% by volume.
  • the powder pressing and sintering processes for sintered molded parts made of ferrous materials which are characterized as "customary", are described in a wide range of processes in the relevant standard literature.
  • the individual additional process steps that are essential to the invention likewise include such processes with a wide range of variations that are well established in sintering technology and are known to the person skilled in the art. Preferred design details are set out in the subclaims and in the examples.
  • the frequently used short name HIP process means the hot isostatic post-compression of sintered parts.
  • the processes of sintering and hot isostatic post-compression run simultaneously and side by side. Reference is made in detail to the description in the following exemplary embodiments.
  • filler materials that can be introduced into the basic matrix of the iron material, preference is given to those that become molten below the usual sintering temperature of iron materials.
  • the group of such filler materials includes: copper, manganese, nickel, phosphorus and / or boron. These filler materials can be used infiltrate the capillary forces of the pores as a liquid phase into the pores of the base material during the internal molding process.
  • the filler materials can be introduced into delimitable zones, for example also into superficial marginal zones of predetermined thickness.
  • the filler materials can function as a pure pore filler, but they are e.g. according to a preferred embodiment of the inventive method with appropriate heat treatment at least partially alloyed with the iron base material.
  • the method according to the invention allows the production of sintered molded parts from iron materials, in which the advantages of molded parts produced by conventional pressing and sintering processes, that is, above all, shape stability, calibration capability and economy, with the advantageous properties of a high material density and high mechanical strength in individual, highly stressed zones are combined. Of particular importance is the increase in mechanical and wear resistance, e.g. in the area of the tooth flanks of a gear wheel.
  • a ring-shaped sintered body is produced as a composite body from two different powders.
  • Powder type 1 is a commercially available iron powder, as is commercially available, for example, under the name ASC.
  • Powder grade 2 is an iron-copper alloy FeCu20, as is also commercially available.
  • a ring tool is filled inside, ie in the area near the axis, with iron powder ASC, outside with an iron powder alloy FeCu20.
  • the powder composite initially pressed together with 6 t / cm 2 , undergoes the following conversion during the subsequent sintering:
  • the outer ring area of the sintered body originally containing FeCu20, is emptied of the Cu phase after sintering with the formation of liquid phases and is therefore highly porous, while the inner part of the ring is filled with copper when the copper becomes liquid due to the higher capillary forces occurring in the pores there Has.
  • a closed porosity can be seen in the interior with only a low residual porosity overall.
  • This residual porosity still present in the inner part of the ring is eliminated in a subsequent process step by sintering HIP-pen.
  • the outer part of the ring remains highly porous.
  • the sintered part is calibrated after the sintering HIP process.
  • a ring-shaped sintered part is produced using commercially available iron powders according to the usual pressing and sintering processes and has a normal density of approx. 90% of the theoretical density.
  • the surface zone of the ring which is remote from the axis, is then compacted by rolling to a depth of 0.5 mm - 1 mm, increasing from the inside to the surface and approximately 95% on the surface Density.
  • Subsequent HIP-pens or sinter-HIP-pens bring a narrow surface layer of the surface area to the desired 100% density.
  • a defined amount of a liquid Cu phase is introduced into the sintered molding in the pre-sintered and rolled sintered molding blank.
  • the liquid phase is preferably stored in the edge area that has been compacted by rolling, but not already 100% compacted, because higher capillary forces occur there due to the smaller pore dimensions.
  • the infiltrated liquid phase still has a "closed residual porosity". HIP-pen compresses an enlarged edge zone 100%, while the normal porosity is retained inside the sintered part. The ring will then calibrate to size.
