EP0563777A2 - Process for production of synthesis gas by thermal treatment of raw materials containing metallic and organic substances - Google Patents

Process for production of synthesis gas by thermal treatment of raw materials containing metallic and organic substances Download PDF

Info

Publication number
EP0563777A2
EP0563777A2 EP19930104882 EP93104882A EP0563777A2 EP 0563777 A2 EP0563777 A2 EP 0563777A2 EP 19930104882 EP19930104882 EP 19930104882 EP 93104882 A EP93104882 A EP 93104882A EP 0563777 A2 EP0563777 A2 EP 0563777A2
Authority
EP
European Patent Office
Prior art keywords
pyrolysis
stage
gasification
gases
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19930104882
Other languages
German (de)
French (fr)
Other versions
EP0563777B1 (en
EP0563777A3 (en
Inventor
Helmut Dobert
Hartmut Dr.-Ing. Rossel
Frank Krebber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thyssen Still Otto Anlagentechnik GmbH
Vaw Aluminium AG
Original Assignee
Still Otto GmbH
Thyssen Still Otto Anlagentechnik GmbH
Vereinigte Aluminium Werke AG
Vaw Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6454891&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0563777(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Still Otto GmbH, Thyssen Still Otto Anlagentechnik GmbH, Vereinigte Aluminium Werke AG, Vaw Aluminium AG filed Critical Still Otto GmbH
Publication of EP0563777A2 publication Critical patent/EP0563777A2/en
Publication of EP0563777A3 publication Critical patent/EP0563777A3/en
Application granted granted Critical
Publication of EP0563777B1 publication Critical patent/EP0563777B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/62Processes with separate withdrawal of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen

Definitions

  • the invention relates to a process for producing synthesis gas by thermal treatment of residues containing metallic and organic constituents, in particular for producing a hydrogen-rich synthesis gas.
  • Residual materials of the type mentioned at the outset occur, for example, in the separate collection and sorting of packaging materials from the household sector or as production residues and usually consist of plastics of different compositions in connection with thin metal foils made of, for example, aluminum.
  • Packaging materials are usually provided with lacquers and / or adhesive layers which, when processed, result in products containing harmful substances, which make recycling to a great extent difficult.
  • organically bound chlorine content which can be attributed to polyvinyl chloride PVC contained in the mixed plastics, as well as to polychlorinated hydrocarbons such as PCB (polychlorinated biphenyls) and other, sometimes very toxic, compounds.
  • the blazing coke bed is thereby caused by the smoldering coke and / or by other carbon carriers, e.g. Charcoal or brown coal smoked coke and supplied preheated fresh air are formed. So much preheated fresh air is supplied to the coke bed that a temperature level of 1000 to 1200 ° C. is maintained and the longer molecular chains contained in the carbonization gas can be split. It is disadvantageous for the environmental compatibility of such a system that the remaining solids accumulating in the coke bed are not melted and pollutants, such as heavy metal compounds, are not incorporated in them in an eluate-safe manner, so that they are washed out or leached out over time when stored open in a landfill can.
  • pollutants such as heavy metal compounds
  • the object of the present invention is to provide a method and a device for producing synthesis gas by thermal treatment of residues containing metallic and organic components, in which the pollutant potential contained in the residues is destroyed and the formation of new pollutants is prevented, the resulting process products solid fillers can be used in construction, for example, or at least are suitable for landfill and the chemical energy contained in the residues is used at the highest possible level to produce a high-quality synthesis gas.
  • the gas and solid streams are fed separately for further treatment.
  • the reusable components are comminuted and separated, e.g. of metals. This takes place in a metal separator 4, from where the metal parts reach the melting furnace 5 in cleaned form.
  • the non-metallic parts of the pyrolysis solids also contain heavy metals and salts as well as elementary carbon and also non-volatile hydrocarbon parts. These enter a gasification zone, where CO, CO2, H2 and H2O are formed as gaseous products and liquid slag when oxygen-enriched air or oxygen is added at temperatures above 1300 ° C. The slag is withdrawn from the gasification zone, cooled, and can be used as filler material or fed to the landfill.
  • the gaseous products withdrawn from the gasification stage are mixed in the decomposition stage with the gaseous constituents from the pyrolysis, the amount of steam required for the production of synthesis gas being fed in at the same time.
  • the stoichiometrically required amounts can be obtained from the analysis of the starting materials and the remaining solids from the Calculate pyrolysis and the oxygen content of the blown air. They are to be calculated in such a way that the cracking and decomposition reactions required for the complete conversion of the hydrocarbons contained in the pyrolysis gases take place automatically and the result is a synthesis gas with the desired composition.
  • An essential idea of the invention is that the feed containing metallic and organic constituents is gasified in several temperature stages, namely first at low temperatures in the pyrolysis (degassing) and then - separated from the pyrolysis gases - in a gasification zone at very high temperatures, while the pyrolysis gases at much lower temperatures, for example at 1000 ° C in the presence of steam to a gas mixture with a high proportion of H2 and CO are converted.
  • a regression of the polychlorinated hydrocarbons (denovo synthesis) is also ruled out, so that the raw synthetic gases coming from the decomposition stage only have to be subjected to wet cleaning in order to remove pollutants such as hydrogen chloride, ammonia and inorganic sulfur compounds from the gas.
  • Another important feature of the synthesis gas production method according to the invention is that the oxygen is added at a location where neither organochlorine components nor hydrogen chloride are present. In addition, at this point at temperatures counteracts a dioxin formation above 1300 ° C, so that even in the oxygen-containing gasification stage, the requirements set out above with regard to an environmentally friendly and energetically favorable synthesis gas process are met.
  • the low-volatility hydrocarbons obtained with the solid from the pyrolysis can be used in the gasification, in that they contribute to an acceleration of the process step and thus the desired reactions can take place completely and without residue under the influence of the high temperatures.
  • steam jet compressors can advantageously be used for the task described, which compress the gas removed from the pyrolysis into the second gasification stage inject under pressure.
  • This has the further advantage that the pyrolysis gases containing tar and oil vapor can be introduced into the gasification chamber in a very finely divided form.
  • the inlet openings for the pyrolysis gases and the water vapor feed are arranged opposite one another, so that complete mixing of the gas components to a homogeneous reaction mixture is made possible.
  • the temperature in the gasification stage must be reduced if the amount of water vapor in the decomposition stage cannot be increased.
  • the conditions in the pyrolysis must be changed in such a way that the carbon content is reduced by increasing the pyrolysis temperature.
  • this only works satisfactorily up to an upper temperature limit of 500 ° C.
  • the composition of the pyrolysis gases would be changed such that they could no longer be completely broken down to CO and H2 in the decomposition stage at the temperatures of 900 to 1300 ° C.
  • the amount of oxygen required for the complete gasification of the pyrolysis residues is adjusted by regulating the gasification temperature in the range between 1700 and 1850 ° C.
  • the pyrolysis gases are decomposed in an endothermic reaction, the temperature being regulated between 900 and 1300 ° C. by a controlled addition of steam.
  • the optimal composition of the raw synthesis gas generated is used as a control means for regulation.
  • Fluctuating residues can be compensated for by their temperature control in the gasification and decomposition stage by regulating the temperature of the pyrolysis process. This takes place in an advantageous manner by controlling the content of “low-volatility hydrocarbons”, the proportion of which is varied depending on the pyrolysis temperature in the pyrolysis solid. The content of low-volatility hydrocarbons in turn influences the temperature of the gasification process and the composition of the raw gases leaving the gasification.
  • the proposed procedure a regression of the polychlorinated hydrocarbons (denovo synthesis) is prevented with certainty, since the oxygen is added at a place where neither organochlorine components nor hydrogen chloride are present.
  • the raw synthetic gases coming from the decomposition stage only have to be subjected to wet purification in order to remove the pollutants which may have formed in the decomposition stage, such as hydrogen chloride, ammonia and inorganic sulfur compounds from the raw gas.
  • the pressure energy of the water vapor can be used to increase the pressure of the pyrolysis gas.
  • the introduction of the pyrolysis gas into the decomposition stage is facilitated by the excess pressure. Furthermore, advantageous operation of the gasification and decomposition stage under increased pressure is possible.
  • Steam jet compressors can advantageously be used to inject the gas removed from the pyrolysis into the decomposition stage under pressure.
  • the tar and oil-containing pyrolysis gases can be introduced into the decomposition space in a very finely divided form.
  • the basic diagram of synthesis gas production is explained in more detail below.
  • the input materials E or residual materials such as packaging materials and plastic / metal composites are entered in pyrolysis 1. After a temperature treatment between 300 and 500 ° C, the pyrolysis gases PG and the pyrolysis solids PFM leave the pyrolysis 1 via separate lines.
  • the pyrolysis solid PFM is very homogeneous and well prepared by the pyrolysis treatment, so that metal deposition can be carried out in the metal separator 4, with the result that the metal portion is fed to an oven 5, while the remaining constituents are fed into the gasification zone 3.1 as pyrolysis solid PF .
  • Oxygen O also reaches the gasification zone 3.1, as a result of which the temperature in the gasification zone is regulated between 1700 ° C. and 1850 ° C.
  • this gas is introduced into the decomposition stage 3.2 together with the pyrolysis gas PG and water vapor WD.
  • a raw synthesis gas SR is generated, which is cleaned in a gas purification 6 and then leaves the system after a gas scrubbing 8 as a purified synthesis gas SG.
  • the washing water can be passed through evaporator 9, the vapors B being advantageously introduced into the decomposer 3.2.
  • the salts SA leave the evaporators 9 with the evaporated water.
  • slag SC and from the furnace 5 a metal melt can be obtained, which can be processed to secondary metal in an advantageous manner.
  • Feed water W is used for gas cleaning, which is introduced into gas cleaning 6 and leaves it as water vapor WD.
  • the water vapor is input into the decomposition stage 3.2 to form synthesis gas and can advantageously also be used for the production of pressure energy in a steam jet compressor 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process was to be developed, by means of which the residual materials arising in the separate collection and sorting of packaging materials and the like can be utilized for producing a synthesis gas and at the same time the pollution potential inherent in the residual materials is destroyed and the formation of new pollutants is prevented. This is effected in such a way that, after a pyrolysis reaction at temperatures from 300-500 DEG C, the metallic constituents are separated off and the remaining solid phase is charged to a gasification stage and gasified at temperatures between 1450 and 1850 DEG C with oxygen-enriched air or oxygen under reducing conditions. The ash fractions arising in the gasification stage are taken off in the form of a vitrified slag, and the gas phase leaving the pyrolysis is converted to synthesis gas together with the gases formed in the gasification stage at temperatures between 800 and 1250 DEG C, with simultaneous addition of steam. Apparatus for carrying out the process consists of a rotary pipe reactor which has a gas outflow line for the pyrolysis gases formed at the end opposite the charging side. On the solids take-off side, the rotary pipe is connected to a metal separator device and a gasification reactor which is connected via a gas outlet to a decomposition reactor, the pyrolysis gases taken off from the rotary pipe reactor and steam also being introduced into the decomposition reactor. The crude synthesis gas formed is discharged from the decomposition reactor via a cooling and scrubbing device.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Synthesegas durch thermische Behandlung von Reststoffen enthaltend metallische und organische Bestandteile, insbesondere zur Erzeugung eines wasserstoffreichen Synthesegases.The invention relates to a process for producing synthesis gas by thermal treatment of residues containing metallic and organic constituents, in particular for producing a hydrogen-rich synthesis gas.