  • a sintered molded part produced by conventional pressing and sintering processes is compressed within defined zones by mechanical repressing to such an extent that during a subsequent sintering HIP process a liquid phase can be infiltrated, which initially accumulates in the redensified area of smaller pores due to the greater capillary forces there and then, via the liquid phase sintering process, leads to densified zones with closed porosity.
  • the subsequent sintering HIP process leads to molded parts with a pore-free zone. Outside the pretreated zones, the original, open porosity remains unchanged in the sintered part.
  • the sintered molded part is formed into a dimensionally stable component, ie with narrow measurement tolerances.
  • a gear wheel with approx. 90% density produced using commercially available, powdered iron base materials according to the usual pressing and sintering processes is coated in the area of the tooth contours with a boron or phosphorus base alloy mixed into a paste. These additional alloys serve as liquid phase formers.
  • the coated filler materials boron or phosphorus become molten and diffuse into the edge zones of the sintered molded part or, due to the capillary forces in the pores, become an edge zone of 0 , 5 to 1 mm thick.
  • the composite obtained in this way has a closed porosity, ie at least 95% density, in the edge zone with deposits. This closed residual porosity is completely eliminated in a second step of the sintering HIP process.
  • the gears obtained in this way have a pore-free, 100% dense and high-strength surface zone in the tooth area, the strength of the surface coming close to that of corresponding melted steel materials or equivalent to this. The remaining zones of the gear maintain their original porosity.
  • the gearwheel with the corresponding structure is calibrated in a final process step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Ceramics (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von in einzelnen Zonen oder Randzonen porenfreien, in den übrigen Zonen porösen Sinterformteilen aus Eisenwerkstoffen.
  • Sinterformteile aus Eisenwerkstoffen werden üblicherweise gefertigt, indem Pulver in Axialpressen zu Grünlingen bzw. Pulverpreßlingen verpreßt und diese anschließend nach weitgehend standardisierten Verfahren gesintert werden. Dabei werden Sinterdichten von ca. 90 % der theoretischen Dichte erreicht. Diese Dichte läßt sich mittels bekannter Zusatzverfahren nur bedingt verbessern, sofern nicht andere wesentliche Nachteile in Kauf genommen werden. Entsprechend bleiben die mechanischen Festigkeitseigenschaften hinter denen von Formteilen aus erschmolzenen, 100 % dichten Werkstoffen zurück.
    Für die Anwendung der Sintertechnik zur Herstellung von Formteilen sprechen die Kostenvorteile einer reinen spanlosen Fertigung. Bezogen auf die beim Pulverpressen erreichten Dimensionen weisen die Fertigteile gute Formstabilität und enge, reproduzierbare Maßtoleranzen auf. Weiters lassen sich Sinterformteile aufgrund der vorhandenen Restporosität nach dem Sintern ausgezeichnet kalibrieren, das heißt, in beschränktem Ausmaß durch Pressen sehr präzise auf ein vorbestimmtes Sollmaß bringen.
  • Es sind nun eine Vielzahl von Verfahren bekannt geworden, um stofflich einheitliche Sinterformteile, die wie üblich mit Restporosität behaftet sind, gleichmäßig auf zumindest annähernd theoretische, d.h. 100 % Werkstoffdichte zu bringen. Pulverschmieden ist eines der vorgeschlagenen Verfahren, das die volle Dichte nicht ganz erreicht. Heißisostatisches Pressen ist ein weiteres geeignetes Verfahren, das durch die notwendige Umhüllung des Pulvers bzw. Sinterkörpers jedoch sehr aufwendig ist und für Massenteile daher ausscheidet. Das Sinter-HIP-Verfahren ist eine Modifizierung des HIP-Verfahrens, mittels dem unter den genannten Einschränkungen ebenfalls Restporositäten in einem Sinterteil beseitigt werden können.
  • Alle diese Verfahren werden angewandt mit dem Ziel, die mechanischen, aber z.B. auch die korrosiven Eigenschaften von Sinterformteilen zu verbessern. Ein Nachteil aller dieser Verfahren ist, daß ein derart veredeltes Sinterformteil zu einem "Rohling" wird, der mechanisch nachgearbeitet werden muß und der sich insofern wesentlich von konventionell gefertigten Sinterteilen unterscheidet. Konventionell gefertigte Sinterformteile, wahlweise in Pressen nachkalibriert, sind in der Regel einbaufertige Bauteile.
  • Es sind weiterhin Verfahren bekannt, um Formkörper aus bereichsweise unterschiedlichen Werkstoffen, von denen zumindest ein Bereich ein Sinterkörper ist, in allen Bereichen möglichst dicht und damit mechanisch fest zu machen.
  • So beschreibt die DE-A1 22 58 310 mit dem Titel "Sintereisen-Formteil sowie Verfahren und Sinterkachel zu seiner Herstellung" einen Weg, nach dem ein aus Eisenwerkstoff gepreßtes Formteil während des Sinterprozesses "mit einem Mittel in Verbindung gebracht wird, aus dem wenigstens bei den Sintertemperaturen austenit-bildende Elemente in die Oberfläche des Formteiles eindiffundieren".