Reststoffe der eingangs genannten Art fallen beispielsweise bei der getrennten Erfassung und Sortierung von Verpackungsmaterialien aus dem Haushaltsbereich oder als Produktionsrückstände an und bestehen üblicherweise aus Kunststoffen verschiedener Zusammensetzungen in Verbindung mit dünnen Metallfolien aus beispielsweise Aluminium.Residual materials of the type mentioned at the outset occur, for example, in the separate collection and sorting of packaging materials from the household sector or as production residues and usually consist of plastics of different compositions in connection with thin metal foils made of, for example, aluminum.

Üblicherweise sind Verpackungsmaterialien mit Lackierungen und/oder Klebschichten versehen, die bei der Verarbeitung schadstoffhaltige Produkte ergeben, die eine Wiederverwertung im hohen Maße erschweren. Besonders hervorzuheben ist ein organisch gebundener Chloranteil, der auf in den Misch- Kunststoffen enthaltenes Polyvinylchlorid PVC zurückzuführen ist sowie auf polychlorierte Kohlenwasserstoffe wie PCB (polychlorierte Biphenyle) und andere, teils sehr toxische Verbindungen.Packaging materials are usually provided with lacquers and / or adhesive layers which, when processed, result in products containing harmful substances, which make recycling to a great extent difficult. Particularly noteworthy is an organically bound chlorine content, which can be attributed to polyvinyl chloride PVC contained in the mixed plastics, as well as to polychlorinated hydrocarbons such as PCB (polychlorinated biphenyls) and other, sometimes very toxic, compounds.

Desweiteren sind Schwefelverbindungen verschiedenster Zusammensetzung aber auch Schwermetalle in solchen Reststoffen zu finden. Zum Schluß sei noch auf das Problem der anhaftenden Inhaltsstoffe hingewiesen, die je nach Einsatzgebiet des Verpackungsmaterials beispielsweise aus Arzneimittelresten, Lebensmittel aber auch aus verschiedenen Chemikalien, z.B. aus der Fotoindustrie, bestehen können.Furthermore, sulfur compounds of various compositions but also heavy metals can be found in such residues. Finally, the problem of adhering ingredients, depending on the area of application of the packaging material, for example from pharmaceutical residues, food but also from various chemicals, for example from the photo industry.

Die Erzeugung von Synthesegas wie auch die Vergasung fester Materialien insgesamt sind in vielfältiger Weise erprobt und betrieben worden. Die eingesetzten Energieträger bestanden bisher jedoch in erster Linie aus Steinkohlen und -koks aber auch aus sogenannten "minderwertigen" Stoffen mit geringerem Heizwert, wie z.B. Braunkohlen, Torf und Holz. Die Beschaffenheit derartiger Einsatzmaterialien unterscheidet sich sowohl hinsichtlich ihrer physikalischen Konsistenz als auch hinsichtlich ihrer chemischen Zusammensetzung, insbesondere hinsichtlich des Wasserstoff-, Sauerstoff- und Schadstoffgehaltes deutlich von den eingangs genannten Reststoffen. Daher ist eine unmittelbare Anwendung der bekannten Verfahren und Vorrichtungen auf die thermische Behandlung von Verpackungsmaterialien und Produktionsrückständen nicht möglich.The generation of synthesis gas as well as the gasification of solid materials as a whole have been tried and operated in a variety of ways. So far, the energy sources used consist primarily of hard coal and coke but also of so-called "inferior" substances with a lower calorific value, e.g. Brown coal, peat and wood. The nature of such feed materials differs significantly in terms of their physical consistency as well as in terms of their chemical composition, in particular with regard to the hydrogen, oxygen and pollutant content, from the residues mentioned at the beginning. It is therefore not possible to apply the known methods and devices directly to the thermal treatment of packaging materials and production residues.

Es ist bekannt, daß Reststoffe durch pyrolytische Behandlung aufgeschlossen und in eine Gas- und eine Feststofffraktion getrennt werden können. Weiterhin sind Verfahren bekannt, die die beim Pyrolyseprozeß anfallende Gasphase in Verbrennungseinrichtungen, in Einzelfällen gemeinsam mit den nicht direkt verwertbaren Feststoffen aus der Fraktionierung, einsetzen und energetisch verwerten. Die damit verbundene "Dioxinproblematik" (Dioxinbildung, -rückbildung und -zerstörung) führt zu einem erheblichen Aufwand bei der Reinigung der dabei anfallenden Rauchgase. Auch die Nutzung der prozeßintern anfallenden Abwärmen, z.B. zur Beheizung des Pyrolyseofens, ist nur mit einer aufwendigen Anlagenausrüstung zu realisieren.It is known that residues can be digested by pyrolytic treatment and separated into a gas and a solid fraction. Furthermore, processes are known which use the gas phase obtained in the pyrolysis process in combustion devices, in individual cases together with the solids from the fractionation which cannot be used directly, and utilize them energetically. The associated "dioxin problem" (dioxin formation, regression and destruction) leads to a considerable effort in the cleaning of the resulting flue gases. The use of the waste heat generated in the process, for example for heating the pyrolysis furnace, can only be achieved with complex plant equipment.