    Damit kommt es im Oberflächenbereich zu einer Werkstoff-Veredelung mit dem Ziel, die Oberflächen-Verschleißfestigkeit zu verbessern. Das fertige Sintereisen-Formteil weist in allen Bereichen Porosität auf, auch im Diffusionsbereich weist das Formteil zumindest "geschlossene Porosität" bei insgesamt maximal etwa 95%iger Werkstoffdichte auf.
  • Nach der Lehre der DE-A1 23 10 536, "Verfahren zur Herstellung von Gegenständen aus Verbundmetall", wird ein schmelzmetallurgisch hergestellter und damit völlig dichter Formteilkern in das Zentrum eines Behälters gegeben und der Zwischenraum zwischen Kern und Behälterwand wird mit Metallpulver ausgefüllt. Der "gekannte", d.h. im Behälter eingeschlossene Verbund wird in einem Autoklaven so hohen allseitigen Preßdrucken und Temperaturen ausgesetzt, daß seine Dichte allseitig "in den Bereich von 100 % der theoretischen Dichte" kommt. Der so erhaltene Verbund wird anschließend beispielsweise geschmiedet oder ausgewalzt. Laut Anspruch werden durch dieses Verfahren Pulverdichten von mehr als 95 % der theoretischen Dichte erreicht. Der Verbundkörper wird in seiner Gesamtheit dicht.
    Damit lassen sich Verbunde erreichen, deren Kern aus relativ zähen und leicht bearbeiteten Metallen besteht, während die Randzonen, z.B. für den genannten Anwendungsfall Fräswerkzeug, Zähne oder andere unregelmäßige Schneidoberflächen, aus äußerst hartem Material bestehen.
  • In der DE 30 07 008 wird ein verschleißfestes Teil für Brennkraftmaschinen beschrieben, der einen Grundkörper aus einem erschmolzenen Eisen- oder Stahlwerkstoff und einen durch Sinterung innig mit dem Grundkörper verbundenen, eisenhaltigen Sinterkörper umfaßt. Das Erfindungswesentliche ist die für den Sinterkörper vorgeschlagene Eisenlegierung.
    Auch dieses Verfahren dient dem Zweck, Teile herzustellen, "die sich durch hohe Zähigkeit in ihrem Körperinneren und eine besonders hohe Abriebbeständigkeit, zumindest in einem Abschnitt ihrer Oberfläche auszeichnen".
  • Nach der DE-A2 20 50 276 wird zur Herstellung eines Werkstückes mit verschleißfester Oberfläche auf einen Stahl-Grundkörper ein verschleißfestes Hartmetall-Pulver aufgepreßt und aufgesintert.
    Im Unterschied zum Sintern von Eisenwerkstoffen läßt sich Hartmetall wegen der beim Sintern schmelzflüssigen Binderphase annähernd 100 % dicht herstellen. Der fertige Verbundkörper ist einheitlich dicht. Nachteilig ist dort die starke Sinterschrumpfung, die die Herstellung von Formteilen in eng tolerierten Sollabmessungen ohne spanbildende Nachbearbeitung ausschließt - neben anderen nachteiligen Faktoren wie Werkstoff-Sprödigkeit und Materialkosten.
  • Allen genannten Vorveröffentlichungen ist gemeinsam, daß Werkstoffverbunde durch Zusammenfügen einzelner Werkstoffbereiche in Anwendung der Sintertechnik geschaffen werden. Die fertigen Werkstoffverbunde weisen möglichst durchgängig hohe, günstigstenfalls 100 % Dichte auf. Einzelne Formteilbereiche weisen unterschiedliche mechanische Eigenschaften, jedoch stets hohe Verschleiß- und Festigkeitswerte im Bereich von Oberflächenzonen auf.
  • In Fortentwicklung des genannten Standes der Technik besteht die Aufgabe vorliegender Erfindung darin, bei mittels Sintertechnik hergestellten Formteilen aus Eisenwerkstoffen in entsprechend beanspruchten Formteilzonen die für 100 % dichte Werkstoffe erreichbare, hohe mechanische Festigkeit zu erzielen und doch ein abschließendes Kalibrieren des Sinterformteils zu erlauben.
  • Im einzelnen besteht die Aufgabe darin, mittels einer Folge von geeigneten, einzeln jeweils vorbekannten Verfahrensschritten in einzelnen vorbestimmten Zonen eines Sinterformteils die bei üblicher Herstellung mittels Sintern verbleibende Restporosität von ca. 10 Vol.% praktisch vollständig zu beseitigen, d.h. in diesen Zonen zumindest annähernd 100%ige Werkstoffdichte und entsprechend hohe mechanische Festigkeit bzw. Verschleißfestigkeit zu erreichen.
    Gleichzeitig ist aber in anderen Zonen des Sinterformteiles die etwa 10 Vol.%ige Restporosität zu erhalten oder noch zu erhöhen.
    Damit soll sichergestellt werden, daß, wie bei Anwendung von Standard-Verfahren, die mit dem Grünlingspressen erreichten Teiledimensionen durchgängig erhalten bleiben und daß sich die fertig gesinterten Teile für ein abschließendes Kalibrieren eignen.
    Das anzuwendende Verfahren soll zudem eine für die Fertigung von Massenteilen ausreichende Wirtschaftlichkeit aufweisen.
  • Die Lösung der oben beschriebenen Aufgabe besteht erfindungsgemäß in einem Verfahren zur Herstellung eines Sinterformteiles aus Eisenwerkstoffen der eingangs beschriebenen Art, gemäß dem ein nach üblichen Preß- und Sinterverfahren auf ca. 10 Vol.% Restporosität gebrachtes Formteil in einem weiteren Verfahrensschritt mittels zonenweisen Einbringens von Zusatzwerkstoffen in die verbliebenen Poren und/oder mittels lokal wirksamen mechanischen Nachverdichtens des Formteils, in diesen Zonen auf eine Restporosität von 5 Vol.% oder weniger und damit zu geschlossener Porenstruktur gebracht und anschließend mittels des HIP- oder Sinter-HIP-Verfahrens in diesen Zonen weiterverdichtet wird. Alle übrigen Zonen des Sinterformteils behalten die übliche, ca. 10 Vol.% betragende Restporosität bei.
  • In vorliegender Erfindung bedeutet der Begriff "in einzelnen Zonen oder Randbereichen dichtes, annähernd porenfreies Sinterformteil" definitionsgemäß, daß diese Zonen praktisch 100 % dicht sind, zumindest aber vernachlässigbar kleine Restporosität von unter 1 Vol.% aufweisen.
  • Die als "üblich" charakterisierten Pulverpreß- und Sinterverfahren für Sinterformteile aus Eisenwerkstoffen sind in der einschlägigen Standardliteratur in großer Verfahrensbreite beschrieben.
    Die einzelnen erfindungswesentlichen zusätzlichen Verfahrensschritte umfassen ebenfalls solche, in der Sintertechnologie gut eingeführte und dem Fachmann bekannte Verfahren großer Variationsbreite. Bevorzugte Ausgestaltungsdetails sind in den Unteransprüchen sowie in den Beispielen ausgeführt.
    Mit der regelmäßig verwendeten Kurzbezeichnung HIP-Verfahren ist das heißisostatische Nachverdichten von Sinterformteilen gemeint. Beim Sinter-HIP-Verfahren laufen die Prozesse des Sinterns und heißisostatischen Nachverdichtens gleichzeitig und nebeneinander ab. Im einzelnen wird auf die Beschreibung in den nachfolgenden Ausführungsbeispielen verwiesen.
  • Die Erfindung ist in den Ansprüchen 1 und 8 definiert. Bevorzugte Ausführungsformen sind den Ansprüchen 2-7 zu entnehmen.
  • Folgende Ausgestaltungen des erfindungsgemäßen Verfahrens haben sich besonders bewährt.
  • Unter den in die Grundmatrix des Eisenwerkstoffes einbringbaren Zusatzwerkstoffen sind diejenigen bevorzugt, die unterhalb der üblichen Sintertemperatur von Eisenwerkstoffen schmelzflüssig werden. Die Gruppe derartiger Zusatzwerkstoffe schließt mit ein: Kupfer, Mangan, Nickel, Phosphor und/oder Bor. Diese Zusatzwerkstoffe lassen sich unter Nutzung der Kapillarkräfte der Poren während des Formteilsinterns als flüssige Phase in die Poren des Grundwerkstoffes infiltrieren.
    Die Zusatzwerkstoffe lassen sich in abgegrenzbare Zonen, z.B. auch in oberflächliche Randzonen vorbestimmter Dicke einbringen.
  • Die Zusatzwerkstoffe können die Funktion eines reinen Porenfüllers haben, sie werden jedoch z.B. nach einer bevorzugten Ausführungsform des erfinderischen Verfahrens bei entsprechender Wärmebehandlung zumindest teilweise mit dem Eisengrundwerkstoff legiert.
  • Es hat sich in der Praxis bewährt, eine flüssige Phase, die sich innerhalb einzelner, aus verschiedenartigen Elementen zusammensetzenden Zonen eines Preßlings während des Sinterns bildet, gezielt in vorbestimmte andere Zonen des Sinterformteils wandern zu lassen.
  • Das oberflächliche Nachverdichten von Sinterwerkstoffen mittels mechanischen Pressens oder Rollierens ist an sich bekannt. Für die Herstellung von Sinterformteilen nach vorliegender Erfindung hat sich als besonders vorteilhaft erwiesen, Randzonen von Sinterformteilen mittels Taumelpressens auf eine Restporosität von 5 Vol.% oder weniger nachzuverdichten.
  • Das erfindungsgemäße Verfahren erlaubt die Herstellung von Sinterformteilen aus Eisenwerkstoffen, bei welchen die Vorteile von nach üblichen Preß- und Sinterverfahren hergestellten Formteilen, das sind vor allem Formstabilität, Kalibrierfähigkeit und Wirtschaftlichkeit, mit den vorteilhaften Eigenschaften einer hohen Werkstoffdichte und hohen mechanischen Festigkeit in einzelnen hochbelasteten Zonen kombiniert sind. Von besonderer Bedeutung ist die Steigerung der mechanischen und der Verschleißfestigkeit, z.B. im Bereich der Zahnflanken eines Zahnrades.
  • Für den Erfolg des erfindungswesentlichen Gesamtverfahrens ist maßgebend, das übliche Porenvolumen des Sinter-Grundwerkstoffes zonenweise zunächst auf Werte von 5 Vol.% oder weniger zu bringen und in diesen Zonen eine "geschlossene" Porosität zu erzeugen. Nur dann lassen sich entsprechende Zonen anschließend durch HIP-pen bzw. Sinter-HIP-en auf 100 % Dichte bringen. Das übrige Sinterformteil mit durchgängiger, d.h. üblicher Porosität von ca. 10 Vol.% bleibt von den Nachverdichtungs-Maßnahmen unbeeinflußt.
  • Das erfindungsgemäße Verfahren wird nachfolgend anhand einzelner Beispiele näher erläutert.
  • Beispiel 1
  • Ein ringförmiger Sinterkörper wird als Verbundkörper aus zwei verschiedenen Pulvern hergestellt.