Aus DE-A 24 32 504 ist ein Verfahren bekannt, bei dem Abfall bei einer Temperatur von 300 bis 600° C unter Luftabschluß pyrolysiert und das dabei erhaltene Schwelgas kontinuierlich durch ein glutheißes Koksbett geleitet wird. Im Koksbett wird das Schwelgas zu einem Brenngas umgewandelt.From DE-A 24 32 504 a method is known in which waste is pyrolyzed at a temperature of 300 to 600 ° C with the exclusion of air and the carbonization gas obtained is passed continuously through a hot coke bed. The carbonization gas is converted into a fuel gas in the coke bed.

Das glutheiße Koksbett wird dabei durch den anfallenden Schwelkoks und/oder durch andere Kohlenstoffträger, wie z.B. Holzkohle oder Braunkohlen-Schwelkoks und zugeleiteter vorgewärmter Frischluft gebildet. Dem Koksbett wird dabei soviel vorgewärmte Frischluft zugeführt, daß ein Temperaturniveau von 1000 bis 1200° C gehalten und eine Spaltung der im Schwelgas enthaltenen längeren Molekülketten stattfinden kann. Es ist von Nachteil für die Umweltverträglichkeit einer solchen Anlage, daß die im Koksbett anfallenden restlichen Feststoffe nicht aufgeschmolzen und Schadstoffe, wie Schwermetallverbindungen, nicht eluatsicher in diesen eingebunden werden, so daß sie bei offener Lagerung auf einer Deponie mit der Zeit ausgewaschen bzw. ausgelaugt werden können.The blazing coke bed is thereby caused by the smoldering coke and / or by other carbon carriers, e.g. Charcoal or brown coal smoked coke and supplied preheated fresh air are formed. So much preheated fresh air is supplied to the coke bed that a temperature level of 1000 to 1200 ° C. is maintained and the longer molecular chains contained in the carbonization gas can be split. It is disadvantageous for the environmental compatibility of such a system that the remaining solids accumulating in the coke bed are not melted and pollutants, such as heavy metal compounds, are not incorporated in them in an eluate-safe manner, so that they are washed out or leached out over time when stored open in a landfill can.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung zur Herstellung von Synthesegas durch thermische Behandlung von Reststoffen enthaltend metallische und organische Bestandteile zu schaffen, bei dem das in den Reststoffen enthaltene Schadstoffpotential zerstört und die Bildung neuer Schadstoffe unterbunden wird, wobei die entstehenden Verfahrensprodukte feste als Füllstoffe z.B. im Baubereich einsetzbar oder zumindest deponiefähig sind und die in den Reststoffen enthaltene chemische Energie auf möglichst hohem Niveau zur Herstellung eines hochwertigen Synthesegases genutzt wird.The object of the present invention is to provide a method and a device for producing synthesis gas by thermal treatment of residues containing metallic and organic components, in which the pollutant potential contained in the residues is destroyed and the formation of new pollutants is prevented, the resulting process products solid fillers can be used in construction, for example, or at least are suitable for landfill and the chemical energy contained in the residues is used at the highest possible level to produce a high-quality synthesis gas.

Diese Aufgabe wird erfindungsgemäß durch die im Patentanspruch 1 angegebenen Merkmale gelöst. Weitere bevorzugte Verfahrensvarianten sind den Unteransprüchen zu entnehmen. Ferner ist eine Vorrichtung zur Durchführung des Verfahrens genannt, mit der neben der Synthesegaserzeugung gleichzeitig die in den Reststoffen enthaltenen Wertstoffe separiert und einer nützlichen Verwendung zugeführt werden können.This object is achieved by the features specified in claim 1. Further preferred process variants can be found in the subclaims. Furthermore, a device for carrying out the method is mentioned, with which, in addition to the synthesis gas production, the valuable substances contained in the residues can simultaneously be separated and used.

In überraschender Weise konnte mit dem erfindungsgemäßen Verfahren in einer Zersetzungs- und einer Vergasungsstufe eine vollständige Zerstörung der organischen Kohlenwasserstoffe unter gleichzeitiger Bildung eines wertvollen wasserstoffreichen Synthesegases erreicht werden, wobei die aus der Umwandlung entstehenden Abbau- und Abfallprodukte als Schlacke aus dem Zersetzungsprozess abgezogen werden können und mit den evtl. anfallenden Schwermetallen zu mineralischen Glaskörpern erstarren. Sie lassen sich mit Vorteil als Füllstoffe oder Baumaterialien nutzen. Sie können aber auch zwischengelagert werden, da die Schadstoffe fest eingebunden und nicht auslaugbar sind.Surprisingly, with the process according to the invention, a complete destruction of the organic hydrocarbons with simultaneous formation of a valuable hydrogen-rich synthesis gas could be achieved in a decomposition and a gasification stage, the decomposition and waste products resulting from the conversion being able to be drawn off as slag from the decomposition process and solidify with the possibly occurring heavy metals to mineral vitreous bodies. They can be used with advantage as fillers or building materials. However, they can also be stored temporarily because the pollutants are firmly integrated and cannot be leached out.

Im folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:

Fig. 1
prinzipieller Ablauf des erfindungsgemäßen Verfahrens zur Synthesegasherstellung,
In der Pyrolysestufe wird bei 300-500 °C zunächst eine thermische Auftrennung der Reststoffe in einen Gas- und einen Feststoffstrom durchgeführt. Die Temperatur wird in der Pyrolysestufe so eingestellt, daß je nach der vorhandenen Menge an Chlor bzw. chlororganischen Verbindungen im Einsatzmaterial alle polychlorierten Kohlenwasserstoffe vollständig in die Gasphase überführt werden. Die Behandlungszeit ist ebenfalls so zu steuern, daß unter denen bei der Pyrolyse herrschenden Bedingungen keine neuen Schadstoffe entstehen können. Zur Sicherstellung dieser Aufgabe ist eine ausreichende Behandlungszeit erforderlich, die bei Durchführung z.B. in einem Drehrohrreaktor ca. 45-60 min. beträgt.The invention is explained in more detail below with the aid of several exemplary embodiments. Show it:
Fig. 1
basic sequence of the process according to the invention for synthesis gas production,
In the pyrolysis stage, the residual materials are first thermally separated into a gas and a solid stream at 300-500 ° C. The temperature in the pyrolysis stage is set so that, depending on the amount of chlorine or organochlorine compounds present in the feed, all polychlorinated hydrocarbons are completely converted into the gas phase. The treatment time is also to be controlled so that no new pollutants can arise under the conditions prevailing during pyrolysis. To ensure this task, a sufficient treatment time is required, which takes about 45-60 minutes when carried out, for example, in a rotary tube reactor. is.

Im Anschluß an die Pyrolyse werden der Gas- und der Feststoffstrom getrennt einer Weiterbehandlung zugeführt. Beim Feststoffstrom erfolgt eine Zerkleinerung und Abtrennung der wiederverwertbaren Bestandteile wie z.B. der Metalle. Dieses geschieht in einer Metallabscheidevorrichtung 4, von dort gelangen die Metallanteile in gereinigter Form in den Schmelzofen 5.Following the pyrolysis, the gas and solid streams are fed separately for further treatment. In the case of the solid stream, the reusable components are comminuted and separated, e.g. of metals. This takes place in a metal separator 4, from where the metal parts reach the melting furnace 5 in cleaned form.

Die nichtmetallischen Anteile der Pyrolysefeststoffe enthalten außer Mineralien noch Schwermetalle und Salze sowie elementaren Kohlenstoff und auch schwer flüchtige Kohlenwasserstoffanteile. Diese gelangen in eine Vergasungszone, wo unter Zugabe von sauerstoffangereicherter Luft oder Sauerstoff bei Temperaturen von über 1300 °C CO, CO₂, H₂ und H₂O als gasförmige Produkte sowie flüssige Schlacke entstehen. Die Schlacke wird aus der Vergasungszone abgezogen, abgekühlt und kann als Füllmaterial verwendet oder der Deponie zugeführt werden.In addition to minerals, the non-metallic parts of the pyrolysis solids also contain heavy metals and salts as well as elementary carbon and also non-volatile hydrocarbon parts. These enter a gasification zone, where CO, CO₂, H₂ and H₂O are formed as gaseous products and liquid slag when oxygen-enriched air or oxygen is added at temperatures above 1300 ° C. The slag is withdrawn from the gasification zone, cooled, and can be used as filler material or fed to the landfill.