    Pulversorte 1 ist ein handelsübliches Eisenpulver, wie es z.B. unter der Bezeichnung ASC im Handel erhältlich ist.
    Pulversorte 2 ist eine Eisen-Kupfer-Legierung FeCu20, wie sie ebenfalls im Handel erhältlich ist.
    Ein Ringwerkzeug wird innen, d.h. im achsnahen Bereich, mit Eisenpulver ASC, außen mit einer Eisenpulverlegierung FeCu20 gefüllt. Der Pulververbund, zunächst gemeinsam mit 6 t/cm2 verpreßt, erfährt beim anschließenden Sintern folgende Umwandlung:
    Der äußere, ursprünglich FeCu20 enthaltende Ringbereich des Sinterkörpers, ist nach dem Sintern unter Flüssigphasenbildung von der Cu-Phase entleert und damit hochporös, während der innere Teil des Ringes sich bei Flüssigwerden des Kupfers durch die in den dortigen Poren auftretenden, höheren Kapillarkräften mit Kupfer gefüllt hat. Im Schliffbild des Verbundwerkstoffes erkennt man im Innenbereich eine geschlossene Porosität bei insgesamt nur noch geringer Restporosität.
    Diese im inneren Teil des Ringes noch vorhandene Restporosität wird in einem folgenden Verfahrensschritt durch Sinter-HIP-pen beseitigt. Der äußere Teil des Ringes bleibt hochporös. Das Sinterformteil wird nach dem Sinter-HIP-Prozeß kalibriert.
  • Beispiel 2
  • Ein ringförmiges Sinterformteil wird unter Verwendung von handelsüblichen Eisenpulvern nach üblichen Preß- und Sinterverfahren hergestellt und weist die normale Dichte von ca. 90 % der theoretischen Dichte auf. Anschließend wird die achsferne Oberflächenzone des Ringes durch Rollieren bis in eine Tiefe von 0,5 mm - 1 mm verdichtet, bei vom Inneren zur Oberfläche hin zunehmender, an der Oberfläche etwa 95 % betragender Dichte. Mittels anschließenden HIP-pens oder Sinter-HIP-pens wird eine schmale Randschicht der Oberlfächenzone auf die gewünschte 100 % Dichte gebracht.
  • Für den Fall, daß die mittels Rollierens erreichbare 100 % dichte Zone beschränkter Breite ausgeweitet werden soll, wird in den vorgesinterten und rollierten Sinterformteil-Rohling eine definierte Menge einer flüssigen Cu-Phase mittels Tränkverfahren in das Sinterformteil eingebracht. Dabei lagert die flüssige Phase bevorzugt in den durch Rollieren verdichteten, aber nicht schon auf 100 % verdichteten Randbereich ein, weil dort aufgrund der geringeren Porenabmessungen höhere Kapillarkräfte auftreten. Die infiltrierte flüssige Phase weist noch eine "geschlossene Restporosität" auf. Durch HIP-pen wird eine erweiterte Randzone 100 % verdichtet, während im Inneren des Sinterteils die normale Porosität erhalten bleibt. Der Ring wird anschließend maßgenau kalibrieren.
  • Beispiel 3
  • Ein nach üblichen Preß- und Sinterverfahren hergestelltes Sinterformteil wird innerhalb definierter Zonen durch mechanisches Nachpressen so weit verdichtet, daß während eines anschließenden Sinter-HIP-Vorganges eine flüssige Phase infiltriert werden kann, die sich zunächst wegen der dort größeren Kapillarkräfte im nachverdichteten Bereich kleinerer Poren ansammelt und dann über den Prozeß des Flüssigphasensinterns zu verdichteten Zonen mit geschlossener Porosität führt.
    Der anschließende Sinter-HIP-Prozeß führt zu Formteilen mit porenfreier Zone. Außerhalb der vorbehandelten Zonen bleibt die ursprüngliche, offene Porosität im Sinterformteil unverändert bestehen.
    Das Sinterformteil wird in einem abschließenden Kalibriervorgang zu einem maßhaltigen Bauteil, d.h. mit engen Meaßtoleranzen, ausgeformt.
  • Beispiel 4
  • Ein unter Verwendung handelsüblicher, pulverförmiger Eisenbasiswerkstoffe nach üblichen Preß- und Sinterverfahren hergestelltes Zahnrad mit ca. 90 %iger Dichte wird im Bereich der Zähnekonturen mit einer zu einer Paste angerührten Bor- oder Phosphor-Basislegierung bestrichen. Diese Zusatzlegierungen dienen als Flüssigphasenbildner. Während des anschließenden Aufheizens des Formteiles auf Sintertemperatur in einem Sinter-HIP-Prozeß werden in einem ersten Teilschritt die aufgestrichenen Zusatzwerkstoffe Bor oder Phosphor schmelzflüssig und diffundieren in die Randzonen des Sinterformteils ein bzw. werden aufgrund der in den Poren herrschenden Kapillarkräfte in eine Randzone von 0,5 bis 1 mm Dicke eingezogen. Der so gewonnene Verbund weist in der Randzone mit Einlagerungen eine geschlossene Porosität, d.h. mindestens 95 %ige Dichte auf. Diese geschlossene Restporosität wird in einem zweiten Teilschritt des Sinter-HIP-Prozesses vollständig beseitigt.
    Die so erhaltenen Zahnräder weisen eine porenfreie, 100 % dichte und hochfeste Oberflächenzone im Zahnbereich auf, wobei die Festigkeit der Oberfläche an diejenige von entsprechenden erschmolzenen Stahlwerkstoffen heranreicht bzw. dieser gleichkommt. Die übrigen Zonen des Zahnrades behalten ihre ursprüngliche Porosität bei. Das Zahnrad mit entsprechendem Aufbau wird in einem abschließenden Verfahrensschritt kalibriert.

Claims (8)

  1. Verfahren zur Herstellung eines in einzelnen Zonen oder Randzonen porenfreien, in den übrigen Zonen porösen Sinterformteiles aus Eisenwerkstoffen,
    dadurch gekennzeichnet,
    daß ein nach üblichen Pulverpreß- und Sinterverfahren auf ca. 10 Vol.% Restporosität gebrachtes Formteil in einem weiteren Verfahrensschritt mittels zonenweisen Einbringens von Zusatzwerkstoffen in die verbliebenen Poren und/oder mittels lokal wirksamen mechanischen Nachverdichtens des Formteils, in diesen Zonen auf eine Restporosität von 5 Vol.% oder weniger und damit zu geschlossener Porenstruktur gebracht und anschließend mittels des HIP- oder Sinter-HIP-Verfahrens in diesen Zonen weiterverdichtet wird.
  2. Verfahren zur Herstellung eines Sinterformteiles nach Anspruch 1, dadurch gekennzeichnet, daß Zusatzwerkstoffe eingebracht werden, die unterhalb der üblichen Sintertemperatur von Eisenwerkstoffen schmelzflüssig sind.
  3. Verfahren zur Herstellung eines Sinterformteiles nach Anspruch 2, dadurch gekennzeichnet, daß Cu, Mn, Ni, P und/oder B als Zusatzwerkstoffe eingebracht werden.
  4. Verfahren zur Herstellung eines Sinterformteiles nach Anspruch 1 bis 2, dadurch gekennzeichnet, daß im Anschluß an ein Vorsintern des Eisengrundwerkstoffes während des Sinterprozesses die Zusatzwerkstoffe in flüssiger Phase in die Poren des Grundwerkstoffes infiltriert werden.
  5. Verfahren zur Herstellung eines Sinterformteiles nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß der Zusatzwerkstoff in dosierter Menge auf den zum Sinterrohling verarbeiteten Eisenwerkstoff aufgebracht, während des anschließenden Sintervorganges mit Erreichen der Schmelztemperatur in den Eisenwerkstoff infiltriert und in den Zonen kleinster Porosität eingelagert wird.
  6. Verfahren zur Herstellung eines Sinterformteiles nach Anspruch 1 bis 2, dadurch gekennzeichnet, daß die Eisenwerkstoffe mit den eingebrachten Zusatzwerkstoffen im Sinterformteil legiert werden.
  7. Verfahren zur Herstellung von Sinterformteilen nach Anspruch 1, dadurch gekennzeichnet, daß einzelne Randzonen des Sinterformteiles mittels Taumelpressens auf 5 Vol.% Restporosität oder weniger nachverdichtet wird.
  8. Sinterformteil, hergestellt nach dem Verfahren gemäß Anspruch 1 bis 7, dadurch gekennzeichnet, daß dieses gegenüber dem Pulverpreßling unveränderte Fertigmaße besitzt.
EP93200835A 1992-04-04 1993-03-23 Verfahren zur Herstellung von Sintereisen-Formteilen mit porenfreier Zone Expired - Lifetime EP0565160B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4211319A DE4211319C2 (de) 1992-04-04 1992-04-04 Verfahren zur Herstellung von Sintereisen-Formteilen mit porenfreier Zone
DE4211319 1992-04-04