Die aus der Vergasungsstufe abgezogenen gasförmigen Produkte werden in der Zersetzungsstufe mit den gasförmigen Bestandteilen aus der Pyrolyse gemischt, wobei gleichzeitig die für die Herstellung von Synthesegas erforderliche Menge an Wasserdampf zugeführt wird. Die stöchiometrisch erforderlichen Mengen lassen sich aus der Analyse der Ausgangsstoffe sowie der verbleibenden Feststoffe aus der Pyrolyse und des Sauerstoffgehaltes der eingeblasenen Luft berechnen. Sie sind so zu berechnen, daß die zur vollständigen Umwandlung der im Pyrolysegase enthaltenen Kohlenwasserstoffe erforderlichen Spalt- und Zersetzungsreaktionen selbsttätig ablaufen und als Ergebnis ein Synthesegas mit der gewünschten Zusammensetzung entsteht.The gaseous products withdrawn from the gasification stage are mixed in the decomposition stage with the gaseous constituents from the pyrolysis, the amount of steam required for the production of synthesis gas being fed in at the same time. The stoichiometrically required amounts can be obtained from the analysis of the starting materials and the remaining solids from the Calculate pyrolysis and the oxygen content of the blown air. They are to be calculated in such a way that the cracking and decomposition reactions required for the complete conversion of the hydrocarbons contained in the pyrolysis gases take place automatically and the result is a synthesis gas with the desired composition.

Ein wesentlicher Erfindungsgedanke besteht darin, daß das Einsatzmaterial enthaltend metallische und organische Bestandteile in mehreren Temperaturstufen vergast wird, nämlich zunächst bei niedrigen Temperaturen in der Pyrolyse (Entgasung) und dann - getrennt von den Pyrolysegasen - in einer Vergasungszone bei sehr hohen Temperaturen, während die Pyrolysegase bei wesentlich niedrigeren Temperaturen, beispielsweise bei 1000 °C in Gegenwart von Wasserdampf zu einem Gasgemisch mit einem hohen Anteil an H₂ und CO umgewandelt werden. Unter diesen Bedingungen ist auch eine Rückbildung der polychlorierten Kohlenwasserstoffe (denovo-Synthese) ausgeschlossen, so daß die aus der Zersetzungsstufe abgehenden Syntheserohgase nur noch einer nassen Reinigung unterzogen werden müssen, um Schadstoffe wie Chlorwasserstoff, Ammoniak und anorganische Schwefelverbindungen aus dem Gas zu entfernen.An essential idea of the invention is that the feed containing metallic and organic constituents is gasified in several temperature stages, namely first at low temperatures in the pyrolysis (degassing) and then - separated from the pyrolysis gases - in a gasification zone at very high temperatures, while the pyrolysis gases at much lower temperatures, for example at 1000 ° C in the presence of steam to a gas mixture with a high proportion of H₂ and CO are converted. Under these conditions, a regression of the polychlorinated hydrocarbons (denovo synthesis) is also ruled out, so that the raw synthetic gases coming from the decomposition stage only have to be subjected to wet cleaning in order to remove pollutants such as hydrogen chloride, ammonia and inorganic sulfur compounds from the gas.

Wegen der besonderen Bedeutung des mehrstufigen Verfahrensablaufes ist in der Fig. 3 ein Temperaturprofil dargestellt, aus dem gleichzeitig Ort und Zeitraum der jeweils zugegebenen Einsatzstoffe erkennbar ist.Because of the particular importance of the multi-stage process sequence, a temperature profile is shown in FIG.

Ein weiteres bedeutendes Merkmal der erfindungsgemäßen Herstellungsweise von Synthesegas besteht darin, daß die Sauerstoffzugabe an einem Ort erfolgt, an dem weder chlororganische Komponenten noch Chlorwasserstoff vorhanden sind. Hinzukommt, daß an dieser Stelle bei Temperaturen über 1300 °C einer Dioxinbildung entgegengewirkt wird, so daß auch in der sauerstoffhaltigen Vergasungsstufe die eingangs gestellten Anforderungen hinsichtlich einer umweltfreundlichen und energetisch günstig ablaufenden Synthesegasverfahren erfüllt werden.Another important feature of the synthesis gas production method according to the invention is that the oxygen is added at a location where neither organochlorine components nor hydrogen chloride are present. In addition, at this point at temperatures counteracts a dioxin formation above 1300 ° C, so that even in the oxygen-containing gasification stage, the requirements set out above with regard to an environmentally friendly and energetically favorable synthesis gas process are met.

Dieses wird auch dadurch möglich, daß die mit dem Feststoff aus der Pyrolyse anfallenden schwerflüchtigen Kohlenwasserstoffe bei der Vergasung genutzt werden können, in dem sie zu einer Beschleunigung des Verfahrensschrittes beitragen und somit unter Einwirkung der hohen Temperaturen die erwünschten Reaktionen vollständig und rückstandsfrei ablaufen können.This is also possible in that the low-volatility hydrocarbons obtained with the solid from the pyrolysis can be used in the gasification, in that they contribute to an acceleration of the process step and thus the desired reactions can take place completely and without residue under the influence of the high temperatures.

Der der Erfindung zugrundeliegende Gedanke einer mehrstufigen, temperaturangepaßten Aufschließung der Reststoffe kann noch durch eine nachfolgend beschriebene Druckregelung vervollständigt werden. Hierbei wird davon ausgegangen, daß die für die Synthesegaserzeugung erforderliche Energie im wesentlichen davon abhängt, bei welchen Temperaturen eine vollständige Durchspaltung des zugeführten Wasserdampfes möglich ist.The idea of a multi-stage, temperature-adapted digestion of the residues on which the invention is based can be completed by a pressure control described below. It is assumed here that the energy required for the synthesis gas generation essentially depends on the temperatures at which a complete separation of the water vapor supplied is possible.

Es hat sich nun überraschender Weise gezeigt, daß eine Druckerhöhung in der zweiten Vergasungsstufe für eine vollständige Umsetzung der aus der Pyrolyse abgezogenen und in die Zersetzungsstufe eingeführten Pyrolysegase mit Vorteil genutzt werden kann.It has now surprisingly been found that an increase in pressure in the second gasification stage can be used to advantage for a complete conversion of the pyrolysis gases withdrawn from the pyrolysis and introduced into the decomposition stage.

Beispielsweise lassen sich für die beschriebene Aufgabe mit Vorteil Dampfstrahlverdichter einsetzen, die das aus der Pyrolyse entnommene Gas in die zweite Vergasungsstufe unter Druck eindüsen. Dieses hat den weiteren Vorteil, daß die teer- und Öldampfhaltigen Pyrolysegase sehr fein verteilt in die Vergasungskammer eingegeben werden können. In einer bevorzugten Ausführungsform sind die Einlaßöffnungen für die Pyrolysegase und die Wasserdampfeinspeisung gegenüberliegend angeordnet, so daß eine vollständige Durchmischung der Gasbestandteile zu einem homogenen Reaktionsgemisch ermöglicht ist.For example, steam jet compressors can advantageously be used for the task described, which compress the gas removed from the pyrolysis into the second gasification stage inject under pressure. This has the further advantage that the pyrolysis gases containing tar and oil vapor can be introduced into the gasification chamber in a very finely divided form. In a preferred embodiment, the inlet openings for the pyrolysis gases and the water vapor feed are arranged opposite one another, so that complete mixing of the gas components to a homogeneous reaction mixture is made possible.