Publications (2)

Publication Number Publication Date
EP0565160A1 EP0565160A1 (de) 1993-10-13
EP0565160B1 true EP0565160B1 (de) 1996-11-06

Family

ID=6456061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93200835A Expired - Lifetime EP0565160B1 (de) 1992-04-04 1993-03-23 Verfahren zur Herstellung von Sintereisen-Formteilen mit porenfreier Zone

Country Status (6)

Country Link
US (1) US5453242A (de)
EP (1) EP0565160B1 (de)
JP (1) JPH0610009A (de)
AT (1) ATE144930T1 (de)
DE (2) DE4211319C2 (de)
ES (1) ES2094458T3 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4338457C2 (de) * 1993-11-11 1998-09-03 Mtu Muenchen Gmbh Bauteil aus Metall oder Keramik mit dichter Außenschale und porösem Kern und Herstellungsverfahren
US6110419A (en) * 1997-12-02 2000-08-29 Stackpole Limited Point contact densification
US5976459A (en) * 1998-01-06 1999-11-02 Crucible Materials Corporation Method for compacting high alloy tool steel particles
US6099796A (en) * 1998-01-06 2000-08-08 Crucible Materials Corp. Method for compacting high alloy steel particles
US5972132A (en) * 1998-02-11 1999-10-26 Zenith Sintered Products, Inc. Progressive densification of powder metallurgy circular surfaces
DE19850326A1 (de) * 1998-11-02 2000-05-04 Gkn Sinter Metals Holding Gmbh Verfahren zur Herstellung eines gesinterten Bauteils mit Nachverformung des Grünlings
US6168754B1 (en) 1999-02-17 2001-01-02 Federal-Mogul World Wide, Inc. Method and apparatus for densifying powder metal preforms
DE19921934B4 (de) * 1999-05-12 2008-12-18 Daimler Ag Verfahren zur Herstellung eines pulvermetallurgischen Sinterformteils mit hoher Grunddichte und hoher Oberflächendichte
US6338747B1 (en) 2000-08-09 2002-01-15 Keystone Investment Corporation Method for producing powder metal materials
US6485540B1 (en) 2000-08-09 2002-11-26 Keystone Investment Corporation Method for producing powder metal materials
WO2002075171A1 (en) * 2001-03-16 2002-09-26 Sundram Fasteners Limited Conrod and a method of producing the same
US7160351B2 (en) * 2002-10-01 2007-01-09 Pmg Ohio Corp. Powder metal clutch races for one-way clutches and method of manufacture
JP2005344126A (ja) * 2002-10-04 2005-12-15 Hitachi Powdered Metals Co Ltd 焼結歯車
DE10250432B4 (de) * 2002-10-30 2015-01-22 PMG Füssen GmbH Verfahren zum mechanischen Ausformen von Hinterlegungen an Sinterformteilen auf Eisenbasis
US20040115084A1 (en) * 2002-12-12 2004-06-17 Borgwarner Inc. Method of producing powder metal parts
US6899846B2 (en) * 2003-01-14 2005-05-31 Sinterstahl Corp.-Powertrain Method of producing surface densified metal articles
US7145217B2 (en) * 2005-01-25 2006-12-05 Kyocera Corporation Chip-type noise filter, manufacturing method thereof, and semiconductor package
DE102005027049A1 (de) * 2005-06-10 2006-12-14 Gkn Sinter Metals Gmbh Belastbare Verzahnung
DE102005027144A1 (de) * 2005-06-10 2006-12-14 Gkn Sinter Metals Gmbh Oberflächenverdichtung einer Verzahnung
DE102005027054A1 (de) * 2005-06-10 2006-12-28 Gkn Sinter Metals Gmbh Werkstück mit unterschiedlicher Beschaffenheit
DE102005027048A1 (de) * 2005-06-10 2006-12-14 Gkn Sinter Metals Gmbh Gesintertes Verzahnungselement mit lokal-selektiver Oberflächenverdichtung
DE102005027137A1 (de) * 2005-06-10 2006-12-14 Gkn Sinter Metals Gmbh Verzahnung aus Sintermaterial
US7905018B2 (en) * 2006-03-29 2011-03-15 Hitachi Powdered Metals Co., Ltd. Production method for sintered gear
US8220153B2 (en) * 2006-05-26 2012-07-17 Hitachi Powdered Metals Co., Ltd. Production method for complex bearing
US8261632B2 (en) 2008-07-09 2012-09-11 Baker Hughes Incorporated Methods of forming earth-boring drill bits
DE102009010371A1 (de) 2009-02-26 2010-09-02 PMG Füssen GmbH Pulvermetallurgischer Körper und Verfahren zu seiner Herstellung
AT510985B1 (de) * 2011-07-22 2012-08-15 Miba Sinter Austria Gmbh Baugruppe mit zwei stoffschlüssig miteinander verbundenen bauteilen
DE102012006971A1 (de) * 2012-04-04 2013-10-10 Bernd-Robert Höhn Sinter-Getriebeelement
JP6515557B2 (ja) * 2015-02-04 2019-05-22 セイコーエプソン株式会社 三次元造形物製造用部材、三次元造形物製造装置、三次元造形物の製造方法および三次元造形物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2561579A (en) * 1947-10-02 1951-07-24 Gen Motors Corp Impregnated ferrous gear
SE348961C (sv) * 1971-03-15 1982-08-30 Asea Ab Forfarande for framstellning av en sintrad pulverkropp
US3803702A (en) * 1972-06-27 1974-04-16 Crucible Inc Method of fabricating a composite steel article
DE2258310C3 (de) * 1972-11-29 1982-02-04 Schwäbische Hüttenwerke GmbH, 7080 Aalen Sintereisen-Formteil mit einer verschleißfesten Oberflächenschicht und Verwendung eines Mittels zur Herstellung dieser Oberflächenschicht
US4123265A (en) * 1974-02-21 1978-10-31 Nippon Piston Ring Co., Ltd. Method of producing ferrous sintered alloy of improved wear resistance
US4059879A (en) * 1975-11-17 1977-11-29 Textron Inc. Method for the controlled mechanical working of sintered porous powder metal shapes to effect surface and subsurface densification
JPS5830361B2 (ja) * 1979-02-26 1983-06-29 日本ピストンリング株式会社 内燃機関用耐摩耗性部材の製造方法
SE430860B (sv) * 1980-06-11 1983-12-19 Uddeholms Ab Sett att framstella sintrade och infiltrerade kroppar
US4606768A (en) * 1985-07-15 1986-08-19 Scm Corporation High impact strength powder metal part and method for making same
US4710223A (en) * 1986-03-21 1987-12-01 Rockwell International Corporation Infiltrated sintered articles
US4769071A (en) * 1987-08-21 1988-09-06 Scm Metal Products, Inc Two-step infiltration in a single furnace run
US4976778A (en) * 1988-03-08 1990-12-11 Scm Metal Products, Inc. Infiltrated powder metal part and method for making same
US4810289A (en) * 1988-04-04 1989-03-07 Westinghouse Electric Corp. Hot isostatic pressing of high performance electrical components
JPH04505985A (ja) * 1989-05-31 1992-10-15 シーメンス アクチエンゲゼルシヤフト 真空スイツチ用CuCr接触片の製法並びに付属接触片
CH681516A5 (de) * 1989-09-13 1993-04-15 Asea Brown Boveri
GB8921826D0 (en) * 1989-09-27 1989-11-08 Brico Eng Valve guide
DE3935955C1 (de) * 1989-10-27 1991-01-24 Mtu Muenchen Gmbh
US5126102A (en) * 1990-03-15 1992-06-30 Kabushiki Kaisha Toshiba Fabricating method of composite material

Also Published As

Publication number Publication date
US5453242A (en) 1995-09-26
DE4211319A1 (de) 1993-10-07
ES2094458T3 (es) 1997-01-16
JPH0610009A (ja) 1994-01-18
DE59304381D1 (de) 1996-12-12
EP0565160A1 (de) 1993-10-13
ATE144930T1 (de) 1996-11-15
DE4211319C2 (de) 1995-06-08

Similar Documents

Publication Publication Date Title
EP0565160B1 (de) Verfahren zur Herstellung von Sintereisen-Formteilen mit porenfreier Zone
DE112005000921B4 (de) Verfahren zur Herstellung einer Sinterlegierung auf Eisenbasis und eines Sinterlegierungselements auf Eisenbasis
DE4310896C1 (de) Verfahren zum Herstellen von verschleißfesten Kanten an Turbinenschaufeln
DE69920621T2 (de) Verfahren zur herstellung von sinterteilen
DE2419014C3 (de) Verfahren zum Herstellen von Rohren aus rostfreiem Stahl und Anwendung des Verfahrens auf das Herstellen von Verbundrohren
EP1268868B1 (de) Pulvermetallurgisches verfahren zur herstellung hochdichter formteile
DE10308274B4 (de) Herstellungsverfahren für ein eisenhaltiges Schmiedeteil mit hoher Dichte
DE69819384T2 (de) Metallpulvermischung auf Eisenbasis
EP0574727B1 (de) Verfahren zur Herstellung eines hochtemperatur-festen Bauteils aus zwei unterschiedlichen Werkstoffen
DE2414909A1 (de) Stahlpulver
DE102015216802A1 (de) Verfahren zum Herstellen einer Kapsel für ein heiß-isostatisches Pressen
DE2160155B2 (de)
DE112009002701T5 (de) Gesinterte Eisenlegierung und Verfahren zu deren Herstellung sowie Gegenstand aus gesinterter Eisenlegierung
DE19944522A1 (de) Herstellungsverfahren für ein gesintertes Kompositmaschinenbauteil mit einem inneren Teil und einem äußeren Teil
DE3904776C2 (de)
US3768327A (en) Composite heavy-duty mechanism element
EP0421084A1 (de) Verfahren zur pulvermetallurgischen Herstellung eines Werkstücks
DE102004002714B3 (de) Verfahren zum Leichtmetall-Legierungs-Sintern
DE2824257A1 (de) Sinter-bauteil in elektromagnetischen maschinen
DE2821429A1 (de) Gegenstand mit einem schwierig zu bearbeitenden substrat aus einem verdichteten metallpulver und einer duktilen plattierung
DE3018345A1 (de) Verfahren zum erzeugen eines gewindegewalzten gesinterten zylindrischen metallerzeugnisses
DE3421858C2 (de)
DE3043321A1 (de) Sinterprodukt aus metall-legierung und dessen herstellung
DE3045265C2 (de) Verfahren zum Herstellen von porösen Sinterstahlkörpern
DE2712555A1 (de) Verfahren zum herstellen eines durchdringungsverbundmetalles aus wolfram, silber und kupfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19930924

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960418

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 144930

Country of ref document: AT

Date of ref document: 19961115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961108

REF Corresponds to:

Ref document number: 59304381

Country of ref document: DE

Date of ref document: 19961212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2094458

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SINTERSTAHL GESELLSCHAFT M.B.H.

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SINTERSTAHL GESELLSCHAFT M.B.H.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020225

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20020304

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020305

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020307

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020315

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20020322

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030323

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030323

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030324

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

BERE Be: lapsed

Owner name: METALLWERK *PLANSEE G.M.B.H.

Effective date: 20030331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031001

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031127

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040305

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051001