Das erfindungsgemäße Verfahren kann durch folgende Parameter gesteuert werden:

  • 1. Menge des zugegebenen Sauerstoffs bzw. Luft in die Vergasungsstufe
  • 2. Menge des in den Pyrolysefeststoffen enthaltenen Kohlenstoffanteils bzw. Kohlenwasserstoffverbindungen
  • 3. Menge des in die Zersetzungsstufe eingeleiteten Wasserdampfes
  • 4. Menge und Zusammensetzung der Pyrolysegase
Diese Parameter werden nach folgenden Gesichtspunkten eingestellt:
Zunächst wird das erfindungsgemäße Verfahren bei mittleren Temperaturen angefahren. Dies bedeutet, daß in der Pyrolyse eine Endtemperatur von ca. 400 °C, in der Vergasungsstufe eine Temperatur von ca. 1750 °C und in der Zersetzungsstufe eine Temperatur von etwa 1100 °C eingestellt werden. Dann wird die Zusammensetzung des Syntheserohgases untersucht und je nach Bedarf mehr oder weniger Wasserdampf in die Zersetzungsstufe eingeleitet. Falls dabei die Temperatur von 900 °C unterschritten wird, muß die Temperatur in der Vergasungsstufe angehoben werden. Dies geschieht durch Regelung der zugeführten Sauerstoffmenge.The method according to the invention can be controlled by the following parameters:
  • 1. Amount of oxygen or air added to the gasification stage
  • 2. Amount of carbon or hydrocarbon compounds contained in the pyrolysis solids
  • 3. Amount of water vapor introduced into the decomposition stage
  • 4. Amount and composition of the pyrolysis gases
These parameters are set according to the following criteria:
First of all, the process according to the invention is started up at medium temperatures. This means that a final temperature of approximately 400 ° C. is set in the pyrolysis, a temperature of approximately 1750 ° C. in the gasification stage and a temperature of approximately 1100 ° C. in the decomposition stage. Then the composition of the raw synthesis gas is examined and more or less water vapor is introduced into the decomposition stage as required. If the temperature falls below 900 ° C, the temperature in the gasification stage must be raised. This is done by regulating the amount of oxygen supplied.

Bei Überschreitung einer Temperaturobergrenze von 1300 °C in der Zersetzungsstufe muß die Temperatur in der Vergasungsstufe herabgesetzt werden, falls die Wasserdampfmenge in der Zersetzungsstufe nicht erhöht werden kann. Dabei besteht allerdings die Gefahr, daß die aus der Vergasungsstufe abfließende Schlacke noch einen zu hohen Kohlenstoffgehalt aufweist oder eine zu geringe Viscosität besitzt. In diesem Fall müssen die Bedingungen in der Pyrolyse geändert werden und zwar in der Weise, daß der Kohlenstoffgehalt durch Erhöhung der Pyrolysetemperatur abgesenkt wird. Dieses gelingt allerdings nur bis zu einer Temperaturobergrenze von 500 °C in zufriedenstellender Weise. Darüber hinaus würde bei einer weiteren Temperaturerhöhung die Zusammensetzung der Pyrolysegase so verändert, daß diese in der Zersetzungsstufe bei den dort herrschenden Temperaturen von 900 bis 1300 °C nicht mehr vollständig zu CO und H₂ abgebaut werden könnten.If the upper limit of 1300 ° C in the decomposition stage is exceeded, the temperature in the gasification stage must be reduced if the amount of water vapor in the decomposition stage cannot be increased. However, there is a risk that the slag flowing out of the gasification stage will still have an excessively high carbon content or an insufficient viscosity. In this case, the conditions in the pyrolysis must be changed in such a way that the carbon content is reduced by increasing the pyrolysis temperature. However, this only works satisfactorily up to an upper temperature limit of 500 ° C. In addition, with a further increase in temperature, the composition of the pyrolysis gases would be changed such that they could no longer be completely broken down to CO and H₂ in the decomposition stage at the temperatures of 900 to 1300 ° C.

Im folgenden wird ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens näher erläutert:
Die zur vollständigen Vergasung der Pyrolyse-Reststoffe notwendige Sauerstoffmenge wird durch Regelung der Vergasungstemperatur im Bereich zwischen 1700 bis 1850 °C eingestellt. In der anschließenden Zersetzungsstufe werden die Pyrolysegase in einer endothermen Reaktion zersetzt, wobei die Temperatur durch eine gesteuerte Wasserdampfzugabe zwischen 900 und 1300 °C geregelt wird. Als Kontrollmittel wird die optimale Zusammensetzung des erzeugten Syntheserohgases zur Regelung herangezogen.
An exemplary embodiment of the method according to the invention is explained in more detail below:
The amount of oxygen required for the complete gasification of the pyrolysis residues is adjusted by regulating the gasification temperature in the range between 1700 and 1850 ° C. In the subsequent decomposition stage, the pyrolysis gases are decomposed in an endothermic reaction, the temperature being regulated between 900 and 1300 ° C. by a controlled addition of steam. The optimal composition of the raw synthesis gas generated is used as a control means for regulation.

Schwankende Reststoffzusammensetzungen können durch eine Temperaturregelung des Pyrolyseprozesses in ihrer Auswirkung auf die Vergasungs- und Zersetzungsstufe ausgeglichen werden. Dies geschieht in vorteilhafter Weise über die Steuerung des Gehaltes an "schwerflüchtigen Kohlenwasserstoffen", deren Anteil in Abhängigkeit von der Pyrolysetemperatur im Pyrolysefeststoff variiert wird. Der Gehalt an schwerflüchtigen Kohlenwasserstoffen beeinflußt aber wiederum die Temperatur des Vergasungsprozesses und die Zusammensetzung der die Vergasung verlassenden Rohgase.Fluctuating residues can be compensated for by their temperature control in the gasification and decomposition stage by regulating the temperature of the pyrolysis process. This takes place in an advantageous manner by controlling the content of “low-volatility hydrocarbons”, the proportion of which is varied depending on the pyrolysis temperature in the pyrolysis solid. The content of low-volatility hydrocarbons in turn influences the temperature of the gasification process and the composition of the raw gases leaving the gasification.

Nach der vorgeschlagenen Verfahrensweise wird eine Rückbildung der polychlorierten Kohlenwasserstoffe (denovo-Synthese) mit Sicherheit unterbunden, da die Sauerstoffzugabe an einem Ort erfolgt, an dem weder chlororganische Komponenten noch Chlorwasserstoff vorhanden sind. So müssen die aus der Zersetzungsstufe abgehenden Syntheserohgase nur noch einer nassen Reinigung unterzogen werden, um die in der Zersetzungsstufe eventuell gebildeten Schadstoffe, wie Chlorwasserstoff, Ammoniak und anorganische Schwefelverbindungen aus dem Rohgas zu entfernen.According to the proposed procedure, a regression of the polychlorinated hydrocarbons (denovo synthesis) is prevented with certainty, since the oxygen is added at a place where neither organochlorine components nor hydrogen chloride are present. For example, the raw synthetic gases coming from the decomposition stage only have to be subjected to wet purification in order to remove the pollutants which may have formed in the decomposition stage, such as hydrogen chloride, ammonia and inorganic sulfur compounds from the raw gas.

Bei der Zufuhr von Pyrolysegas in die Zersetzungsstufe kann die Druckenergie des Wasserdampfes zur Druckerhöhung des Pyrolysegases genutzt werden. Durch den Überdruck wird die Einbringung des Pyrolysegases in die Zersetzungsstufe erleichtert. Ferner ist ein vorteilhafter Betrieb der Vergasungs- und Zersetzungsstufe unter erhöhtem Druck möglich.When pyrolysis gas is fed into the decomposition stage, the pressure energy of the water vapor can be used to increase the pressure of the pyrolysis gas. The introduction of the pyrolysis gas into the decomposition stage is facilitated by the excess pressure. Furthermore, advantageous operation of the gasification and decomposition stage under increased pressure is possible.

Dabei lassen sich mit Vorteil Dampfstrahlverdichter einsetzen, die das aus der Pyrolyse entnommene Gas in die Zersetzungsstufe unter Druck eindüsen. Durch das Eindüsen können die teer- und ölhaltigen Pyrolysegase sehr fein verteilt in den Zersetzungsraum eingegeben werden.Steam jet compressors can advantageously be used to inject the gas removed from the pyrolysis into the decomposition stage under pressure. By means of the injection, the tar and oil-containing pyrolysis gases can be introduced into the decomposition space in a very finely divided form.

Im folgenden wird das Prinzipbild der Synthesegaserzeugung näher erläutert. Die Einsatzstoffe E bzw. Reststoffe wie Verpackungsmaterialien und Kunststoff/Metallverbunde werden in die Pyrolyse 1 eingegeben. Nach einer Temperaturbehandlung zwischen 300 und 500 °C verlassen die Pyrolysegase PG und die Pyrolysefeststoffe PFM die Pyrolyse 1 über getrennte Leitungen.The basic diagram of synthesis gas production is explained in more detail below. The input materials E or residual materials such as packaging materials and plastic / metal composites are entered in pyrolysis 1. After a temperature treatment between 300 and 500 ° C, the pyrolysis gases PG and the pyrolysis solids PFM leave the pyrolysis 1 via separate lines.

Der Pyrolysefeststoff PFM ist durch die Pyrolysebehandlung sehr homogen und gut aufbereitet, so daß eine Metallabscheidung in dem Metallabscheider 4 durchgeführt werden kann mit dem Ergebnis, daß der Metallanteil einem Ofen 5 zugeführt wird, während die übrigen Bestandteile als Pyrolysefeststoff PF in die Vergasungszone 3.1 eingegeben werden. Weiterhin gelangt Sauerstoff O in die Vergasungszone 3.1, wodurch die Temperatur zwischen 1700 °C und 1850 °C in der Vergasungszone geregelt wird.The pyrolysis solid PFM is very homogeneous and well prepared by the pyrolysis treatment, so that metal deposition can be carried out in the metal separator 4, with the result that the metal portion is fed to an oven 5, while the remaining constituents are fed into the gasification zone 3.1 as pyrolysis solid PF . Oxygen O also reaches the gasification zone 3.1, as a result of which the temperature in the gasification zone is regulated between 1700 ° C. and 1850 ° C.

Sobald der Kohlenstoffgehalt des Pyrolysefeststoffes PF in Kohlenmonoxid CO umgesetzt ist, wird dieses Gas in die Zersetzungsstufe 3.2 zusammen mit dem Pyrolysegas PG und Wasserdampf WD eingegeben. Bei Temperaturen zwischen 900 und 1300 °C wird ein Syntheserohgas SR erzeugt, das in einer Gasreinigung 6 gereinigt und anschließend nach einer Gaswäsche 8 als gereinigtes Synthesegas SG die Anlage verläßt.As soon as the carbon content of the pyrolysis solid PF has been converted into carbon monoxide CO, this gas is introduced into the decomposition stage 3.2 together with the pyrolysis gas PG and water vapor WD. At temperatures between 900 and 1300 ° C, a raw synthesis gas SR is generated, which is cleaned in a gas purification 6 and then leaves the system after a gas scrubbing 8 as a purified synthesis gas SG.

Wie bekannt, kann das Waschwasser durch Eindampfer 9 geleitet werden, wobei die Brüden B zweckmäßiger Weise in den Zersetzer 3.2 eingeleitet werden. Mit dem eingedampften Wasser verlassen die Salze SA die Eindampfer 9. Ferner können aus der Vergasungsstufe 3.1 Schlacke SC und aus dem Ofen 5 eine Metallschmelze gewonnen werden, die sich in vorteilhafter Weise zu Sekundärmetall verarbeiten läßt.As is known, the washing water can be passed through evaporator 9, the vapors B being advantageously introduced into the decomposer 3.2. The salts SA leave the evaporators 9 with the evaporated water. Furthermore, from the gasification stage 3.1, slag SC and from the furnace 5, a metal melt can be obtained, which can be processed to secondary metal in an advantageous manner.

Zur Gasreinigung wird Speisewasser W verwendet, daß in die Gasreinigung 6 eingeleitet und diesen als Wasserdampf WD verläßt. Der Wasserdampf wird in die Zersetzungsstufe 3.2 zur Bildung von Synthesegas eingegeben und kann vorteilhafterweise auch noch für die Herstellung von Druckenergie in einem Dampfstrahlverdichter 2 eingesetzt werden.Feed water W is used for gas cleaning, which is introduced into gas cleaning 6 and leaves it as water vapor WD. The water vapor is input into the decomposition stage 3.2 to form synthesis gas and can advantageously also be used for the production of pressure energy in a steam jet compressor 2.

Claims (9)

Verfahren zur Herstellung von Synthesegas durch thermische Behandlung von Reststoffen enthaltend metallische und organische Bestandteile, insbesondere von Verpackungsmaterialien aus Aluminium und Kunststoff,
dadurch gekennzeichnet,
daß die Reststoffe bei Temperaturen von 300-500 °C in einer Pyrolysereaktion aufgeschlossen und in eine Gas- und Feststoffphase getrennt werden,
nach Abtrennung der metallischen Bestandteile die verbleibende Feststoffphase in eine Vergasungsstufe eingegeben wird und bei Temperaturen zwischen 1450 und 1850 °C mit sauerstoffangereicherter Luft oder Sauerstoff unter reduzierenden Bedingungen vergast wird,
die aus der Vergasungsstufe anfallenden Ascheanteile in Form einer verglasten Schlacke abgezogen werden und die die Pyrolyse verlassende Gasphase in einer Zersetzungsstufe mit den in der Vergasungsstufe entstandenen Gasen unter gleichzeitiger Zugabe von Wasserdampf bei Temperaturen zwischen 800 und 1250 °C zu Synthesegas umgesetzt werden.
Process for the production of synthesis gas by thermal treatment of residues containing metallic and organic components, in particular packaging materials made of aluminum and plastic,
characterized,
that the residues are digested at temperatures of 300-500 ° C in a pyrolysis reaction and separated into a gas and solid phase,
after the metallic constituents have been separated off, the remaining solid phase is introduced into a gasification stage and gasified at temperatures between 1450 and 1850 ° C. with oxygen-enriched air or oxygen under reducing conditions,
the ash portions obtained from the gasification stage are drawn off in the form of a glazed slag and the gas phase leaving the pyrolysis is converted into synthesis gas in a decomposition stage with the gases produced in the gasification stage with simultaneous addition of water vapor at temperatures between 800 and 1250 ° C.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die Reststoffe in der Pyrolysestufe auf eine Temperatur erhitzt werden, die ausreicht, um die chlororganischen Kohlenwasserstoffe auszutreiben.
Method according to claim 1,
characterized,
that the residues in the pyrolysis stage are heated to a temperature sufficient to drive off the chlorine-organic hydrocarbons.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die aus der Pyrolysestufe stammenden Feststoffe nach Abtrennung der metallischen Bestandteile in der ersten Vergasungsstufe auf eine Temperatur erhitzt werden, die ausreicht, um den organischen Anteil vollständig in eine Gasphase, bestehend aus CO, CO₂, H₂ und H₂O, zu überführen.
Method according to one of the preceding claims,
characterized,
that the solids originating from the pyrolysis stage, after separation of the metallic constituents in the first gasification stage, are heated to a temperature which is sufficient to convert the organic component completely into a gas phase consisting of CO, CO₂, H₂ and H₂O.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Umformung der Gase in der Zersetzungsstufe unter erhöhtem Druck abläuft.
Method according to one of the preceding claims,
characterized,
that the transformation of the gases in the decomposition stage takes place under increased pressure.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Pyrolysegase unter erhöhtem Druck in die Zersetzungsstufe eingeleitet und unmittelbar mit dem Wasserdampf in Kontakt gebracht werden.
Method according to one of the preceding claims,
characterized,
that the pyrolysis gases are introduced under increased pressure into the decomposition stage and are brought into direct contact with the water vapor.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß das Synthesegas gereinigt, das Waschwasser eingedampft und ein Teil der dort wasserdampfhaltigen Brüden zur Zersetzung der Pyrolysegase genutzt wird.
Method according to one of the preceding claims,
characterized,
that the synthesis gas is cleaned, the washing water is evaporated and part of the vapors containing water vapor are used to decompose the pyrolysis gases.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß der zur Zersetzung der Pyrolysegase erforderliche Wasserdampf zum Betrieb eines Dampfstrahlverdichters genutzt wird.
Method according to one of the preceding claims,
characterized,
that the water vapor required to decompose the pyrolysis gases is used to operate a steam jet compressor.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die aus der ersten Vergasungsstufe abgezogene Schlacke zur Aufheizung des zur Zersetzung der Pyrolysegase erforderlichen Wasserdampfes genutzt wird.
Method according to one of the preceding claims,
characterized,
that the slag drawn off from the first gasification stage is used to heat the water vapor required for the decomposition of the pyrolysis gases.
Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
daß die Reststoffe stirnseitig in einen Drehrohrreaktor eingegeben werden, der am anderen Ende eine Gasableitung für die entstehenden Pyrolysegase aufweist,
daß die aus dem Drehrohr abgezogenen Feststoffe über eine Metallabscheidevorrichtung in einen Vergasungsreaktor eingeleitet werden, wobei die abgeschiedenen Metalle zurückgehalten und ggfs. einem Schmelzofen zugeführt werden,
daß in den Vergasungsreaktor sauerstoffangereicherte Luft oder Sauerstoff eingegeben wird und die entstehenden Gase in einen Zersetzungsreaktor überführt werden, während die Ascheanteile in Form einer flüssigen Glasschlacke abgezogen, gekühlt und verfestigt werden,
daß die Pyrolysegase zusammen mit Wasserdampf in den Zersetzungsreaktor eingeleitet werden und
daß die entstehenden Synthese-Rohgase durch eine Kühl- und Waschvorrichtung geleitet werden.
Device for carrying out the method according to one of the preceding claims,
characterized,
that the residues are fed into a rotary tube reactor at the end, which has a gas discharge for the pyrolysis gases formed at the other end,
that the solids withdrawn from the rotary tube are introduced into a gasification reactor via a metal separating device, the separated metals being retained and possibly being fed to a melting furnace,
that oxygen-enriched air or oxygen is introduced into the gasification reactor and the resulting gases are transferred to a decomposition reactor while the ash components are drawn off, cooled and solidified in the form of a liquid glass slag,
that the pyrolysis gases are introduced together with water vapor into the decomposition reactor and
that the resulting synthesis raw gases are passed through a cooling and washing device.
EP93104882A 1992-03-24 1993-03-24 Process for production of synthesis gas by thermal treatment of raw materials containing metallic and organic substances Expired - Lifetime EP0563777B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4209549 1992-03-24
DE4209549A DE4209549A1 (en) 1992-03-24 1992-03-24 Processes for the thermal treatment of residues, e.g. for the separation and recycling of metal compounds with organic components, using a combination of pyrolysis and gasification

Publications (3)

Publication Number Publication Date
EP0563777A2 true EP0563777A2 (en) 1993-10-06
EP0563777A3 EP0563777A3 (en) 1993-11-18
EP0563777B1 EP0563777B1 (en) 1996-05-29

Family

ID=6454891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93104882A Expired - Lifetime EP0563777B1 (en) 1992-03-24 1993-03-24 Process for production of synthesis gas by thermal treatment of raw materials containing metallic and organic substances

Country Status (3)

Country Link
EP (1) EP0563777B1 (en)
AT (1) ATE138679T1 (en)
DE (2) DE4209549A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021751A1 (en) * 1993-03-17 1994-09-29 Siemens Aktiengesellschaft Waste disposal process and device
EP0648829A1 (en) * 1993-10-19 1995-04-19 Mitsubishi Jukogyo Kabushiki Kaisha Process for the gasification of organic materials, processes for the gasification of glass fiber reinforced plastics, and apparatus
DE4404673A1 (en) * 1994-02-15 1995-08-17 Entec Recycling Und Industriea Process for the production of fuel gas
DE4435144A1 (en) * 1994-09-30 1996-04-04 Kloeckner Humboldt Deutz Ag Process and plant for thermal recycling of waste materials
DE4446803A1 (en) * 1994-12-24 1996-06-27 Noell Energie & Entsorgung Utilising residues and e g household and industrial waste material
EP0795595A1 (en) * 1996-01-19 1997-09-17 Texas Instruments Inc. A method for processing industrial liquid and solid waste material
EP0844297A2 (en) * 1993-10-19 1998-05-27 Mitsubishi Jukogyo Kabushiki Kaisha Process for the gasification of glass fiber reinforced plastics, and apparatus
NL1007710C2 (en) * 1997-12-05 1999-06-08 Gibros Pec Bv Method for processing waste or biomass material.
EP1002854A2 (en) * 1998-11-20 2000-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combustion process for producing pig iron or cement
DE102007034139A1 (en) 2007-07-21 2009-01-22 Helmut Hoffmann Method for thermal treatment of wet wastes, production residues and other residual substances having native organic or synthetic organic constituents, involves shredding coarse particle material mixtures mechanically
US20120264995A1 (en) * 2011-04-13 2012-10-18 Alter Nrg Corp. Process and apparatus for treatment of incinerator bottom ash and fly ash
US10450520B2 (en) 2009-11-20 2019-10-22 Rv Lizenz Ag Thermal and chemical utilization of carbonaceous materials, in particular for emission-free generation of energy
EP3805340A1 (en) 2019-10-09 2021-04-14 Reissner, Markus Method and system for producing a hydrocarbon and hydrogen-containing gas mixture from plastic

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4402565B4 (en) * 1994-01-28 2005-05-04 Siemens Ag Use at least one separation aid for the separation of sticky dusts in a device for waste processing
DE19513832B4 (en) * 1995-04-12 2005-08-11 Future Energy Gmbh Process for recycling residual and waste materials by combining a fluidized-bed thermolysis with an entrainment gasification
DE19730385C5 (en) * 1997-07-16 2006-06-08 Future Energy Gmbh Process for the production of fuel and synthesis gas from fuels and combustible waste and an apparatus for carrying out the process
DE19843613C2 (en) * 1998-09-23 2000-12-07 Harald Martin Process and device for processing waste products and waste materials
DE19937524A1 (en) * 1999-08-03 2001-02-15 Harald Martin Method and device for removing waste products and waste materials
DE19937521A1 (en) 1999-08-03 2001-02-15 Harald Martin Process and device for drying, separating, classifying and decomposing waste products
DE102012017107A1 (en) 2012-08-28 2014-03-06 Linde Aktiengesellschaft Heating a process exhaust
DE102013008518A1 (en) 2013-05-16 2014-11-20 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013008519A1 (en) 2013-05-16 2014-11-20 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013009950A1 (en) 2013-06-13 2014-12-18 Linde Aktiengesellschaft Process and plant for the treatment and thermal gasification of hydrous organic feedstock
DE102013012661A1 (en) 2013-07-30 2015-02-05 Linde Aktiengesellschaft Process and installation for enriching a synthesis gas generated by gasification with hydrogen
DE102013014042A1 (en) 2013-08-22 2015-02-26 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013015536A1 (en) 2013-09-18 2015-03-19 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013015539A1 (en) 2013-09-18 2015-03-19 Linde Aktiengesellschaft Plant and process for the at least partial gasification of solid organic feedstock
DE102013017546A1 (en) 2013-10-22 2015-04-23 Linde Aktiengesellschaft Process and plant for the gasification of feedstock
DE102013017945A1 (en) 2013-10-29 2015-04-30 Linde Aktiengesellschaft power plant
DE102013018332A1 (en) 2013-10-31 2015-04-30 Linde Aktiengesellschaft Device for introducing solid organic feed into a gasification plant
DE102013018992A1 (en) 2013-11-13 2015-05-13 Linde Aktiengesellschaft Apparatus for supplying gasification agent into a low-temperature gasifier
DE102013019655A1 (en) 2013-11-23 2015-05-28 Linde Aktiengesellschaft Container for a low temperature carburetor
DE102013020890A1 (en) 2013-12-11 2015-06-11 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013020889A1 (en) 2013-12-11 2015-06-11 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013020792A1 (en) 2013-12-11 2015-06-11 Linde Aktiengesellschaft Process and plant for the gasification of solid, organic feedstock
DE102014016401A1 (en) 2014-11-05 2016-05-12 Linde Aktiengesellschaft Process for using CO2 in syngas production
DE102014016407A1 (en) 2014-11-05 2016-05-12 Linde Aktiengesellschaft Process for the production of synthesis gas

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2261974A1 (en) * 1974-02-21 1975-09-19 Shell Int Research
GB1479257A (en) * 1974-09-23 1977-07-13 Cogas Dev Co Coal gasification
US4229185A (en) * 1975-11-10 1980-10-21 Occidental Petroleum Corporation Process for the gasification of carbonaceous materials
GB2068014A (en) * 1980-01-24 1981-08-05 Tosco Corp Process for the gasification of coal
EP0055840A1 (en) * 1980-12-27 1982-07-14 Forschungszentrum Jülich Gmbh Process and plant for the combustion of organic materials
EP0120397A2 (en) * 1983-03-23 1984-10-03 C. Deilmann AG Device for recovering energy from pyrolysable carbonaceous waste products of variable compositions
WO1990002162A1 (en) * 1988-08-23 1990-03-08 Roessle Gottfried Device and allothermic process for producing a burnable gas from refuse or from refuse together with coal
WO1991004306A1 (en) * 1989-09-20 1991-04-04 American Waste Reduction Corporation Minimization of environmental wastes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2261974A1 (en) * 1974-02-21 1975-09-19 Shell Int Research
GB1479257A (en) * 1974-09-23 1977-07-13 Cogas Dev Co Coal gasification
US4229185A (en) * 1975-11-10 1980-10-21 Occidental Petroleum Corporation Process for the gasification of carbonaceous materials
GB2068014A (en) * 1980-01-24 1981-08-05 Tosco Corp Process for the gasification of coal
EP0055840A1 (en) * 1980-12-27 1982-07-14 Forschungszentrum Jülich Gmbh Process and plant for the combustion of organic materials
EP0120397A2 (en) * 1983-03-23 1984-10-03 C. Deilmann AG Device for recovering energy from pyrolysable carbonaceous waste products of variable compositions
WO1990002162A1 (en) * 1988-08-23 1990-03-08 Roessle Gottfried Device and allothermic process for producing a burnable gas from refuse or from refuse together with coal
WO1991004306A1 (en) * 1989-09-20 1991-04-04 American Waste Reduction Corporation Minimization of environmental wastes

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021751A1 (en) * 1993-03-17 1994-09-29 Siemens Aktiengesellschaft Waste disposal process and device
EP0844297A2 (en) * 1993-10-19 1998-05-27 Mitsubishi Jukogyo Kabushiki Kaisha Process for the gasification of glass fiber reinforced plastics, and apparatus
EP0648829A1 (en) * 1993-10-19 1995-04-19 Mitsubishi Jukogyo Kabushiki Kaisha Process for the gasification of organic materials, processes for the gasification of glass fiber reinforced plastics, and apparatus
EP0844297A3 (en) * 1993-10-19 1998-06-10 Mitsubishi Jukogyo Kabushiki Kaisha Process for the gasification of glass fiber reinforced plastics, and apparatus
US5849050A (en) * 1994-02-15 1998-12-15 Crg Kohlenstoffrecycling Ges.Mbh Process for generating burnable gas
DE4404673A1 (en) * 1994-02-15 1995-08-17 Entec Recycling Und Industriea Process for the production of fuel gas
DE4435144A1 (en) * 1994-09-30 1996-04-04 Kloeckner Humboldt Deutz Ag Process and plant for thermal recycling of waste materials
DE4446803A1 (en) * 1994-12-24 1996-06-27 Noell Energie & Entsorgung Utilising residues and e g household and industrial waste material
DE4446803C2 (en) * 1994-12-24 1998-05-28 Krc Umwelttechnik Gmbh Process and device for thermal and material recycling of residual and waste materials
EP0795595A1 (en) * 1996-01-19 1997-09-17 Texas Instruments Inc. A method for processing industrial liquid and solid waste material
US6084139A (en) * 1997-12-05 2000-07-04 Gibros Pec B.V. Method for processing waste or biomass material
NL1007710C2 (en) * 1997-12-05 1999-06-08 Gibros Pec Bv Method for processing waste or biomass material.
EP0921182A1 (en) * 1997-12-05 1999-06-09 Gibros Pec B.V. Method for processing waste or biomass material
AU736172B2 (en) * 1997-12-05 2001-07-26 Droan B.V. Method for processing waste or biomass material
EP1002854A2 (en) * 1998-11-20 2000-05-24 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combustion process for producing pig iron or cement
EP1002854A3 (en) * 1998-11-20 2001-03-07 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Combustion process for producing pig iron or cement
FR2786196A1 (en) * 1998-11-20 2000-05-26 Air Liquide COMBUSTION PROCESS, PARTICULARLY FOR THE CASTING OF CAST IRON OR THE MANUFACTURE OF CEMENT
DE102007034139A1 (en) 2007-07-21 2009-01-22 Helmut Hoffmann Method for thermal treatment of wet wastes, production residues and other residual substances having native organic or synthetic organic constituents, involves shredding coarse particle material mixtures mechanically
US10450520B2 (en) 2009-11-20 2019-10-22 Rv Lizenz Ag Thermal and chemical utilization of carbonaceous materials, in particular for emission-free generation of energy
US10844302B2 (en) 2009-11-20 2020-11-24 Rv Lizenz Ag Thermal and chemical utilization of carbonaceous materials, in particular for emission-free generation of energy
US20120264995A1 (en) * 2011-04-13 2012-10-18 Alter Nrg Corp. Process and apparatus for treatment of incinerator bottom ash and fly ash
US9314655B2 (en) * 2011-04-13 2016-04-19 Alter Nrg Corp. Process and apparatus for treatment of incinerator bottom ash and fly ash
US9468787B2 (en) 2011-04-13 2016-10-18 Alter Nrg Corp. Process and apparatus for treatment of incinerator bottom ash and fly ash
US9669248B2 (en) 2011-04-13 2017-06-06 Alter Nrg Corp. Process and apparatus for treatment of incinerator bottom ash and fly ash
EP3805340A1 (en) 2019-10-09 2021-04-14 Reissner, Markus Method and system for producing a hydrocarbon and hydrogen-containing gas mixture from plastic
WO2021069394A1 (en) * 2019-10-09 2021-04-15 Reissner Markus Process and system for producing a hydrocarbon-containing and hydrogen-containing gas mixture from plastic

Also Published As

Publication number Publication date
EP0563777B1 (en) 1996-05-29
ATE138679T1 (en) 1996-06-15
EP0563777A3 (en) 1993-11-18
DE4209549A1 (en) 1993-09-30
DE59302721D1 (en) 1996-07-04

Similar Documents

Publication Publication Date Title
EP0563777B1 (en) Process for production of synthesis gas by thermal treatment of raw materials containing metallic and organic substances
DE3310534C2 (en)
EP0126407B1 (en) Process for recovering a useful gas from waste by pyrolysis, and apparatus for carrying out the process
DE102007062414A1 (en) Autothermic process for the continuous gasification of carbon-rich substances
EP0600923B1 (en) Process for producing synthetic or fuel gasses from solid or pasty residues and waste or low-grade fuels in a gasifying reactor
CH682725A5 (en) A method for utilizing waste materials.
DE4435349C1 (en) Destruction of pollutants and gasifying of waste in a fluidised bed
DE2419517C3 (en) Method and device for producing reducing gas
EP1522569A2 (en) Process, devices and plant for pyrolising of waste for producing syngas
DE2728455A1 (en) Pyrolysis of carbonaceous fuels in cyclone separator - with solid heat carrier, giving higher yields of middle distillate
WO1991018960A1 (en) Process and device for utilizing organic wastes
DE102007054343A1 (en) Process for the technical production of calcium carbide in the electric low-shaft furnace
DE2415412C3 (en) Method and device for the treatment of high molecular weight hydrocarbonates or waste oils
EP1015527A1 (en) Method for thermal treatment of material containing volatile, combustible constituents
DE2718539A1 (en) PROCESS FOR GASIFYING FINE DISTRIBUTED FUELS CONTAINING ASHES
DE2825429A1 (en) METHOD OF PYROLYSIS OF MUELL
DE4017089C3 (en) Method and device for vegasing plastics for the production of synthesis gas
DE3039905A1 (en) THREE-STEP METHOD FOR LIQUIDIZING COAL
EP3508556A1 (en) Method for operating a system for energy recovery and system for same
DE102018117674A1 (en) Process and device for producing activated carbon
CH644888A5 (en) METHOD FOR COMBINED WASTE RECYCLING AND WASTE WATER TREATMENT.
DE4009798C2 (en)
DE19513832B4 (en) Process for recycling residual and waste materials by combining a fluidized-bed thermolysis with an entrainment gasification
DE19937188C1 (en) Processing of industrial or domestic refuse to produce synthesis gas includes aspirating gases from a coolant water settling tank
DE2323654C3 (en) Process for converting solid waste into usable gaseous products

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE ES FR GB GR IT NL PT SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE ES FR GB GR IT NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VAW ALUMINIUM AG

Owner name: THYSSEN STILL OTTO ANLAGENTECHNIK GMBH

17P Request for examination filed

Effective date: 19931228

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KREBBER, FRANK

Inventor name: ROSSEL, HARTMUT DR.-ING.

Inventor name: DOBERT, HELMUT

17Q First examination report despatched

Effective date: 19950214

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB GR IT NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960529

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960529

Ref country code: GB

Effective date: 19960529

Ref country code: FR

Effective date: 19960529

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960529

Ref country code: BE

Effective date: 19960529

REF Corresponds to:

Ref document number: 138679

Country of ref document: AT

Date of ref document: 19960615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59302721

Country of ref document: DE

Date of ref document: 19960704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960829

Ref country code: PT

Effective date: 19960829

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960529

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970324

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: NOELL-KRC ENERGIE- UND UMWELTTECHNIK GMBH, ZWEIGNI

Effective date: 19970228

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19981129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000921

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101